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We study the relaxation of 2D quasicrystalline elastic networks when their constituent bonds are per-
turbed homogeneously. Whereas ideal, quasiperiodic networks are stable against such perturbations, we
find significant accumulations of strain in a class of disordered networks generated by a growth process.
The grown networks are characterized by root mean square phason fluctuations which grow linearly with
system size. The strain accumulation we observe in these networks also grows linearly with system size.
Finally, we find a dependence of strain accumulation on cooling rate.

PACS numbers: 62.30.+d, 61.70.—r

There is a widely held belief that in certain solids
(e.g., glasses) there are large accumulations of strain
even though external stresses are absent.! In crystalline
solids the strain fields of isolated defects are well under-
stood but fail to show any accumulation. In amorphous
solids, where the phenomena is believed to exist, identifi-
cation of an appropriate strain-free reference structure
has always been a major problem.? Quasicrystalline
solids® represent an interesting intermediate case in that
the number of local structural elements is finite and yet
these compose a structure with (possibly) positive config-
urational entropy. In this Letter, we exhibit a two-
dimensional (2D) quasicrystalline model, a “‘decagon ag-
gregate,” where the phenomenon of strain accumulation
is well defined. Numerical studies of our model show
that the accumulation of strain is correlated with the be-
havior of the phason field.

The building blocks of our model are decagons packed
edge to edge (see Fig. 1). In any aggregate of edge-
sharing decagons, any two decagons can always be relat-
ed by a pure translation. Moreover, such a translation
can always be expressed as an integral linear combina-
tion of four basis vectors e} (i=1,...,4). The latter
fact is equivalent to the statement that the possible

FIG. 1. Example of a decagon packing and projected lattice
generators e/'. Inset: projected lattice generators e;*.

decagon centers may be obtained by projecting a suitable
4D lattice. Consequently, each decagon is associated
with a pair of two-component vectors: x', the location of
its center; and x*, its “phason” coordinates. The pair
(x",x*) comprise the 4D lattice point. Details of the
projection technique are given at length elsewhere.* For
our purposes, it is sufficient to note that if the separation
(in the physical plane) of two decagons is given by
Ax"=X/~ niel, then Ax* =X/ n;e;* gives the separa-
tion of their phason coordinates. The geometry of the e;*
vectors is shown in the inset of Fig. 1.

The geometrical structure of edge-sharing decagons is
our strain-free reference solid. We constrain the local
structure by the requirement that the next-nearest-
neighbor (nnn) decagon separation is z=(1++/5)/2
times the nearest-neighbor (nn) or edge-sharing separa-
tion (see Fig. 1). If we depict only the pattern of nn
bonds in the decagon aggregate, a network such as
shown in Fig. 2 results. The connectivity of the network
is significantly increased by including nnn bonds. Our
model uses both types of bonds to stabilize the network
mechanically. Specifically, we impose Lennard-Jones
potentials between pairs of decagons joined by a bond.
The Lennard-Jones scale parameter is given by o) for nn

FIG. 2. Example of a grown decagon packing showing the
network formed by nn bonds.
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FIG. 3. Decoration of the 2D Penrose rhombi with dec-
agons.

bonds and o, for the nnn bonds. Both Lennard-Jones
depths are the same. The original edge-sharing struc-
ture, or reference solid, is stabilized by the choice
o./oy=1. We are interested in the formation of strains
(deformation of the reference solid) when o,./o; differs
infinitesimally from 7. In this limit (elastic regime) the
actual form of the potential is irrelevant since the har-
monic behavior dominates the dynamics.

The constraints on the local geometry of our decagon
packing still permit a large number of possible strain-
free reference solids. We have studied two kinds of
packings that can easily be distinguished by the behavior
of the phason coordinate. The first is a quasiperiodic
packing constructed by our decorating the 2D Penrose
tiling of rhombi with decagons as shown in Fig. 3. The
variation of x* from decagon to decagon is shown in Fig.
4(a) by means of a vector proportional to x*, based at
x" for each decagon with 4D coordinates (x",x*). Al-
though there are rapid local variations in x*, there are
no systematic changes on long length scales. In fact, a
necessary condition for quasiperiodic long-range order
(of the reference solid) is simply that the x* differences
are bounded.

The second kind of decagon packing we have studied
was generated by a growth algorithm. Our algorithm? is
an extension of earlier aggregation models® which avoids
the formation of 1D defects, or “tears,” in the connec-
tivity of the bond network. The growth geometry is a
triangle with one edge moving at constant velocity v
away from the opposite vertex. Using coordinates
x"=(x,y), where y represents the growth direction, the
interior of the triangle is given by 2| x| <y, 0<y <y,.
The growth nucleus is a single decagon placed at (0,0).
High connectivity of the network is achieved by Metrop-
olis annealing with a linear temperature field 7(y)
=h(y —yo). The growth velocity is established by the
motion of the zero-temperature isotherm: yo=v. Each
decagon-decagon bond, both nn with length 1 and nnn
with length 7, is assigned a cohesive energy of —I1.
Growth and annealing occur in the region 7 >0
(y > yo). A single growth-thermalization process con-

(a)

FIG. 4. (a) Phason field of the quasiperiodic packing; (b)
fiftyfold magnification of the displacement field of the same
packing.

sists of the following two operations applied to one of the
N decagons, say D), chosen at random from the region
y>yo. (1) A bond emanating from D, is chosen at ran-
dom and if a decagon D' placed at the other end of the
bond satisfies two properties it is added to the structure:
(i) It is simultaneously bonded to at least one other
decagon, say D>, and (ii) the distance between D' and
other decagons to which it is not bonded is greater than
7. (2) D; may be removed according to the Metropolis
criterion: a random number 7, uniform in (0,1) is chosen
and if r <exp(—nuona/T), then D, is removed. Here
nbond is the loss of cohesive energy given by the number
of bonds removed when D, is removed and T(y) is the
local temperature. At the completion of each growth-
thermalization process the zero-temperature isotherm is
advanced according to yo— yo+v/N.

We find that the parameter values h=0.3 and
v <0.001 produce satisfactory networks without tears at
the length scales considered here. Figure 5(a) shows the
phason field of a circular region excised from the center
of the triangular aggregate shown in Fig. 2. A striking
feature of Fig. 5(a) is the long-wavelength variation in
x*. This is especially remarkable in view of the unifor-
mity of the growth process. The same feature has been
observed in analogous simulations of a 3D icosahedral
model.”

The rigid geometries of our two reference solids, the
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(a)

FIG. 5. (a) Phason field of a grown decagon packing; (b)
tenfold magnification of the displacement field of the same
packing.

quasiperiodic and grown decagon packings, correspond
to a very nongeneric case of interparticle potentials.
There are no symmetry principles that require that the
ratio of the bond lengths is precisely 7 or that the angles
between bonds are precise multiples of 36°. Indeed, by
imposing pair potentials with o./o;=1+86, §#0 these
properties disappear. We have generated relaxed dec-
agon packings for § =0.1 using a molecular-dynamics al-
gorithm. This value of & is small enough that the
response (i.e., displacement field) scales linearly with &.
In the relaxed packings, not all the lengths of nn and nnn
bonds are exactly at the minimum of their respective
pairwise potentials.

A trivial consequence of modifying the potential is a
uniform strain, e.g., isotropic contraction or expansion,
of the unrelaxed packing. The uniform component of the
strain was eliminated with the method of least squares.
Let x; (x;") denote the unrelaxed (relaxed) positions of
the ith decagon and x; the linear change applied to the
unrelaxed position, i.e., x;=x;+Ax;+b. The uniform
strain matrix A and translation vector b are determined
by our minimizing the expression A2=N 'YL, (x/
—x/)2. A gives the root mean square (rms) displace-
ment, i.e., the “random” strain when the trivial effects
given by a linear transformation (rotation, expansion,
translation, shear, etc.) have been eliminated.
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FIG. 6. Root mean square (a) phason and (b) ordinary dis-
placements for the three decagon packings: quasiperiodic (m);
grown, with A =0.3, v=0.0015 (a); grown, with h=0.3,
v =0.0005 (@). The data are plotted for circular packings with
radius R.

The random-strain field of the quasiperiodic packing is
shown in Fig. 4(b). Although the strain field has de-
stroyed the bond-length-angle relationships of the rigid
geometry, it is clear that the relaxed structure is still
quasiperiodic. To see this we note that the strain field it-
self is quasiperiodic. This is evident from Fig. 4(b) and
is easily explained since (i) each decagon displacement is
determined by its environment (in the reference solid)
and (ii) the set of similar environments forms a quasi-
periodic pattern. Figure 4(b) also suggests that the
decagon displacements (after subtraction of the uniform
component) are bounded. We believe this is generally
true for quasiperiodic structures, provided the forces are
short ranged and the perturbation of the potential is
sufficiently small.

The behavior of the strain fields of the grown decagon
packings is quite different, as Fig. 5(b) shows. Again,
we have subtracted the uniform component of the strain
so that only the random component, associated with in-
homogeneities, remains. There is clearly an accumula-
tion of strain in that the large displacements away from
the reference solid involve the coherent motion of many
decagons. The growth of the rms displacement, A(R),
with the radius R of the packing is shown in Fig. 6(b).
In the quasiperiodic packing, AR quickly saturates as a
function of R whereas each of the grown packings we
have studied show a linear rise in A(R). A comparison
of Figs. 5(a) and 5(b) suggests that the inhomogeneity
responsible for the accumulation of strain in the grown
packings is the long-wavelength variation of the phason
coordinate. It is interesting that a plot of A*(R), the
rms phason displacement (with linear component sub-
tracted) also shows a linear rise [Fig. 6(a)].

Several diffusion experiments®’ have established a
linear growth of peak width with phason momentum G+
in quasicrystals. The apparent linear growth of A*(R)
with R in Fig. 6(a), seen also in the 3D icosahedral mod-
el,” is consistent with this behavior. Specifically, if x/' is
the position of the ith decagon in the reference solid and
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&x; its displacement after relaxation, then the scattering
phase angle is given by*

G" (x!+6x;,)=—G* x*+G" 6x; (mod2x). (1)

Fluctuations in both x;* and &x; lead to peak broadening.
In particular, for peaks with |G*|> |G"| one consid-
ers a coherence radius R, defined by |G*|At(R,) ~m.
From the behavior A*(R)~aR shown in Fig. 6(a) one
then obtains a peak broadening 6G ~n/R.~a|G*|.

Systematic departures from linear |G*| peak
broadening have been noted for diffraction peaks in the
opposite limit: |G'"|> |G*|. The interpolating form
8G2=|aG*| %+ | bG"| ? has been fitted to experimental
data with some success®’ and Horn et al.® have argued
that a G' term is a consequence of dislocations. The
same argument given above, but applied to the rms fluc-
tuations in &x;, leads to peak broadening of the form
8G~b|G"|, where now b comes from the behavior
A(R)~bR shown in Fig. 6(b). Thus, our model, which
is free of dislocations, reproduces the main features of
peak broadening in quasicrystals. Experimentally, the
ratio a/b is large.® Our results, where b depends linearly
on &, give a similarly large ratio, suggesting that the ana-
log of & in real quasicrystals is also small. Finally, we
find (e.g., see Fig. 6) a dependence of strain accumula-
tion on cooling rate, in that slow cooling induces larger
strain. This surprising result is consistent with recent ex-
periments in Ga-Mg-Zn. '°
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FIG. 4. (a) Phason field of the quasiperiodic packing; (b)
fiftyfold magnification of the displacement field of the same
packing.



FIG. 5. (a) Phason field of a grown decagon packing; (b)
tenfold magnification of the displacement field of the same
packing.



