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We investigate the dynamical Casimir effect in a coplanar waveguide (CPW) terminated by a super-
conducting quantum interference device (SQUID). Changing the magnetic flux through the SQUID
parametrically modulates the boundary condition of the CPW, and thereby, its effective length. Effective
boundary velocities comparable to the speed of light in the CPW result in broadband photon generation
which is identical to the one calculated in the dynamical Casimir effect for a single oscillating mirror. We
estimate the power of the radiation for realistic parameters and show that it is experimentally feasible to
directly detect this nonclassical broadband radiation.
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Two parallel mirrors in empty space are attracted to each
other due to the vacuum fluctuations of the electromagnetic
field, because of the different mode density inside com-
pared to outside of the mirrors. This striking effect of
quantum electrodynamics (QED) was predicted by
Casimir in 1948, and since then it has also been verified
experimentally (see, e.g., Ref. [1]).

If the mirrors move, there is also a mismatch between
vacuum modes at different instances of time. It was pre-
dicted [2] that this may result in the creation of real photons
out of vacuum fluctuations. This dynamical Casimir effect
(DCE) also holds for a single mirror subject to nonuniform
acceleration in empty space [3]. Although receiving con-
siderable interest [4,5] since its theoretical prediction,
there is still no experimental verification of the DCE.
This is mainly due to the fact that the rate of photon
production is non-negligible only when the mirror velocity
approaches the speed of light, making the use of massive
mirrors very challenging [6,7]. Other proposals for the
experimental verification of the DCE have suggested rap-
idly changing the field boundary conditions in other ways,
e.g., using lasers to modulate the reflectivity of a thin
semiconductor film [7,8] or the resonance frequency of a
superconducting stripline resonator [9].

Here, we show that a coplanar waveguide (CPW) termi-
nated by a superconducting quantum interference device
(SQUID), as shown in Fig. 1, is a very promising system
for experimentally observing the DCE. The inductance of
the SQUID can be controlled by the local magnetic flux
threading the loop, giving a tunable boundary condition
that is equivalent to that of a short-circuited transmission
line with a tunable length. Because there is no massive
mirror moving, the velocity of the effective boundary can
approach the speed of light in the transmission line. The
photon production from the vacuum can thus be made
experimentally detectable, and its photon spectrum is iden-
tical to the one calculated in the DCE for a single oscillat-
ing mirror [10].
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Building on work on superconducting circuits for quan-
tum information [11-13], there has recently been rapid
progress in the field of circuit QED, where the interaction
between artificial superconducting atoms and the electro-
magnetic field in microwave cavities is studied. Recent
achievements include strong coupling between artificial
atoms (qubits) and resonators [14], single-artificial-atom
lasing [15], and Fock-state generation [16]. Cavities with
tunable frequencies and low dissipation have also been
demonstrated [17,18], and it has been shown that the
resonance frequency can be changed by hundreds of line-
widths on a time scale much shorter than the photon life-
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FIG. 1 (color online). (a) A schematic diagram representing a
CPW terminated to ground through a SQUID loop. The effective
inductance of the SQUID can be tuned by the magnetic flux
d,, (1), providing a tunable boundary condition. (b) The setup in
(a) is equivalent to a short-circuited transmission line with a
tunable length L, i.e., with a tunable “mirror.”” We analyze this
system using the input—output formalism, which gives the spec-
trum of the scattered outgoing field, ®,,, as a function of the
incoming field, ®;,, in the coplanar waveguide.
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time in the cavity [19]. There are also recent theoretical
suggestions to observe the DCE in cavity geometries in-
cluding superconducting qubits [20,21], and also a sugges-
tion to use a CPW where the center conductor is replaced
by an array of SQUIDs [22] to simulate the Hawking
radiation [23].

We consider a superconducting CPW with characteristic
capacitance C; and inductance L, per unit length. The
CPW is terminated at x = 0 through a SQUID loop
threaded by an external flux ®,,(¢), as shown in Fig. 1.
Since the system contains Josephson junctions, it is con-
venient to describe the electromagnetic field in the CPW
line by its phase field ®(x, 1) = [*df'E(x, '), i.e., the time-
integral of the electric field E(x, r). The phase field obeys
the massless Klein-Gordon equation and, in second quan-
tized form, is (x < 0):

,hZ odw , . _. .
(I)(x’ t) — 4_77(-)'/(‘) \/_E(alé)qe*z(*kawLwt) + a(é)uteft(kmewt)

+ H.c.), (1)

where the an" operator annihilates a photon with fre-

quency w propagating to the right (left) with velocity v =
1//CyLy and wave vector k, = w/v, and satisfies the
commutation relation [a'“(om) (a';‘fom))T] = 6w — w').

The characteristic impedance of the CPW is Z, =
We first consider a symmetric SQUID, where the two
junctions have equal capacitances (C;; = C;, = C/2)
and Josephson energies (E; | = E;, = E;), and later com-
ment on the effects of asymmetry. The SQUID effectively
behaves as a single junction with a tunable energy

E;(f) = E”/2 + 2 cos(f), 2)

where f = 27D (1)/ Py, and @, = h/2e. The junction
can equivalently be characterized by its tunable
(Josephson) inductance L,(f) = (®y/2m)?/E,(f), as
long as the phase dynamics is slow compared to the plasma

frequency w,(f) = 1/4/CL,(f), and the SQUID is only
weakly excited.

The effective boundary condition for the field imposed
by the SQUID can be derived using quantum network
theory [24]. Starting from the classical Lagrangian for
the circuit, the Heisenberg equations of motion are ob-
tained from canonical quantization. For the system under
consideration, this analysis was performed in Ref. [25].
Here, we are now interested in macroscopic SQUID junc-
tions in the phase regime, i.e., when the charging energy is
small compared to the Josephson energy, (2¢)*/2C <
E;(f), and the quantum fluctuations of the phase across
the SQUID are small. In this regime, the boundary condi-
tion at x = 0 becomes

2m)
(I)2

62<I>(0, 1)

E/(N®0.0+ - —

1 9d(0, t) B
P =0, (3)

where the last term can be neglected since we are consid-
ering dynamics much slower than the plasma frequency of
the SQUID. We note that this boundary condition depends
parametrically on the tunable effective Josephson energy,
E;(f), providing the tunable boundary condition that will
be essential for the remaining discussion.

By inserting the field, Eq. (1), in the boundary condition,
Eq. (3), and performing an integration over time, we find
the corresponding boundary condition in frequency space.
For a static external flux f,, giving a static Josephson
energy EY = E,(f,), we can solve for the output operators
a°" in terms of the input operators a':

1+ ik, L°

aft = ———— 5 al = R(w)ay, “)
1 — ik LY

where the effective length

2 1 L(fy)
LY = eff(fo)_<—) L L, &)

is motivated by comparison to a short-circuited transmis-
sion line of length L and its phase factor —e?*L. This
effective-length interpretation is valid for kLY <1,
i.e., for frequencies where the SQUID effective length is
smaller than the wavelength, or equivalently, o <
ZOCwIZ,, which is satisfied for the parameter regime that
we are considering below.

For a time-dependent external flux, resulting in the
Josephson energy E,[f(1)] = EY + SE,(), we can write
the solution in the form,

a2 = R(w)alt — f " da'S(w, ') X [O(a)(a™, + )

+ O(—w')(a",, + at )], (6)
where,
N 8E
S(w, o) = —Ia)/a) / dte~ilw=o") J(t)
2a(1 — ik, LY%;) 9

(N

and where O is the Heaviside step function.

For a small-amplitude harmonic drive J6E;(f) =
SE;cos(wyt), where SE; < EY, the effective-length
modulation is  also  harmonic,  L.g(f) = LY +
8Lt cos(w,t), with amplitude 8L = L(SE,;/EY). In
this case, we can evaluate the integrals in Egs. (6) and (7)
and perturbatively solve the resulting equation for the
output operators in terms of the input operators,

8Leff{vw(w + wd)aw-%—wd
vw(w wd [@(0) wd)aw wy

+0(w;~ o), ,)'}. 8)

Considering a large-amplitude harmonic drive, we can
expand Egs. (6) and (7) in terms of sideband contributions

out — R(a))am + i
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and numerically solve (for c¢,) the resulting set of linear
equations to arbitrary order N, where N is the number of
sidebands included in the calculation. Note that we still
require both the driving amplitude and the driving fre-
quency to be small compared to the plasma frequency of
the SQUID. Using this expansion, we have numerically
verified that a%" and (a9") obtained from Eq. (9) satisfies
the correct commutation relation [aS™, (a‘;“,‘)f] = 8(w —
'), and, similarly, that the perturbative solution in Eq. (8)
satisfies the same commutation relation to first order in the
perturbation parameter ;.

Both the perturbative and numerical approaches give, in
principle, all properties of the output field in terms of the
input field, and they will be used below to calculate the
output photon-flux density no" = ((a%")Tad™), as a func-
tion of mode-frequency w, for the thermal input fields
" = 1/[exp(hw/kgT) — 1]. Using this photon-flux den-
sity, the number N of generated photons per second, in a
bandwidth Aw, is given by

1
N=_—

Aw
d out — — out’ 10
27 J s W, 2 e (10)

where the approximation is valid for a small bandwidth
Aw, where the relative change in n9" is small.
For a small-amplitude harmonic drive, we find

(OLegt)?
2

2
+ szie;f)w(wd - 0)0(w,; — w), (11)

in

out — in — i
ot = it + wlw, wlnlwd—wl

where we have neglected terms containing the small factor
ﬁ]‘;}d ol since we are considering k3T < fiw,. The output-
field photon-flux distribution in Eq. (11) can be decom-
posed into three components: The first two are of classical
origin: elastically reflected thermal photons (first term) and
up-converted thermal photons (second term). The third
term is a purely quantum mechanical effect which origi-
nates from the vacuum fluctuations. We note that the
spectrum of this quantum mechanical radiation is identical
to the spectrum of the single-mirror dynamical Casimir
effect [10].

The photon-flux-density spectrum of the quantum me-
chanical radiation has a different frequency dependence
compared to that of the reflected thermal photons, and the
two effects can therefore be clearly distinguished from
each other. A signature of the quantum radiation is the
parabolic shape in the photon-flux-density spectrum,
which has a maximum at w,/2, whereas the photon-flux
density for the reflected thermal field has maxima at zero
frequency and at w,, see Fig. 2. Furthermore, in this
quantum mechanical radiation process, the photons are
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FIG. 2 (color online). The photon-flux density as a function of
mode-frequency w. The bottom solid (red) curve shows the
classical prediction, and the middle (blue) curves and top (green)
curves show the analytical and numerical quantum mechanical
predictions, respectively. The numerical results were calculated
using 10 sidebands below and above the center-frequency w. The
discrepancy between the analytical and numerical results is due
to the higher-order sideband contributions that is only accounted
for in the numerical calculations. Here, we have used the
parameters w, /27 =~ 36 GHz, w, = »,/2, 8E; = E9/4, C =
90 fF, Zy = 55 Q, v = 1.2 X 10% m/s, and the input-field tem-
peratures 50 mK (solid lines) and zero Kelvin (dashed lines).

created in correlated pairs (<a‘(’u“;/2 +wa‘£/2_w> # 0) with
frequencies that sum up to the driving frequency, resulting
in a squeezing spectrum [26] with maximum squeezing at
(OF] / 2.

Using the higher-order expansion in sideband contribu-
tions given in Eq. (9), we can write the photon-flux density

as

N
Z |c"|2[ﬁiz)+nwd| + ®(_w - nwd)]’ (12)

n=—N

out —
n, =

where c¢, are numerically obtained coefficients. Each
higher-order sideband gives an additional parabolic con-
tribution, between zero and nw,, to the photon-flux-
density spectrum. This explains the small discrepancy
between the analytical and numerical results in Fig. 2.
The experimental verification of the DCE in this system
is possible if the quantum contribution to the photon flux is
distinguishable from the classical thermal contribution, for
realistic circuit parameters. Figure 2 shows the photon-flux
spectral density with the thermal and quantum contribu-
tions, for a moderate input mode temperature (50 mK) and
typical parameters for superconducting electrical circuits
[19]. In this case, the DCE contribution to the photon flux
is considerably larger than the classical contribution, in a
wide frequency range between ~w,/2 and w,. The power
per unit bandwidth in this frequency range gives an energy
comparable to a few mK, which should be compared with
the noise temperature of the typical amplifiers of a few K.
Using lock-in techniques and long detection times, these
power levels are clearly detectable [27]. Plotting the radia-
tion power per unit bandwidth (in temperature units) at half
the drive frequency as a function of the input-field tem-
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FIG. 3 (color online). The effective noise temperature, 7, in
the output field of the CPW, versus the input-field temperature,
T, at w,/2, half the driving frequency. The (red) dashed line
shows the result for purely thermal radiation, and the (blue) solid
line for both thermal and quantum radiation. For low enough
temperatures, the quantum radiation is significantly larger than

the thermal noise level. Here, we used the same parameters as in
Fig. 2.

perature (see Fig. 3) further illustrates how the quantum
radiation dominates over the thermal radiation for suffi-
ciently low temperatures. With these parameters (see the
caption of Fig. 2), the crossover takes place around 70 mK,
and the photon production rate N ina Aw /27 = 100 MHz
bandwidth around w,/2 is N ~ 10° photons per second,
see Eq. (10). Alternatively, observing the correlations in
individual photon pairs through coincidence detection
would be a signature of the DCE. However, photon coin-
cidence measurements are not currently possible in the
microwave regime. Therefore, we are actively investigat-
ing the cross correlations that may be observable in the
amplified voltage and power, which should be experimen-
tally accessible [28].

We have so far only considered symmetric SQUID
devices. Here, we analyze the case where the SQUID
junction capacitances (C, ;, C,,) and Josephson energies
(E; 1, E;,) are slightly asymmetric, i.e., C; 3> AC; and
ET > AE;, where C; = C;; + C;5, AC, = C;, — Cyy,
E; =E; +E;», and AE; = E;, — E;;. Asymmetric
capacitances give rise to a source term of the form
1AC, % £(#) in the boundary condition Eq. (3). This source
term produces a coherent oscillating response only at the
driving frequency (neglecting the sidebands at zero and
2w ), which corresponds to a sharp additional peak around
w, in the photon-flux-density spectrum. The broadband
feature below w, is therefore unaffected by small asym-
metries in the junction capacitances. An asymmetry in the
Josephson energies gives rise to a correction to the effec-
tive SQUID Josephson energy, E;(f), by the factor (1 —
2AE;/ E;). For small asymmetries AE; < EJE, there will
be a negligible reduction of the photon-flux density.

Finally, we note that it would also be possible to study
the DCE in a tunable cavity geometry [19]. However, here
the task of clearly separating the DCE from the classical
effect of parametric oscillations is much more demanding
since the stable states of the system are essentially identical
in the classical and quantum cases.

In conclusion, we have studied superconducting copla-
nar waveguides with parametrically modulated boundary

conditions and characterized the spectrum of the photons
that are generated in this process. The system can be
considered as a solid state analogue to quantum optical
setups with moving mirrors, known to generate photons
from vacuum fluctuations [2]. In the present setup, we
show that a weak harmonic modulation of the boundary
condition can result in broadband photon generation, i.e.,
the dynamical Casimir effect, and we estimate that it is
feasible to detect this radiation in realistic experimental
circuits.
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