
P H Y S I C A L R E V I E W L E T T E R S week ending
7 MAY 2004VOLUME 92, NUMBER 18
Controlling the Motion of Magnetic Flux Quanta
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We study the transport of vortices in superconductors with triangular arrays of boomerang- or
V-shaped asymmetric pinning wells, when applying an alternating electrical current. The asymmetry of
the pinning landscape induces a very efficient ‘‘diode’’ effect, that allows the sculpting at will of the
magnetic field profile inside the sample. We present the first quantitative study of magnetic ‘‘lensing’’ of
fluxons inside superconductors. Our proposed vortex lens provides a near threefold increase of the
vortex density at its ‘‘focus’’ regions. The main numerical features have been derived analytically.
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kets: > . Here, the length s0 of the two boomerang linear left or the right is the same, and the path followed by
Driven by nonequilibrium fluctuations, biological mo-
tors are examples of stochastic devices that bias the
Brownian motion of particles in an anisotropic medium
(see, e.g., [1,2]). These motors are inspiring novel solid-
state devices [3] that allow controlling the motion of
small ‘‘particles,’’ including electrons, colloidal par-
ticles, and magnetic flux quanta. Here we consider super-
conducting devices that are inspired by such molecular
motors. In particular, for samples with anisotropic pin-
ning, dc transport of magnetic flux quanta may be driven
by an ac current in the absence of noise.

The control of the motion of vortices using asymmetric
pinning [4,5] can be useful for applications, including the
removal of unwanted trapped flux in devices [6]. Indeed,
one of the main problems degrading the performance of
superconducting devices is the noise produced by fluctu-
ating trapped magnetic flux. Flux pumps, rectifiers, or
diodes [4,5] have been proposed. Indeed, several groups
[4,5,7] have studied quite different ways of using poten-
tial energy ratchets in superconductors. We present the
first quantitative study of magnetic lensing or shaping and
‘‘sculpting’’ micromagnetic profiles inside superconduc-
tors. For instance, our proposed vortex lens provides a
near threefold increase of the vortex density at its focus
regions. Our main numerical results have also been de-
rived analytically.

Using molecular dynamics simulations, we study the
dynamics of ac-driven vortices subject to the ‘‘ratchet
effect’’ of boomerang-shaped asymmetric pinning sites.
We observe a net longitudinal transport of the vortices
when H=H1 > 1, and a maximum rectification when
H=H1 � 2. Here H1 is the field at which the total number
of vortices Nv matches the number of pinning sites Np.
Moreover, we obtain a pronounced lensing effect at the
interface between stripes of boomerang traps with oppo-
site orientation (termed here bras, <, and kets, > ).

Model.— The plot in the inset of Fig. 1 shows sche-
matically the geometry of the triangular lattice of
identical boomerang-shaped pinning centers oriented as
0031-9007=04=92(18)=180602(4)$22.50 
arms is kept fixed, while varying the pinning lattice
constant a0 and the angle 
 between the arms. The
pinning force Fp exerted on each vortex is Fp�r� �
�Fp0f0�r=Rp� exp��jr=Rpj

2�. Here, r is the distance
between the vortex and the boomerang closest point; Rp
and Fp0f0 denote the strength and the range of the pin-
ning force, respectively [5,8,9].

The ac square-wave driving Lorentz force is FL �
Fx
L�t� x̂x and the repulsive vortex-vortex interaction is

approximated to Fvv�ri� � Fvv0 f0
PNv

j�i �r̂rij=jri � rjj,
where r̂rij � �ri � rj�=jri � rjj and Fvv0f0 denotes its in-
tensity. The overdamped equation of motion [5,8,9] of the
ith vortex is �vi � FL � Fvv�ri� � Fp�ri�. In our simula-
tion this equation is solved (with � � 1) by taking dis-
crete time steps �0 � 0:03 in a 2D sample with periodic
boundary conditions. The initial vortex positions are
obtained by annealing and then subjected to an alternat-
ing current along the y axis, which in turn exerts a
square-wave Lorentz driving force along the x axis with
amplitude FL and half period P. For brevity, here we
focus on the case a0=s0 � 4, 
 � 2�=3, Rp � 0:4, � � 6,
s0 � �=2, Fp0 � 2, and Fvv0 � 0:1, although very many
other parameter values were also simulated.

Net voltage Vdc versus ac drive period.— Figure 1(a)
shows the stationary time average of the vortex current
Vdc �

PNv
i vi=Nv for different amplitudes FL of the ac

drive. Each plotted point is obtained by averaging over
100 periods, each with 104 to 106 time steps, depending
on the choice of P (typically, the stationary regime is well
established after a relaxation time of 200P). Interestingly,
when increasing the half period of the driving force
(from P � 0 to 104�0 with very small step 
P � 20�0),
a sharp jump appears in the rectified voltage Vdc�P�
followed by a sequence of damped oscillations.

The origin of the rectification effect can be explained
as follows. When H=H1 � 1, the vortex diode effect
cannot manifest itself because, the vortex-vortex inter-
action is weak (for such low fields), and each pinning
site has at most one vortex. Thus, the depinning to the
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each individual vortex is essentially the same in either
direction.

The corresponding depinning force is determined
through the analytical expression for Fp�r� irrespective
of the FL orientation, Fdepin

	 �H=H1 � 1� ’ 0:86. Pinning
centers with double occupancy show up as H is being
increased above the first matching field H1. When FL k x
both trapped vortices tend to pile up towards the boomer-
ang central cusp of the ket > . Because of the strong
vortex-vortex repulsion between these two trapped vorti-
ces, the minimum force required to extract the first vor-
tex, Fdepin

� �H=H1�2�’0:65 for 
 � 2�=3, is lower than
for the single occupancy case. However, if FL k �x
two vortices trapped at the same boomerang-shaped pin-
ning well will move towards the two opposite boomerang
tips. The distance between two such vortices is then
relatively large for their repulsion to favor the depin-
ning mechanism appreciably, hence Fdepin

� �H=H1 � 2� ’
Fdepin
	 �H=H1 � 1� ’ 0:86. [For the sake of compari-

son, we mention that in the case of triple occupancy the
first depinning forces are Fdepin

� �H=H1 � 3� ’ 0:57 and
Fdepin
� �H=H1 � 3� ’ 0:65, respectively]. As a conse-

quence, vortices trapped in the sample move a longer
distance during the positive eastbound drive half cycle
than during the negative westbound one, and this pro-
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FIG. 1 (color). (a) Average net dc velocity Vdc versus the half
period P of the ac drive for different amplitudes FL: FL �
0:65, 0.7, 0.75, 0.8, and 0.9 with H=H1 � 2:05 and Np � 120.
(b) Vdc versus P for different ratios of vortices to pins, i.e.,
H=H1 � 1:05, 2.05, 3.05, and 4.05, with fixed amplitude of the
drive force FL � 0:7, and Np � 120. The inset in (a) shows a
unit cell of the triangular lattice of boomerang-shaped pinning
traps oriented as kets > ; the bisector of the angle 
 of each
trap is always along the x axis.
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duces a nontrivial rectified flow of depinned vortices in
the x direction for FL in the interval �0:65; 0:86�.

In the absence of both thermal and pinning forces, a
single vortex would alternate traveling a distance FL � P
in the x direction and then a distance FL � P in the
opposite �x direction. Thus, the minimum half period
Pc for the driving force FL to induce a substantial vortex
current is of the order of Pc 
 a0

���
3

p
=FL, i.e., the time a

vortex takes to advance the entire distance between two
adjacent pinning sites sitting on the same bisector. This is
the reason why the onset of the Vdc�P� curves in Fig. 1(a)
clearly depends on FL. The oscillation of Vdc�P� for P >
Pc and 1<H=H1 < 3, is another remarkable feature of
this asymmetric system. The period of these oscillations
coincides with Pc itself, as on increasing the forcing half
period P by an amount Pc, the depinned vortices succeed
in reaching one trapping boomerang farther in the x
direction before the drive reverses its sign; this optimizes
the rectification mechanism as a function of the ac drive
frequency. Interestingly, when FL � 0:9, i.e., for FL >
Fdepin
	 �H=H1 � 1�, we obtain a very weak negative dc

response (vortex current inversion).
The density of the vortices in the sample also plays an

important role in determining the intensity of their dc
response to an external ac drive, as shown in Fig. 1(b). In
the low density regime, H=H1 & 1, each pinning center
can trap at most one vortex, so for FL � 0:7 all vortices
stay pinned, being FL<Fdepin

	 �H=H1�1�’0:86. At
higher densities, H=H1>1, pinning centers can trap more
than one vortex. Let us now consider FL�0:7, which
falls between the two pinning forces Fdepin

� �H=H1�2�’
0:65 and Fdepin

� �H=H1 � 2� ’ 0:86. For this value of FL
the applied ac drive suffices to strip each pinning site
of all its vortices besides either one (that remains
trapped when FL k x), or two (that remain pinned when
FL k �x). Therefore at most one vortex per pinning site
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FIG. 2 (color). Net average dc velocity Vdc versus amplitude
FL of the ac driving force for various magnetic fields H=H1 �
1:05, 2.05, 3.05, and 4.05, with fixed half period P � 2000�0.
The side peaks at H=H1 � 3:05 and 4:05 signal a re-entrant
vortex current involving unpinned vortices at zero bias [10].
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actually participates in the rectification mechanism, and
Vdc is always positive. Therefore, the asymptotic values of
the Vdc�P� curves displayed in Fig. 1(b) are expected to
scale like H1=2H for H=H1 > 2 and 1�H1=H for
H=H1 � 2, in good agreement with our simulation. This
can be seen, e.g., via Vdc �

PNv
i vi=Nv 
 Vaver=H 


�v� � v��=2H 
 v�=2H 
 1=2H, since Nv 
H,
Vaver 
 �v� � v��=2, v� 
 0, and v� 
 1. For lower
fields, H=H1 � 2, the dependence 1�H1=H satisfies
the constraint Vdc�H � H1� � 1�H1=H1 � 0. The scal-
ing relations above explain why, on raising H=H1 above 2,
the relevant net velocities Vdc grow weaker, as shown in
Figs. 1 and 2. Notice that increasing the number of inter-
stitially flowing vortices also suppresses the Vdc oscilla-
tions of Fig. 1, as mutually repelling unpinned vortices
are less sensitive to the pinning-depinning mechanism.

Net dc voltage versus amplitude.—Figure 2 shows the
optimal ac drive amplitude for the dc response of the
system at different values of H=H1 and constant P �
2000�0. It is clear that when FL is smaller than a certain
threshold, none of the trapped vortices can be depinned
and no dc response is observed. The amplitude FL that
maximizes the dc response depends on the ratio H=H1.
For H=H1 � 1:05, only the interstitial vortices, about 5%
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FIG. 3 (color). Top panel: top view of the boomerang array
(black bras < and kets > ) with driven vortices (red dots) after
a sequence of 50 ac cycles with FL � 0:7 and P � 2000�0.
Lower panel: vortex density �v�x�= ���0 versus position along the
x axis. Here, a0x � a0 sin�
=2�, ���0 � H=H1 � 2, and Np �
128� 4 � 512. All remaining pinning site parameters are as
in Fig. 1. This snapshot shows an increase in � of about 3 from
its minimum value.
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of the total, are rectified. The very small scale fluctuations
in Vdc�FL� are due to discommensurations [9] between
the vortices and pinning centers, and to the geometry of
the pinning sites.

For higher magnetic fields, e.g., H=H1 � 2:05, 3.05 and
4.05, the curves Vdc�FL� exhibit a well defined maximum
in the range � Fdepin

� �H=H1 � 2�; Fdepin
� �H=H1 � 2� �, i.e.,

�0:65; 0:86�. On raising the vortex density, the onset of the
vortex current shifts towards lower FL values, since the
lowest depinning forces Fdepin

� decrease with increasing
H=H1. Most remarkably, as FL grows larger than the
largest depinning force, FL * Fdepin

	 �H=H1 � 1� ’ 0:86,
Vdc becomes negative, no matter what the value of H=H1

(Fig. 2) and P [Fig. 1(a), FL � 0:9]. The reason is that for
FL k x movable vortices flow forward along the bisector
of each boomerang row, while for FL k �x they move
backwards through the interstitial channels delimited by
each pair of adjacent boomerang rows. Traversing the
pinning sites (FL k �x) hinders the free motion of the
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FIG. 4 (color). Subtracted average vortex density 
 ���v�x�, af-
ter a time of 100P, for various (a) magnetic fields: H=H1�1,
1.5, 2, 2.5, 3, and 4 at P � 2000�0 and FL � 0:7; (b) driving
half periods: P=�0 � 1000, 1800, 2000, 2200, and 20 000 at
H=H1 � 2 and FL � 0:7; (c) ac driving forces: FL � 0:64, 0.7,
0.72, 0.8, and 0.88 at P � 2000 �0 and ���0 � H=H1 � 2. Here,
a0x � a0 sin�
=2� and Np � 128� 4 � 512.
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vortices, thus causing a vortex current inversion for any
P > Pc. Moreover, when FL is so small that P< Pc, it
may happen that in one half period P vortices moving
forward cannot make it to the next boomerang site (lo-
cated a distance a0

���
3

p
). Still, interstitial vortices moving

backwards jump out of one side tip of the boomerang and
get retrapped at the tip of the closest boomerang on the
adjacent row (located a distance a0

���
3

p
=2). Thus, intersti-

tial vortices are responsible also for the weak negative
vortex flow in the subthreshold regime 0:5Pc < P< Pc of
Fig. 1(a). Analytical results and vortex trajectory patterns
will be shown elsewhere [10].

Magnetic lensing effect.—In Fig. 3, we show the ‘‘lens-
ing effect’’ of vortices subject to an ac drive in a striped
pinning structure made of bras < and kets > , i.e., of
chevrons or boomerangs pointing to the left < and to the
right > , respectively. We simulated four alternate stripes
of bras and kets, each containing 128 pinning centers
arranged on eight rows; the remaining geometric pinning
parameters being as in Fig. 1. Figure 3 (top panel) shows a
snapshot of the spatial distribution of the vortices after 50
drive cycles with FL � 0:7 and P � 2000�0; in Fig. 3
(lower panel) is the corresponding vortex density per
pinning site �v�x� along the x axis: The lensing power
of both the focusing and defocusing geometries is strik-
ing. Notice that the maximum vortex density (convex
lens) is over significantly higher than the lowest vortex
density (concave lens).

In Figs. 4(a)– 4(c), we show the dependence of the
time-averaged vortex density ���v�x� on the magnetic field
H=H1, and on the half period P and the amplitude FL of
the ac drive. Each curve in Figs. 4(a)–4(c) has been
obtained by averaging the vortex distribution of 200
snapshots of the system taken half cycle apart, after a
time of 100P.

The excess vortices at the stripe interfaces are quanti-
fied by 
 ���v�x� � ���v�x� � ���0, where ���0 � H=H1 is the
expected vortex density per pinning site in the absence
of external bias and

R

 ���v�x�dx � 0. As shown in

Fig. 4(c),the lensing effect is maximum for FL ’ 0:7,
when the rectification effect of Fig. 2 is also the strongest;
namely, adjacent pinning stripes tend to pump vortices
towards the ket-bra, > < , interfaces (convex lens), due
to ratchet mechanism. The ability of a > < interface to
pile up vortices is rather insensitive to the initial vortex
density ���0, thus implying a saturation effect for H > H1

(at H � H1, the lensing effect vanishes altogether as all
vortices are pinned—no interstitials, there). For the op-
timal lensing configuration in Fig. 4(a), about two vor-
tices per pinning sites (H=H1 ’ 2) get trapped at the > <
interfaces, although this number necessarily decreases in
the adiabatic regime P � Pc; see Fig. 4(b).

We emphasize that, with modifications, these results
also apply to arrays of Josephson junctions, colloidal
systems, Wigner crystals and any system with repelling
movable objects that can be pinned by asymmetric traps
[11]. A recent example [12] illustrates how results from
180602-4
our previous predictions [13] can be extended to experi-
ments on colloidal systems.
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