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We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-

resonator waveguide and is scattered by a controllable two-level system located inside one of the

resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy

effective theories for single-photon scattering. We show that the controllable two-level system can behave

as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-

optical single-photon quantum devices. We also suggest an experimental setup based on superconducting

transmission line resonators and qubits.
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Introduction.—The scattering of a structureless particle
can be used to determine the internal structure of a scat-
tering target. This has been well recognized since the
Rutherford experiments which ushered in modern particle
and nuclear physics [1]. When scattering is confined to low
dimensions, it displays new features. For example, the low-
energy scattering of cold atoms confined in an atomic
waveguide can form a gas of impenetrable bosons exhib-
iting total reflection [2]. Such total reflection, and related
phenomena, motivate us to study low-dimensional pho-
tonic scattering, oriented towards quantum information
processing, specifically, how to control the coherent trans-
port of a scattered single photon by tuning the inner
structure of the target so that the target can behave as a
quantum switch, i.e., either a perfect mirror totally reflect-
ing photons, or an ideal transparent medium allowing
photons to pass. Based on theoretical studies of photonic
scattering in one-dimensional (1D) waveguides [3], an all-
optical single-photon transistor was recently proposed [4]
by using surface plasmons confined in a conducting
nanowire.

Here we study a quantum switch that controls the trans-
port of a confined single photon. The switch is a scattering
target made of a controllable two-level system. Our ap-
proach recovers the interesting results obtained via an
effective field theory [3] in the ‘‘high’’ energy regime.
Furthermore, it can also be consistently applied to the
‘‘low’’ energy regime discussed below. We show that the
total reflection by a controllable two-level system can be
realized as a resonant-scattering phenomenon and the re-
flection spectrum goes beyond the Breit-Wigner [1] and
Fano line shapes [5,6].

As an application of our study, we propose an
experimentally-accessible quantum electro-optical device,
constructed using superconducting transmission line reso-

nators [7–9] and a superconducting charge qubit [10–12].
In our proposed device, the scattering target is a charge
qubit with two energy levels controlled by a gate voltage
and an external magnetic flux; the coupled-transmission-
line resonators behave as a 1D continuum for the coherent
transport of photons. Thus, the controllable charge qubit
can be used to manipulate the coherent transport of pho-
tons in an array of superconducting transmission line
resonators.
Discrete scattering equation.—We consider a 1D

coupled-resonator [13] waveguide (CRW) (see Fig. 1)
with a two-level system, which is embedded in one of
the resonators. The CRW can be realized by using either
coupled superconducting transmission line resonators [14]

or defect resonators in photonic crystals [15]. Let ayj (j ¼
�1; � � � ;1) be the creation operator of the jth single-
mode cavity with frequency !. The Hamiltonian for the

FIG. 1 (color online). Schematic configuration for the coherent
transport of a single photon in a coupled-resonator waveguide (a)
coupled to a two-level system (b), which is located in one of the
resonators. (c) Schematic diagram of coupled superconducting
transmission line resonators with one resonator coupled to a dc-
SQUID-based charge qubit.

PRL 101, 100501 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

5 SEPTEMBER 2008

0031-9007=08=101(10)=100501(4) 100501-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.100501


CRW is given by

Hc ¼ !
X
j

ayj aj � �
X
j

ðayj ajþ1 þ H:c:Þ (1)

with the intercavity coupling constant �, which describes
photon hopping from one cavity to another. Here, we
assume that all resonators have the same frequency !
and @ ¼ 1. The Hamiltonian (1) describes a typical tight-
binding boson model, which has the dispersion relation
�k ¼ !� Vk, with Vk ¼ 2� cosðlkÞ. Below, the lattice
constant l is assumed to be unity. In the low-energy regime,
corresponding to long wavelengths (� � l), the spectrum
is quadratic: �k ’ !� þ �k2, with !� ¼ !� 2�. At the
matching condition (�� 4l), the spectrum is linear: �k ’
!� � 2�k. In contrast to the similar configurations in

Refs. [16–19], here only one two-level system, with ground
state jgi, excited state jei and transition energy �, is
located inside one of coupled cavities. Moreover,
Refs. [16–18] use several approximations which we do
not make here, making the treatment here more physical,
since we have exact solutions. For convenience, we take
the 0th cavity as the coordinate-axis origin and we also
assume that a two-level system is located in this 0th cavity
[20]. Under the rotating wave approximation, the interac-
tion between the 0th cavity field and the two-level system
is described by a Jaynes-Cummings Hamiltonian

HI ¼ �jeihej þ Jðay0 jgihej þ jeihgja0Þ; (2)

with the coupling strength J.
To study the 1D single-photon elastic scattering de-

scribed by the total HamiltonianH ¼ Hc þHI, we assume
the stationary eigenstate

j�ki ¼
X
j

ukðjÞayj j0ijgi þ uej0ijei; (3)

when a single photon comes from the left with eigenenergy
�k. Here, j0i is the vacuum state of the cavity field, and ue
is the probability amplitude of the two-level system in the
excited state. This Hj�ki ¼ �kj�ki results in the discrete
scattering equation

ðVk þ JGk�j0ÞukðjÞ ¼ �½ukðjþ 1Þ þ ukðj� 1Þ�: (4)

Here, the Green function Gk ¼ Gkð�Þ ¼ J=ð�k ��Þ,
and ue ¼ Gkukð0Þ relates the excited-state amplitude ue
with the single-photon amplitude ukð0Þ.

Reflection and transmission amplitudes.—Equation (3)
presents a complete set of stationary states of the total
system for single-photon processes. The scattering equa-
tion VkukðjÞ ¼ �½ukðjþ 1Þ þ ukðj� 1Þ� for j � 0 has the
solution

ukðjÞ ¼
�
uLkðjÞ ¼ eikj þ re�ikj; j < 0
uRkðjÞ ¼ seikj; j > 0

(5)

with transmission and reflection amplitudes s and r. The
continuous condition ukð0þÞ ¼ ukð0�Þ and the eigenvalue

equation ðVk þ JGkÞukð0Þ ¼ �½ukð1Þ þ ukð�1Þ� at j ¼ 0
determine the reflection amplitude

r ¼ J2½2i� sinkð!��� 2� coskÞ � J2��1 (6)

and the transmission amplitude s, with the constraints s ¼
rþ 1 and jsj2 þ jrj2 ¼ 1.
As shown below, Eq. (6) is a very useful result. Figures 2

(a) and 2(c) show the reflection coefficient RðkÞ ¼ jrðkÞj2
versus the momentum k of the incident photons, while
Figs. 2(b) and 2(d) plot the reflection coefficient Rð�Þ ¼
jrð�Þj2 versus the detuning � ¼ �k ��. Figure 2(b)
represents a Breit-Wigner-like line shape around the reso-
nance � ¼ 0, where the line width is proportional to J2. At
the resonance, the photon is completely reflected and the
single two-level system behaves as a perfect mirror.
Therefore, when the two-level system has a tunable tran-
sition energy, it can be used as a quantum switch to control
the coherent transport of photons.
Because of the nonlinear dispersion relation �k ¼ !�

2� cosk, jrðkÞj2 in Figs. 2(a) and 2(c) shows a more general
line shape, beyond the Breit-Wigner [1] and Fano [5] line
shapes. Indeed, Eq. (6) is very general as it can directly
provide results in different physical limits. When j�j<
j��j, as shown in Fig. 3, the generalized Fano-like line

shape of the reflection spectrum

Rð�Þ ¼ �ð1þ �=�� þ�2=�2
�Þ

ð�=�� þ y0Þ2 þ �2
(7)

is approximately obtained from Eq. (6). Here, � ¼
J4ðJ4 � 4��3

�Þ�1, the detuning �� ¼ !��� 2�, y0 ¼
�=2, and �2 ¼ �ð1� �=4Þ.
When �� 4l, the Breit-Wigner line shape [1]

r ¼ �iJ2½2�ð!� ��� 2�kÞ þ iJ2��1 (8)

is also straightforwardly obtained from Eq. (6) by expand-

(a) (b)

(d)(c)

FIG. 2 (color online). The reflection coefficient R (blue solid
line) and the transmission coefficient, 1� R (red dashed line) as
a function of either the momentum k or the detuning � ¼ �k �
�, when ! ¼ � ¼ 5 with intercavity coupling � ¼ 2, [for (a),
(b)]; and ! ¼ 5, � ¼ 6 with � ¼ 1 [for (c),(d)]. Parameters are
in units of J.
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ing the cosine around k ¼ ��=2, where !� ¼ !� ��.
Equation (8) was also derived from the continuous field
theory in Ref. [3]. Indeed, in this limit (�� 4l), the
Hamiltonian Hc for the CRW can be approximated by

Hc ¼
P

jð!� � 2�kÞayk ak, producing a linear dispersion

relation as in Ref. [3].
Low-energy effective theory.—Let us now consider the

long-wavelength regime (� � l) and use the low-energy
effective theory to consistently describe the scattering of
the confined photons. In this regime, k is so small that
cosk ’ 1� k2=2, and sink ’ k; thus, Eq. (6) becomes

r ’ �iJ2½2k�ð�k2 þ!� ��Þ þ iJ2��1: (9)

The result in Eq. (9), obtained from Eq. (6), can also be
explained using the low-energy effective field theory de-
scribed by the effective Hamiltonian

H ¼
Z 1

�1
dx’yðxÞð!� � �@2xÞ’ðxÞ þ�jeihej

þ
Z 1

�1
dxJ�ðxÞ½’yðxÞjgihej þ H:c�: (10)

Here, the field operator ’ðxÞ � R1
�1 dk expðikxÞak satis-

fies the commutation relation ½’ðxÞ; ’yðx0Þ� ¼ �ðx� x0Þ.
Equation (10) can be derived from the momentum space
representation of the total Hamiltonian

H ¼ XN�1

k¼0

�kâ
y
k âk þ�jeihej þ XN�1

k¼0

�
Jâykffiffiffiffi
N

p jgihej þ H:c:

�

(11)

with �k ¼ !� þ �k2=2.
We now study single-photon scattering by a two-level

system using the effective field theory in Eq. (10). Let us
consider one photon, with energy �k, incident from the
left. The elastic scattering analysis assumes the stationary
state j�ki ¼

R1
�1 dxukðxÞ’yðxÞj0ijgi þ uej0ijei. Here,

the conservation of total excitation
P

knk þ jeihej ¼ 1 is
used. The eigenequation Hj�ki ¼ �kj�ki provides a sys-
tem of equations for the single-photon probability ampli-

tudes ukðxÞ and the excited-state population ue, which
results in a scattering equation with resonance pole

�@2xukðxÞ ¼ Gk�ðxÞukð0Þ þ ð!� ��kÞukðxÞ: (12)

Then the photon scattering can be described by Eq. (12),
which can be solved by assuming ukðxÞ ¼ expðikxÞ þ
r expð�ikxÞ, for x < 0, and ukðxÞ ¼ s expðikxÞ, for x > 0.
The reflection amplitude in Eq. (9) can be obtained from
Eq. (12) with the boundary condition due to the �-function

�

�
@

@x
ukð�Þ � @

@x
ukð��Þ

�
¼ J2ukð0Þ

�k ��
(13)

and the continuity ukð�Þ ¼ ukð��Þ.
Physical implementation.—To demonstrate our theoreti-

cal results on the reflection and transmission line shapes
beyond the Breit-Wigner and Fano line shapes, we now
propose an experimentally accessible quantum device
shown in Fig. 1(c), that uses superconducting transmission
line resonators and a dc-SQUID-based charge qubit
[7,9,10]. Here, the charge qubit acts as the scattering target,
and its internal structure (e.g., the transition frequency) is
controllable by both the voltage applied to the gate and the
external flux through the SQUID loop. The coupled copla-
nar transmission line resonators, constructed by cutting the
superconducting transmission line into N equal segments
[14], provide the continuum for the coherent transport of
photons. The coupling � between two neighboring trans-
mission line resonators is realized via dielectric materials
(it depends on the concrete coupling mechanism). Then the
Hamiltonian of the coupled-resonator waveguide is the
same as that in Eq. (1).
The energy eigenstates of the charge qubit [11,12] are

defined by jei ¼ cosð�=2Þj0i � sinð�=2Þj1i and jgi ¼
sinð�=2Þj0i þ cosð�=2Þj1i, with the transition frequency

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
z þ B2

x

q
for � ¼ arctanðBx=BzÞ. j0i and j1i are

charge eigenstates representing the excess Cooper pairs
on the superconducting island. The parameter Bz ¼
4ECð2ng � 1Þ, with the charging energy EC ¼ e2=2ðCg þ
2CJÞ and ng ¼ CgVg=2e, can be controlled by the voltage

Vg applied to the gate capacitance Cg. Here CJ is the

capacitance of the Josephson junction. The parameter
Bx ¼ 2EJ cosð��x=�0Þ, with the Josephson energy EJ,
can be changed by the external magnetic flux �x through
the SQUID loop.
As in Ref. [9], we assume that the charge qubit is placed

in the antinode of the single-mode quantized electric field
in the transmission line resonator with length L. Therefore,

the quantized voltage Vq ¼ ðâþ âyÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!=ðLcÞp

, induced by

the quantized electric field, is also applied to the charge
qubit via the gate capacitance Cg. Here ! is the frequency

of the quantized field, c is the capacitance per unit length of

the transmission line. The coupling strength J ¼
ðe sin�Cg=C�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!=ðLcÞp

between the qubit and the resona-

Fano like-
Fano

FIG. 3 (color online). Comparison between the Fano-like line
shape (blue solid line) in Eq. (7) and the Fano line shape (red
dashed line) given by Fð�Þ ¼ ð�=�� þ y0 � q�Þ2 �
½ð�=�� þ y0Þ2 þ �2��1 at �� ¼ �3 and � ¼ 0:01, where all

the parameters are in units of J. The detunings are � ¼ �k �
� and �� ¼ !��� 2�.
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tor, with C� ¼ Cg þ 2CJ, has feasible values in the range

5–200 MHz [9]. The detuning � ¼ !�� between the
charge qubit and the single-mode field can be changed
from �10 to 10 GHz. The frequency of each resonator is
in the range between 5–10 GHz, and the qubit frequency
can be tuned from 5 to 15 GHz [9].

Using Eq. (6) and also the parameters given above, we
can show that the scattering process of single-photon de-
generates to a total reflection when the coupling strength �
between the resonators vanishes or the incident photon
resonates with the qubit. Also the stronger coupling be-
tween the qubit and the resonator corresponds to the larger
reflection amplitude. The details of this phenomenon are
depicted by the contour map of the reflection coefficient in
Fig. 4. It can be regarded as a kind of phase diagram. In the
white areas, the reflection is nearly one and the transmis-
sion is almost zero, while in the dark areas, the trans-
mission approaches unity. The results obtained in this
work are very different from previous quantum switches
[21].

Conclusions.—We have studied the coherent transport of
a single-photon confined in a 1D cavity array. The scatter-
ing target is a controllable two-level system. In the match-
ing regime (�� 4l), our approach recovers the results [3]
obtained from its effective field theory. Our approach also
predicts a general spectral structure in which the reflection
and the transmission are beyond the usual Breit-Wigner
and Fano line shapes. These results could be verified
experimentally via a circuit QED system [7–9]. However,
in reality, all large quantum systems interact with the
environment, resulting in some inelastic scattering of
photons. Thus the environment could affect the photon
reflection coefficient, reducing the quantum switching ef-

ficiency. The environment-induced inelastic scattering is
related to (i) the decoherence of the resonators; and (ii) the
decay of the two-level system. Case (i) influences the free
propagation of the single photon. The coherent scattering
process happens only when the photon decay rate is much
smaller than the intercavity coupling. Case (ii) broadens
the width of the line shape at the resonance. Finally, we
also note that the properties of the delivered photons at the
end of the waveguide could be studied experimentally by
measuring the transmission spectrum of the resonator.
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