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We propose a method to efficiently generate cluster states in charge qubits, both semiconducting and
superconducting, as well as flux qubits. We show that highly entangled cluster states can be realized by a
‘‘one-touch’’ entanglement operation by tuning gate bias voltages for charge qubits. We also investigate
the robustness of these cluster states for nonuniform qubits, which are unavoidable in solid-state systems.
We find that quantum computation based on cluster states is a promising approach for solid-state qubits.
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One-way quantum computing [1], which is based on a
series of one-qubit measurements starting from cluster
states of a qubit array, is an intriguing alternative to the
widely studied approach using unitary quantum gates. Here
the power of quantum mechanics, such as quantum paral-
lelism and entanglement, is already stored in the initial
cluster state. Cluster states are highly entangled states that
involve all qubits and act as a universal resource for
quantum computing.

Because of their unique importance, cluster states have
been studied in a variety of physical systems. They have
been extensively explored in optical quantum computers
both theoretically [2] and experimentally [3]. By incorpo-
rating cluster states, optical quantum computing can
achieve substantially simpler operations [2] compared to
the original linear optics quantum computing proposal [4].
Cluster states have also been studied in solid-state qubits.
In particular, processes of generating cluster states for
single and encoded spin qubits have been proposed [5,6]
using the Heisenberg exchange interaction.

The existing methods of generating cluster states all
require multiple steps because of the types of interaction
involved (in the case of photonic qubits, a large number of
optical elements is also required). Here we describe theo-
retically an efficient method to create scalable cluster states
in charge qubits [7–13] and flux qubits [14–16], using
existing Ising-like interactions. Our key result is that clus-
ter states in charge qubits can be created by applying a
single gate bias pulse, right after preparing an initial prod-
uct state j�0i � j��t � 0�i � �N

i�1j�ii, where j�ii �
�j0ii � j1ii�=

���
2
p

. Here j0ii and j1ii are the two states of
the ith qubit in an N-qubit system. We also calculate the
time-dependent fidelity of the cluster states in charge qu-
bits using a quantum dot (QD) system with decoherence
produced by the measurement backaction and explore the
effects of nonuniformity among qubits, which is a realistic
characteristics for all solid-state qubits.

Cluster states in charge qubits.—The Hamiltonian for
an array of charge qubits with nearest-neighbor interac-

tions is described by

 Hcq �
X
i

��i�ix � �i�iz� �
X
i<j

Jij�iz�jz; (1)

with Pauli matrices �ix and �iz for the ith qubit. �i is
either the inter-QD tunnel coupling for coupled QD sys-
tems [7–9] or half of the Josephson energy for supercon-
ducting charge qubits [11–13], respectively. For either
semiconducting or superconducting charge qubits, �i is
the charging energy and corresponds to the energy differ-
ence between j0ii and j1ii for each qubit. The coupling
constants Jij are derived from the capacitance couplings. In
one-way quantum computing [1], the �ix term needs to be
switched off during the creation of the cluster state and
then switched on when measurements are carried out.
From this perspective, charge qubits with tunable �i [17]
are desirable. However, tunability can produce decoher-
ence and cross talk between qubits themselves and between
qubits and the environment. In addition, for some qubit
systems, once the qubit array is made, �i and Jij are fixed,
and only �i is controllable via the gate voltage bias (we call
these ‘‘simple-design qubits’’). Practically, such a simple
design is preferable for solid-state qubits so as to simplify
fabrication and enhance scalability. Thus, our goal here is
to generate cluster states for simple-design qubits.
Hereafter, without loss of generality and for convenience,
we focus on qubits of coupled QDs. j0ii and j1ii refer to the
two states in which the excess charge is localized (see
Ref. [9]).

Typically, cluster states are generated by an Ising-like
Hamiltonian Hcs � �g=4�

P
i<j�1� �iz��1� �jz�, where i

and j are nearest-neighbor sites, starting from the initial
state j�0i. Preparing a unitary evolution Ucs�t� �
exp��itHcs� (we use @ � 1) at gt � �2nI � 1��, where
nI is an integer, is the first step for one-way quantum
computing. Since simple-design charge qubits have
Ising-like interactions, all we need to do to get Hcs out of
Eq. (1) is to turn off the effect of the �x terms in (1). This
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can be achieved in the high-bias regime where �i � �i >
Jij, by applying a canonical transformation to Eq. (1):

 H�eff�
cq � eSHcqe

�S �
X
i

Ei�iz �
X
i<j

J0ij�iz�jz �Huw;

(2)

where S � i
PN
i�1��i=2��iy, with tan�i � �i=�i 	 1.

Also Ei � ��i ��2
i =�i� cos�i and J0ij � Jij cos�i cos�j.

Huw is an unwanted interaction term given by Huw �P
i<jJ

0
ijf���i=�i��jz�ix � ��j=�j��iz�jx � ��i�j�=

��i�j��ix�jxg. As long as Huw is sufficiently small and can
be neglected, we can periodically generate cluster states in
the tilted frame j ~��t�i � eSj��t�i after a time tcs, if both
J0tcs � �=4� 2nJ� and Eitcs � ���=4� �ni � 2nE� are
satisfied [ �ni is the number of qubits connected to the ith
qubit; nJ ( 
 0) and nE are arbitrary integers, and J0ij
should be uniform: J0ij � J0]. These two equalities lead
to the relation J0�8nE � �ni�=�8nJ � 1� � Ei � Ei;tcs

. Thus,
to generate a cluster state, the gate bias voltage �i for the
ith qubit needs to be set at

 �i � �cs
i �

����������������������
E2
i;tcs
��2

i

q
(3)

during tcs � ��8nJ � 1�=�4J0�. A solution for �cs
i exists

when nE � ��i=J0�nJ > ��i=J0 � �ni�=8. Hereafter, we as-
sume these conditions and consider terms up to second
order in �i, neglecting terms���i=�i�3 or higher order. In
such a case, �i � �i=�i and J0 � J. We also choose to
treat the case of nJ � 0, which corresponds to the shortest
possible time to generate cluster states. To further ensure
the high-bias regime, where �i � �i, we require 8nE �
�ni �

���
2
p

�i=J. An initial product state j ~��0�i � j�0i has
to be prepared for qubits other than the input qubits [1].
j��0�i ��i�cos���i=�2�i� ��=4
j0ii� sin���i=�2�i� �
�=4
j1ii� is the corresponding state in the original
fj0ii; j1iig basis, which can also be adjusted by the gate
bias on each qubit.

For example, to obtain the two-qubit cluster state
j�iC2

� �j0i1j�i2 � j1i1j�i2�=
���
2
p

, where �n1 � �n2 � 1,
we can use Eq. (3) and choose a gate bias (�cs

1 � �cs
2 )

from f6:71J; 14:9J; . . .g (nE 
 1) for � � 2J and
f5:74J; 14:5J; . . .g (nE 
 1) for � � 4J, etc.

Our approach is valid as long as the unwanted term
Huw can be neglected. We can estimate a lifetime, be-
yond which we lose the cluster state due to the presence
of Huw, by calculating the fidelity defined by F�t� �
jh�0je

iHcste�i�Hcs�Huw�tj�0ij
2 � j1 � ith�0jHuwj�0i �

�1=2��it�2h�0j�Huw; Hcs
 � H2
uwj�0ij

2. For a d-
dimensional N-qubit array,

 F�t� � 1� N�dJt�2sin22�: (4)

Thus, the lifetime of the cluster state is limited by t <
tuw � �2dJ��=��

����
N
p
��1. Furthermore, the constraint tcs <

tuw imposes a limit on the number of clustered qubits:
Nmax < �2�=���d��2. For example, consider a one-

dimensional qubit chain with �i � 4J and �ni � 2. For
nE � 2 (�cs

i =J � 13:4), Nmax � 4. For nE � 6 (�cs
i =J �

45:8), Nmax � 57. Indeed, we can choose an infinite num-
ber of bias conditions for each set of fixed �i and J. These
are closely related to the possible numberNmax of clustered
qubits and to the scalability of the system. Various kinds of
errors, as discussed in Ref. [2], should be taken into
account for more detailed estimates.

As shown in Ref. [9], Jij and �i are determined by the
distances between QDs. Jij is basically a linear function of
the distances between QDs. �i depends exponentially on
the distances between two QDs in a qubit. With current
technology, it is quite difficult to fabricate an array of QDs
with very uniform �i. For superconducting charge qubits,
the situation is similar. However, notice that our approach
does not require �i to be extremely uniform, since we can
adjust �i according to �i in order to obtain an appropriate
Ei in Eq. (2). In addition, as noted above, nE can be
selected arbitrarily, which adds flexibility to our approach.
Thus, the one-touch cluster state generation method we
discuss here should work with any charge qubit architec-
ture. In short, although in general charge qubits have
shorter decoherence times compared with spin qubits, our
simpler and faster generation method could make them
competitive with spin qubits in the context of cluster states,
since several steps are required to generate cluster states
for spin qubits [5,6].

Measurement scheme in charge qubits.—In one-way
quantum computing, calculations are carried out by a series
of local measurements in the �ix and �iy eigenbasis. For
most charge qubits, however, the measurement is carried
out in the �iz eigenbasis fj0ii; j1iig by simply applying a
large gate bias and using field-effect detectors such as
quantum point contacts (QPCs) or single-electron transis-
tors. Thus, for charge qubits the �ix and �iy basis mea-
surements should be converted into�iz measurements after
rotating the frame via���=2�y and���=2�x pulses. These
pulses can be generated by applying ac gate biases such as
�i�t� � �0i cos�!ict��i�. In a rotating frame of Urw�t� �
exp��i

P
i�!ict=2��ix� [18], the wave function is given by

j ~��t�i � Uyrwj��t�i, and the Hamiltonian on resonance
(!ic � 2�i) is given by:

 Hrw �
X
i

�i0
2
��iz cos�i � �iy sin�i� �Hyz; (5)

where Hyz �
P
ij�Jij=2���iy�jy � �iz�jz� is an unwanted

term here. In order to realize j����i � ei
P

i
�i�iy j��0�i at a

time t � �, we should have e�i
P

i
�i��ixe�iHrw�=@ /

ei
P

i
�i�iy . First, to exclude a prefactor e�S in the cluster

state wave function, we need to choose the phase �i �
�=2 and the voltage amplitude �i0 � �2=���cs� at � �
tini � �=�. For the �ix measurement, we need a measure-
ment time tm � ��=��l1, the phase �i � �=2� l2�, and
the voltage amplitude �i0 � ��=�2l1����1� 4l3�, if l2 is
even, and �i0 � ��=�2l1����1� 4l3�, if l2 is odd [l1, l2,
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and l3 are arbitrary integers (l1 � 0)]. If we take tm �
��=���l1 � 1=4� and �i0 � �2�l2�=�l1 � 1=4� such that
l1 � l2 is even, we realize the �iy measurement. By apply-
ing a gate bias at the time tm following tini, �x and �y
measurements are processed. This scheme works well for
the region where �i0=J� 1.

For the experiment in Ref. [13], � � 20:5 �eV
and J � 95 �eV, and thus tcs � �=�4J� � 34:2 psec,
�cs � 664 �eV from Eq. (3) at nE � 1 and tuw �

�cs=�2
���
2
p
J�� � 0:5 ns for a dephasing time of the order

of T2 � 5 ns. Thus, our approach can be applied, if a
smaller J (<�) is prepared, for instance, by increasing
the distance between qubits.

Cluster states in flux qubits.—For flux qubits, �> � in
Eq. (1), so that here we cannot directly use the above-
mentioned one-touch approach for charge qubits. Here we
show a method to generate cluster states for flux qubits by
applying an oscillating magnetic field. Consider two
inductance-coupled flux qubits working at the optimal
bias [16] with the Hamiltonian:

 Hfq � �1�1z � �2�2z ��R
1 cos�!rf

1 t��1��1x

��R
2 cos�!rf

2 t��2��2x � Jxx�1x�2x; (6)

where �R
i and!rf

i are the half amplitude and the frequency,
respectively, of the applied classical field. At the optimal
bias point, the system is immune, up to first order, to
variations on the control parameters and is thus robust
against decoherence. This Hamiltonian is a good starting
point for generating cluster states. In the rotating wave
approximation for two identical qubits (�1 � �2), we
have ~Hfq � H0 �Hxy, with H0 �

P2
i�1��

R
i =2��

��ix cos�i � �iy sin�i� and Hxy�Jxx��1x�2x��1y�2y�.
The operator to generate cluster states Ucs is produced by
switching on and off the resonant field of �R

i and control-
ling the phase �i similarly to the conventional conditional
phase gate operation. For example, if we define Ri	��� �
exp�i��i	� (	 � x; y) and Uxy��� � exp�i���1x�2x �

�1y�2y��, we have:
 

~Ucs � R1x��1�R2x��2�Uxy��3�R1x��4�Uxy��5�R1x��6�

� exp��i���1x � �2x � �1x�2x�=4�; (7)

with �1 � �2 � ��=4, �3 � �5 � �=8, �4 � �=2, and
�6 � ��=2. After rotating ~Ucs around the y axis, we
recover the original cluster state generator Ucs. In the
case of many flux qubits, cluster states for the entire system
are generated by simultaneously applying Eq. (7) to all of
the neighboring qubit pairs. Note that Eq. (6) also describes
the rotating wave approximation for the charge qubits in
Eq. (5). Thus, this method of generating cluster states is
also applicable to charge qubits and not only to flux qubits.

The time required for the creation of a cluster state in
flux qubits is Tflux � 5�=�2�R

1 � � �=�4�R
2 � � �=�4Jxx�.

Taking �R
1 ��R

2 � Jxx � 0:5 GHz, we obtain Tflux �
18 ns (T2 � 200 ns [15]). The effect of imperfect pulses

can be estimated by substituting �j ! �j � 
j in Eq. (7). If
we take the deviation from a perfect pulse as 
1 � 
2,

3 � 
5, 
4 � 
6, for the initial state j�0i, the fidelity is
given by

 F�t� � 1� 
2
1 � 4
2

3 � 

2
4 sin2��=8�: (8)

Thus, the fidelity F�t� remains close to 1, up to second
order in the pulse shape error, even when the pulse shape
has defects.

Effect of nonuniformity in cluster states.—Cluster states
are highly entangled states involving all qubits and can be
decohered by various kinds of local fluctuations. Here we
investigate the effect of nonuniform qubit parameters on
cluster states in semiconductor QDs, from Eq. (1), using a
measurement setup, which produces decoherence in the
double dot qubits through backaction. We analyze a ca-
pacitively coupled detector (such as a QPC), whose shot
noise constitutes a random charge fluctuation on the qubits.

We use a density matrix (DM) to describe up to four
qubits (inset in Fig. 1) [19]. The DM equations for the
qubits and the QPC detector are derived in Ref. [19]:

 

d�z1;z2

dt
� i�Kz2

� Kz1

�z1;z2

� i
XN

j�1

�j��gj�z1�;z2

� �z1;gj�z2�
� � ��1=2

z1 � �1=2
z2 


2�z1;z2
; (9)

where z1; z2 � �1111�; �1110�; . . . ; �0000� for four qubits
(256 equations) and z1; z2 � �11�; �10�; �01�; �00� for two
qubits (16 equations). Kz1

is the energy of the z1 state and
depends on �i and Jij in Eq. (1). For example, for two
qubits, K�11� � �1 � �2 � J12 while K�10� ��1��2�J12.

 

FIG. 1 (color online). Time-dependent fidelities F�t� of cluster
states j�iC2, j�iC3, j�iC4, a product state j1010i and four-qubit
DF states j�iDF4 � �j1100i � j1001i � j0110i � j0011i�=2, for
�0 � J and �� � 0:6J. � � 4J and nE � 2 in Eq. (3); thus,
�2 � �3 � 13:4 and �1 � �4 � 14:4. (a) Comparison of the
cluster states, the DF state, and j1010i. (b) The case when
nonuniformity in the qubit parameters is introduced as �i �

4J�1� �i�, �i � �� �iJ, and ����i � �1� �i��
���, with i in-

dicating the ith qubit. Here �i � 0 for all qubits besides
(i) �3 � 0:1 and (ii) �4 � 0:1. The fidelities of j�iC4 for (i)
and (ii) mostly overlap. (Inset) Four qubits that use double dot
charged states are capacitively coupled to a QPC detector. We
consider a similar detection setup for two and three qubits. These
calculations are carried out by the Hcq, that is, they include Huw

and higher-order terms.
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The gj�zi�s are introduced for notational convenience and
are determined by the relative positions between qubit
states. We assume that the tunneling rate � of the QPC
detector in the presence of N qubits satisfies ��1 �P
i�
�1
i , where the tunneling rate �i is determined by the

state �iz � �1 of the ith qubit. The strength of the mea-
surement can be parametrized by ��i as ����i �
�i0 ���i, where �i0 is the tunneling rate of the QPC in
the absence of the qubits. The time-dependent fidelity
F�t� � Tr��̂�0��̂�t�
 can be calculated by tracing over the
elements of the reduced DM obtained from Eq. (9). F�t�
can be expanded in time as F�t� � 1�

P
n�1�1=n!��

�t=��n��n, where the lifetime is 1=��n� �
f�Tr��̂�0�dn�̂�0�=dtn
g1=n.

From Eq. (9), we obtain the first-order lifetime
for two-, three-, and four-qubit cluster states j�iC2

;
j�iC3

� �j�i1j0i2j�i3 � j�i1j1i2j�i3�=
���
2
p

and
j�iC4

� �j�i1j0i2j�i3j0i4 � j�i1j0i2j�i3j1i4 �

j�i1j1i2j�i3j0i4 � j�i1j1i2j�i3j1i4�=2, respectively,
as follows:

 1=��1�C2 �
X

z1;z2��11�;...;�00�

�d�z1; z2�=8; (10)

 1=��1�C3 �
X

z1;z2��111�;...;�000�

�d�z1; z2�=32; (11)

 1=��1�C4 �
X

z1;z2��1111�;...;�0000�

�d�z1; z2�=128; (12)

where the dephasing rate is defined as �d�z1; z2� � ��
1=2
z1 �

�1=2
z2 


2. Note that the lifetime of the cluster states is an
average over all of the dephasing rates between different
product states. This is in contrast with other entangled
states. For example, the lifetime of two-qubit Bell states
jci � �j10i � j01i�=

���
2
p

and jdi � �j10i � j01i�=
���
2
p

takes
the form 1=��1�c � 1=��1�d � �1=2��d�10; 01�. It is well
known that the singlet state jdi is the most robust two-
qubit state [20] when there is a symmetry between qubits.
However, solid-state qubits generally decohere due to vari-
ous kinds of local causes, which often break the symmetry
of the qubit state. Our results in Eqs. (10)–(12) indicate
that cluster states might be robust against nonuniformity or
local defects because of the averages.

In Fig. 1, we compare the fidelity of cluster states with a
product state and a four-qubit decoherence-free (DF) state
[20]. Figure 1(a) shows the time-dependent fidelities of
two-qubit and four-qubit cluster states and the product state
j1010i, when �0 � J and �� � 0:6J. Our results show
that the strongly entangled cluster states are more fragile
than a product state such as j1010i. We can also see that the
robustness of the cluster state depends on the number of
qubits in the cluster state. Figure 1(b) shows the time-
dependent fidelities of both cluster states and DF states,

for nonuniform qubits. Here the parameters �i, �i, and �i
for the third or fourth qubit deviate from those of other
qubits by 10%. Note that the fidelities of j�iC4 show
almost the same behavior irrespective of the distribution
of the nonuniformity. Furthermore, a comparison between
Figs. 1(a) and 1(b) shows that the nonuniformity has al-
most no effect on the fidelity of the j�iC4 cluster state.
These results vividly illustrate our analysis of the lifetime
(that it is an average over all the product states). In contrast,
in Ref. [19], we showed that the robustness of the DF states
strongly depends on the nonuniformity. Thus, even though
cluster states are generally more fragile than DF states,
they are more robust against nonuniformities among qubits
than DF states.

In conclusion, we describe how to efficiently generate
cluster states in solid-state qubits. By manipulating the gate
bias voltage, we explicitly show how to generate ‘‘one-
touch’’ entanglement via cluster states in charge qubits. We
also investigate the robustness of cluster states and find that
one-way quantum computing could be viable for solid-
state qubits.
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