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Controllable Coupling between Flux Qubits
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We propose an experimentally realizable method to control the coupling between two flux qubits. In our
proposal, the bias fluxes are always fixed for these two inductively coupled qubits. The detuning of these
two qubits can be initially chosen to be sufficiently large, so that their initial interbit coupling is almost
negligible. When a variable frequency or time-dependent magnetic flux (TDMF) is applied to one of the
qubits, a well-chosen frequency of the TDMF can be used to compensate the initial detuning and to couple
two qubits. This proposed method avoids fast changes of either qubit frequencies or the amplitudes of the
bias magnetic fluxes through the qubit loops, and also offers a remarkable way to implement any logic
gate, as well as tomographically measure flux qubit states.

DOI: 10.1103/PhysRevLett.96.067003 PACS numbers: 85.25.Cp, 03.67.Lx, 74.50.+r
ΦΦΦΦ(2)(2)(2)(2)((((t))))
e

ΦΦΦΦ(1)(1)(1)(1)
e ΦΦΦΦ(2)(2)(2)(2)

e
EJ1 EJ1

ααααEJ1

EJ2 EJ2

ααααEJ2

M

ΦΦΦΦ(1)(1)(1)(1)((((t))))
e

FIG. 1 (color online). Two superconducting flux qubits are
coupled through their mutual inductance M. Each qubit loop
includes three junctions. The tunable interaction between two
qubits can be realized by changing the frequency of the external
magnetic flux ��l�e �t� (l � 1; 2) through the lth qubit.
Introduction.—Superconducting Josephson junction cir-
cuits currently provide one of the best qubit candidates [1].
Quantum coherent oscillations and conditional gate opera-
tions have been demonstrated using two-coupled super-
conducting charge qubits [2]. Further, entangled macro-
scopic quantum states have been experimentally verified in
systems of coupled flux [3], and phase [4,5] qubits.

Quantum computing requires that the interaction be-
tween different qubits can be selectively switched on and
off. This is an extremely difficult and important issue.
Several schemes have been proposed to realize controllable
couplings and local qubit operations. One is a controllable
coupling by dynamically tuning the qubit frequencies, e.g.,
in Refs. [5–9]. This tunable proposal requires that different
qubits have the same frequencies (i.e., resonant interaction)
when they are coupled. When they are decoupled, one of
their frequencies should be suddenly changed by an exter-
nal bias variable such that two-coupled subsystems have a
larger detuning (i.e., nonresonant interaction). The second
approach uses switchable couplings in charge qubit circuits
by changing the bias magnetic flux, e.g., in Refs. [10,11].
In practice, the switching time of the magnetic flux should
be less than the inverse single-qubit Josephson energy (less
than a nanosecond), which is a challenge for present ex-
periments. The third proposal requires additional subcir-
cuits, e.g., in Refs. [12,13]. These additional elements
increase the complexity of the circuits and add additional
uncontrollable noise.

To easily switch on and off the coupling among qubits is
one of the most important open problems in quantum
information hardware. Here, we propose a way to over-
come this severe problem plaguing experiments. Specifi-
cally, we present a proposal on how to achieve a control-
lable interaction between flux qubits by virtue of variable
frequency or time-dependent magnetic fluxes (TDMFs).
Here, we make the same assumption as in the decoupling
experiments [5–7], which require the two qubits to be in
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the large detuning regime. However, here, the two-qubit
coupling and decoupling are controlled by the frequency
(not the dc component) of the applied TDMF. So we
completely avoid having to quickly change the bias mag-
netic flux—a severe problem faced by many previous
proposals for superconducting qubits. Moreover, our pro-
posal does not require additional subcircuits. These merits
also make our proposal potentially useful for a variety of
other types of qubit experiments, and could solve a central
problem in this field.

Controllable Hamiltonian.—Two flux qubits interact
with each other through a mutual inductance M, as shown
in Fig. 1. Each qubit loop contains three junctions, one of
them has an area � times smaller than that of the two
identical junctions. The larger junction in the lth qubit loop
has Josephson energy EJ;l (l � 1; 2). The gauge-invariant
phases (of the two identical junctions and the smaller one)
in the lth qubit are ’�l�1 , ’�l�2 , and ’�l�3 . We assume that a
static (dc) magnetic flux ��l�e and a TDMF ��l�e �t� �
Al cos�!�l�c t� are applied through the lth qubit. Using the
phase constraint condition through the lth qubit loopP3
i�1 ’

�l�
i � �2���l�e =�0� � �2���l�e �t�=�0� � 0, the total
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Hamiltonian of the two qubits can be written as [14]

H �
X2

l�1

�Hl �H
�l�
D � �

X2

l�m�1

Hlm �HC �HA: (1)

Here, the single-qubit Hamiltonian Hl is Hl � �P2
P;l=

�2MP;l�� � �P2
Q;l=�2MQ;l�� � 2EJ;l�1 � cos’�l�Q cos’�l�P � �

�EJ;l�1 � cos�2’�l�P � 2�fl�� with the redefined phases
’�l�P � �’

�l�
1 � ’

�l�
2 �=2, ’�l�Q � �’

�l�
1 � ’

�l�
2 �=2, and reduced

bias magnetic flux fl � ��l�e =�0. The effective masses
are MQ;l � 2��0=2��2CJ;l and MP;l � �1� 2��MQ;l,

which correspond to the effective momenta PQ;l �

�i@�@=@’�l�Q � and PP;l � �i@�@=@’
�l�
P �. The capacitances

in the lth qubit loop satisfy the condition C�l�1 � C�l�2 � CJ;l

and C�l�3 � �CJ;l. The Hamiltonian H�l�D � ��Al=2��I�l�3 �

i�PP;l�e�i!
�l�
c t � H:c: represents the interaction between

the lth qubit and its TDMF. Here, the parameter � �
2��!�l�c =��0�1� 2���, and I�l�3 � ��2��EJ;l=�0��

sin�2’�l�P � 2�fl� is the supercurrent through the smaller
junction of the lth qubit without applying the TDMF. So a
TDMF-controlled single-qubit rotation can be realized by
the Hamiltonian H�l�D . The qubit-qubit interaction Hlm,
controlled by one of the TDMFs [��1�e �t� or ��2�e �t�],

can be described by Hlm � ��lI�m�e�i!
�l�
c t cos�2’�l�P �

2�fl� � H:c:, where �l � M�2�=�0�
2�AlClEJ;l=2CJ;l�,

and I�m� � Cm
P
i�I
�m�
0i =C

�m�
i � sin’�m�i is the qubit loop cur-

rent of themth qubit without an applied TDMF, and C�1
m �P3

i�1�C
�m�
i �

�1. However, the qubit-qubit interaction HC,
controlled by simultaneously applying two TDMFs
[��1�e �t� and ��2�e �t�] through the two qubits, respectively,
is HC � B

Q2
l�1 ��l�e �t� cos�2’�l�p � 2�fl�, with B �

M�2�=�0�
4�C1C2EJ;1EJ;2=CJ;1CJ;2�. The Hamiltonian

HA � MI�1�I�2� denotes an always-on interaction between
the two flux qubits, without applying the TDMF.

In the two-qubit basis fje1i; jg1ig 	 fje2i; jg2ig, where
jgli and jeli are the two lowest eigenstates (ground and
first excited states) of Hl, Eq. (1) can become [15]

H �
X2

l�1

1

2
@!l�

�l�
z �

X2

l�1

��l�
�l�
� e
�i!�l�c t � H:c:�

�
X2

l�m�1

���1�lm�
�l�
��

�m�
� � H:c:��ei!

�l�
c t � e�i!

�l�
c t�

�
X2

l�m�1

���2�lm�
�l�
��

�m�
� e�i!

�l�
c t � H:c:�

� ��1�
�1�
� �

�2�
� � �2�

�1�
� �

�2�
� � H:c:�: (2)

Here, the terms �
l �
�l�
� e

i!�l�c t and ��2�lm�
�l�
��

�m�
� ei!

�l�
c t, as

well as their complex conjugates, have been neglected by
considering energy conservation. The operators of the lth
06700
qubit are defined as ��l�z � jelihelj � jglihglj, �
�l�
� � jeli�

hglj, and ��l�� � jglihelj. The qubit frequency !l in Eq. (2)

can be expressed as !l �
��������������������������������������������������
2I�l����l�e ��0=2�2 � t2l

q
with

the loop current I�l� and the bias flux ��l�e . Here,
the parameter tl denotes the tunnel coupling between
two wells in the lth qubit [16]. The controllable coupling
constants are �l � Alhelj�I

�l�
3 � i�PP;l�jgli=2, ��1�lm �

Al�lhel; gmjI�m� cos�2’�l�P � 2�fl�jgl; emi=2, and ��2�lm �

Al�lhel; emjI�m� cos�2’�l�P � 2�fl�jgl; gmi=2. The phases
and amplitudes of �l, ��1�lm , and ��2�lm can be controlled
by the applied TDMFs. The hard-to-control parame-
ters are �1 � Mhe1; g2jI

�1�I�2�jg1; e2i, and �2 �

Mhe1; e2jI�1�I�2�jg1; g2i. It is not difficult to derive that
�l � ��1�lm � ��2�lm � 0 for no TDMF. Then, since both
bias magnetic fluxes fl are near fl � 1=2 (the optimal
point is at fl � 1=2), the Hamiltonian (2) can revert to
the case in Refs. [3,6], where the Pauli operators are
defined by the states of the two potential wells.

Decoupling mechanism and logic gates.—We assume
that the two qubits work at the fixed frequencies !1 and
!2, which mean that their reduced bias magnetic fluxes
fi�i � 1; 2� and the frequency difference � � !1 �!2

remain fixed. If the detuning � is initially chosen to
be sufficiently large (such that it satisfies the condition:
j�j � j�1j=@ � j�2j=@ � j�j=@), then the two qubits can
be approximately treated as two decoupled subsystems [7]
when the TDMFs are not applied.

By applying the TDMF with the frequency-matching
condition !�l�c � !l, we can easily derive from Eq. (2)
that any single-qubit operation of the lth qubit can be
performed via the dynamical evolution U�l�c ��l; �l� �

exp�i�l�e�i�l��l�� � H:c:��. Here, �l � j�lj	=@ depends
on the Rabi frequency j�lj=@ and duration 	; �l is related
to the TDMF phase applied to the lth qubit. For example,
�=2 rotations of the lth qubit around the x or y axes can be
performed by U�l�c ��l; �l�, with 	 � @�=4j�lj and �l � �
or �=2. Unless specified otherwise, hereafter we work in
the interaction picture, and all nonresonant terms have
been neglected because their contributions to the transi-
tions between different states are negligibly small [17].

To couple two qubits with the assistance of the TDMF:
(i) a TDMF needs to be applied through one of the qubits,
and its frequency should be equal to the detuning (or sum)
of the two-qubit frequencies; (ii) the reduced bias flux [18]
on the qubit, which is addressed by the TDMF, should be
near but not equal to 1=2. Without loss of generality, below,
the TDMF is assumed to be always applied through the first
qubit, so the bias of the first qubit is f1 � 1=2
 
, with
small 
; however, the bias for the second qubit is taken as
f2 � 1=2.

Considering two new frequency-matching conditions in
Eq. (2) produces two different kinds of Hamiltonians for
implementing two-qubit operations with the assistance of
3-2
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TDMF. One is H1 � ��1�12�
�1�
� �

�2�
� � H:c:, with the condi-

tion:!1 �!2 
!
�1�
c � 0. Here, the sign is positive (nega-

tive) when �< 0 (�> 0). Another one is
H2 � ��2�12�

�1�
� �

�2�
� � H:c:, when the frequencies satisfy

the condition: !1 �!2 �!
�1�
c � 0. Using the Hamil-

tonian H1 and H2, two-qubit gates can be implemented.
For example, a TDMF is applied through the first qubit
with its frequency !�1�c , satisfying the condition !1 �

!2 �!
�1�
c � 0 (hereafter we assume !1 >!2 without

loss of generality). The Hamiltonians H1 can be trans-
formed to H1 � HXY � ��j�

�1�
12 j=2����1�x �

�2�
x � �

�1�
y �

�2�
y �,

when the phase of ��1�12 is set to � by an applied TDMF.
Then an ISWAP gate [19], denoted by UiS, can be realized
by HXY with an evolution time t � �@=�2j��1�12 j�. The
CNOT gate can be constructed by combining the ISWAP

gate with a few single-qubit operations.
Experimentally, it is found that the always-on coupling

strength j�j=h is about several hundred MHz, e.g., j�j=h�
0:4 GHz in Refs. [3,6]; the detuning �=2� can be �1 to
10 GHz. This means that the ratio j�j=@� cannot be
infinitesimally small, and the always-on interaction needs
to be considered when all TDMFs are switched off. Up to
the first order in j�j=@�, the effect of the always-on
interaction, without the TDMF, can be described by
an effective Hamiltonian HE � �j�j2=@���je1i�
he1j 	 jg2ihg2j � jg1ihg1j 	 je2ihe2j�. Here, the fast oscil-
lating terms have been neglected.

Entangled states and tomographic measurements.—
Entangled states can be easily generated in this circuit.
For example, if the first and second qubits are initially in
the excited state je1i and the ground state jg2i, then using
the Hamiltonian H1, the system evolves to j�1�t�i �
cos�j��1�12 jt=@�je1; g2i � ie�i� sin�j��1�12 jt=@�jg1; e2i with
the phase � of ��1�12 . It is obvious that the Bell states
j 
i � �jg1; e2i 
 je1; g2i�=

���
2
p

can be generated with
t1 � @�=�4j��1�12 j� by setting the TDMF such that � �
�=2 or 3�=2. Similarly, if both qubits are in the ground
states jg1i and jg2i, then another two Bell states j�
i �
�jg1; g2i 
 je1; e2i�=

���
2
p

can also be obtained with t2 �
@�=�4j��2�12 j� by setting the phase �0 of ��2�12 as �=2 or
3�=2 through the Hamiltonian H2.

State tomography allows us to experimentally determine
a quantum state [20]. Qubit state tomography can be
implemented by measuring the supercurrent through the
qubit loop, which is inductively coupled to, e.g., a dc
SQUID magnetometer or high-quality tank circuit [3].
For the lth qubit in the qubit basis fjgli; jelig, its loop-
current operator can be written [21] as

Î �l� � Î�l�x � al�
�l�
z � bljelihglj � b
l jglihelj (3)

with al � heljI�l�jeli and bl � heljI�l�jgli, when the bias fl
is near (but not equal to) 1=2. However, at the optimal point
06700
fl � 1=2, the supercurrent operator in Eq. (3) can be
reduced [21] to Î�l� � Î�l�x � bl�

�l�
x , with a real number bl

and the Pauli operator ��l�x � jelihglj � jglihelj.
If the simultaneous joint measurement of two qubits can

be performed in flux qubit circuits as in phase circuits [7],
then single-qubit operations are enough to realize the 15
different measurements [20] on the two-qubit states � �

�1=4�
P
i;jri;j�

�1�
i 	 �

�2�
j , with the Pauli operators ��l�i

(i; j � x; y; z and l � 1; 2) and the identity operator ��l�0 ,
where r00 � 1 by normalization. The loop-current operator
for the first qubit is given in Eq. (3) by setting l � 1 due to
the assumption f1 � 1=2, but it is reduced to I�2�x � b2�

�2�
x

for the second qubit with f2 � 1=2. So the 15 measure-
ments on state � are given as I�1�i and b2�

�2�
j (denoted as

single-qubit measurements), as well as b2I
�1�
i 	 �

�2�
j (called

two-qubit or joint measurements), with i; j � x; y; z, I�1�y �
Yy1 I

�1�
x Y1, and I�1�z � Zy1 I

�1�
x Z1. It is clear that three mea-

surements (I�1�x , b2�
�2�
x , and b2I

�1�
x 	 �

�2�
x ) on the input two-

qubit state � can be directly performed. Other 12 measure-
ments can be equivalently obtained by measuring (I�1�x ,
b2�

�2�
x , or both of them at the same time) on the rotated

state �. For example, �=2 single-qubit rotations Y1 around
the y axis for the first qubit and Z2 around the z axis for the
second qubit are simultaneously performed on the state �,
then the measurement b2I

�1�
x 	 �

�2�
x on the rotated state

Y1Z2�Z
y
2Y
y
1 is equivalent to the measurement b2I

�1�
y 	

��2�y on the original state �. Similarly, other joint measure-
ments can also be obtained. Finally, for the 15 measured
results, we solve a set of equations for the parameters rij,
and a two-qubit state is reconstructed.

If only a single-qubit measurement can be made at a
time (besides the six single-qubit measurements mentioned
above), a suitable nonlocal two-qubit operation [20] is
required to obtain the coefficients (e.g., ry;z) of the nine
joint measurements on the state �. Here, this is an ISWAP

gate UiS, which can be implemented as described above.
For example, if an operation UiS is made on the input state
�, then the loop current of the second qubit should be
hI�2�x i � Tr�UiS�U

y
iSI
�2�
x � ��b2 Tr����1�y 	�

�2�
z � ��b2ry;z,

and the coefficient ry;z is determined. Combining the
ISWAP gate and single-qubit operations for two qubits,
the coefficients of the other eight joint measurements
can be determined by only measuring the loop current
I�2�x of the second qubit. Then, the tomographic measure-
ment on a two-qubit state is completed by single-qubit
measurements.

Tomographically measured states are different for com-
pletely decoupled (CD) and large detuning (LD) two-qubit
systems after two-qubit states are created, if we consider a
duration t before measuring the generated two-qubit states.
As an example, a schematic representation of a Bell state
3-3
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FIG. 2 (color online). A schematic representation of tomo-
graphically measured state � [with only real part in (a)] for a
completely decoupled system, as well as a state � [with real part
in (b) and imaginary part in (c)] for a two-qubit system with
large detuning—after considering a duration t before measuring
the created state j �i.
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j �i is given in Fig. 2 for the above two cases. There is
only the real part for the reconstructed state � � j �ih �j
in the CD system, shown in Fig. 2(a). However, due to the
effect ofHE on the LD system, the reconstructed state � �
e�iHEt=@j �ih �jeiHEt=@ includes both real and imaginary
parts, shown in Figs. 2(b) and 2(c), respectively. In Fig. 2,
we consider a longer duration t� 10�9 s; the detuning and
the coupling constant are, e.g., �� 5 GHz, and j�j=h�
0:4 GHz. So if we consider the always-on interaction
effect, the relative error with these parameters is �0:08
for the nondiagonal parts of the reconstructed CD state
j �i. Here, the qubit free evolution is neglected. In prac-
tice, considering unavoidable environmental effects and
statistical errors, the experimentally measured data should
be further optimized by other methods [22].

Conclusions.—The controllable coupling of two induc-
tively coupled flux qubits can be realized, when the large
detuning condition is satisfied, by the frequency of the
TDMF matching or mismatching to the detuning (or
sum) of the two-qubit frequencies; not by changing qubit
biases (e.g., as in Ref. [7]). Our proposal is also different
from the coupling/decoupling method by using dressed
states [23]. We emphasize that the deviation 
 from the
optimal point 1=2 for the reduced bias f1 through the first
qubit will make the decoherence time T2 short. However,
our proposal can work for a small deviation, e.g., 
�
10�4, in which T2 * 20 ns in Ref. [24] or T2 * 100 ns
with spin-echo signals [24]. At this point, the qubit cou-
pling constant ��i�12�i � 1; 2� can reach [18] about several
hundred MHz. Based on numerical estimates [21], the
longest time for the single-qubit operation Zl is less than
5 ns, so the tomographic measurements can be performed
within T2. Our proposal can be scalable to a chain of many
inductively coupled flux qubits, if all of qubits satisfy the
large detuning condition. We need to note: (i) we can use
one LC circuit as a common information bus to couple
many qubits, with the qubit-bus coupling controlled by
externally variable frequencies [25]; (ii) this circuit can
be modified to work at the optimal point; (iii) this method
using frequency-controlled couplings can be applied to
06700
control one-junction flux qubits. It can also be modified
to control phase, charge-flux, and charge qubits.
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