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We propose an approach for cooling both an artificial atom (e.g., a flux qubit) and its neighboring
quantum system, the latter modeled by either a quantum two-level system or a quantum resonator. The
flux qubit is cooled by manipulating its states, following an inverse process of state population inversion,
and then the qubit is switched on to resonantly interact with the neighboring quantum system. By
repeating these steps, the two subsystems can be simultaneously cooled. Our results show that this cooling
is robust and effective, irrespective of the chosen quantum systems connected to the qubit.
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Quantum devices using Josephson junctions can be used
as artificial atoms (AAs) for demonstrating quantum phe-
nomena at macroscopic scales. With states involving the
two lowest energy levels, these devices are good candidates
for solid-state qubits [1]. When using their three lowest
levels, such a solid-state three-level system, fabricated on a
microelectronic chip, can be useful for single-photon pro-
duction [2] and lasing [3].

For single-photon production [2] and AA lasing [3], a
state population inversion is established for the two work-
ing energy levels via a third one (i.e., transitions j0i !
j2i ! j1i in Fig. 1). Interestingly, the inverse process of
state population inversion (i.e., transitions j1i ! j2i ! j0i
in Fig. 1) can be used to increase the occupation probability
of the ground state and thus lower the temperature of the
qubit. This idea has been applied in a recent experiment [4]
to cool a flux qubit. Indeed, this is analogous to the optical
sideband cooling method studied earlier (see, e.g., [5,6]).
The experiment [4] shows that the temperature of the flux
qubit can be lowered by up to 2 orders of magnitude with
respect to its surroundings. This provides an efficient ap-
proach for preparing a flux qubit in its ground state.

While the flux qubit was greatly cooled in [4], the noise
sources surrounding the qubit were not. This is because of
the weak coupling between the qubit and its environment in
[4], where the transition rate between the ground and first
excited states is small. Below we use a tunable AA (to be
specific, we choose a flux qubit, but it could be another
AA) to achieve a strong and switchable coupling between
the AA and its neighboring quantum system, and propose
an approach to simultaneously cool both of them and not
just the AA. Here we consider two typical quantum sys-
tems to describe the environment surrounding the AA: (i) a
quantum two-level system (TLS), which is exactly solv-
able, and (ii) a quantum resonator. Actually, a quantum
TLS can describe the noise source like a two-level fluctua-
tor, and the quantum resonator can model the dominant
bosons of a thermal bath. In this case, the approach is to

cool both the flux qubit and such noise sources. This
simultaneous cooling of the flux qubit and its neighboring
noise sources can significantly enhance the quantum co-
herence of the flux qubit because the cooled qubit is ther-
mally activated very slowly to the first excited state, after
its neighboring noise sources are also cooled. Moreover,
the present approach has wide applications because the
models used here can describe other quantum systems.
Also, we show that different surrounding quantum systems
(either a quantum TLS or a quantum resonator) give simi-
lar results, implying that the cooling is robust and effective,
irrespective of the chosen neighboring quantum system.

Cooling the artificial atom and ground-state prepara-
tion.—The commonly used flux qubit [7,8] (which is
an example for an AA) consists of a superconducting
loop interrupted by three Josephson junctions (two
equal and one smaller) and pierced by a magnetic flux
�e. To obtain a tunable AA, the smaller junction is here
replaced by a SQUID threaded by a flux �s [see Fig. 1(a)].
The Hamiltonian can be written as H � P2

p=2Mp �

P2
q=2Mq �U�’p;’q�, with Pi � �i@@=@’i (i � p; q),
Mp � 2CJ��0=2��2, and Mq � Mp�1� 4��=4. The po-
tential is U�’p;’q� � 2EJ�1� cos’p cos��f � 1

2’q�� �
2�EJ�1� cos��fs� cos’q�, where ’p � �’1 � ’2�=2,
’q � �’3 � ’4�=2, fs � �s=�0, and f � �e=�0 �

fs=2 (�0 is the flux quantum). To drive a resonant tran-
sition between states jEii and jEji, one can apply a
microwave field through the circuit loop: �w�t� �
��0�w cos�!ijt� ��, with !ij � �Ei � Ej�=@. When the mi-
crowave field is weak, the time-dependent perturbation
Hamiltonian can be written as V�t� � �I�w�t�, where I �
�Ic cos’p sin��f� 1

2’q�, with Ic � 2�EJ=�0. The rate
of the state transition between jEii and jEji is �ij / jtijj

2,
where tij � hEijI�

�0�
w jEji is the transition matrix element.

When a neighboring quantum system, e.g., a noise source,
is coupled to the flux qubit via a flux variation, then ��0�w in
tij becomes the amplitude of the flux variation.
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In Figs. 1(b)–1(e), we show the energy levels of the AA
and the transition matrix elements jtijj for two values of fs.
The SQUID gives an effective Josephson coupling energy
�EJ with� � 0:77 and 0.66, respectively. For any nonzero
temperature, the system will be thermally activated from
the ground state j0i � jE0i to the first excited state j1i �
jE1i. Here we consider the case in Fig. 1(b), with the
system working at, e.g., f � 0:493. As shown in
Fig. 1(d), at this f, the corresponding transition matrix
elements are jt01j 	 0:01, jt12j 	 0:07, and jt02j 	 0:13.
When a microwave field is applied to drive a resonant
transition j1i ! j2i � jE2i, because �20 > �21 
 �10 at
f� 0:493, the system can be pumped from j1i to j2i and
then quickly decays to the ground state j0i, while the
process for thermally activating the system from j0i to
j1i, via coupling to the environment, will be very slow.

Note that the coupling strength of the states j2i and j0i to
the flux noise source is also proportional to the transition
matrix element jt20j, so the decay rate from j2i to j0i is
proportional to �20 (/jt20j

2) according to the Fermi golden
rule [9]. Therefore, the flux qubit is ‘‘cooled’’ because the
population probability for the ground state j0i can be
greatly increased, with respect to any unwanted excited
state j1i. Interestingly, this cooling mechanism corre-
sponds to an ‘‘inverse process’’ of the usual state popula-
tion inversion. For simplicity, here we use a weak
microwave field. The driving field would need to be
stronger to achieve cooling when the relevant transition
matrix elements are small. This puts some constraints on
the specific amplitudes used to achieve the desired result
[10]. Indeed, a recent experiment [4] has successfully
realized the microwave-induced cooling, lowering the tem-
perature of a flux qubit relative to its surroundings. Thus,
this microwave-induced cooling provides an efficient
method for preparing the flux qubit in its ground state.
Below we use this prepared ground state to further cool a
quantum system connected to the qubit.

Cooling a quantum two-level system.—In the subspace
spanned by j0i and j1i, the flux qubit (our AA) is modeled
by Hq �

1
2 @!10�z. Here we consider a qubit-TLS sys-

tem described by Ht � Hq �HTLS � V �Henv, where
HTLS �

1
2 @��0z is the Hamiltonian of a quantum TLS

and Henv describes all the degrees of freedom in the envi-
ronment and their coupling to the TLS. Hereafter, the Pauli
operators with primes refer to the neighboring TLS. The
interaction Hamiltonian between the qubit and the TLS is
V � @g����

0
� � H:c:�, with g � jt01j=@. In the experi-

mental case [4], corresponding to Fig. 1(d), because jt01j
is small at f� 0:493, the coupling between the qubit and
its environment is weak. To cool the TLS effectively, after
the qubit with fs � 0:22 is cooled to the ground state, we
change the reduced magnetic flux fs to fs � 0:27, which
corresponds to Fig. 1(e). For the qubit parameters used
here, it is shown [2] that at f� 0:493 (i.e., in between
the level-crossing points), the adiabatic condition
j@hEij�d=dt�jEji=�Ei � Ej�j � 1 can still be fulfilled for
the three lowest levels by changing the applied flux as fast
as 0:1�0 ns�1. This means that around this f the quantum
states can be well preserved even when changing the flux
very fast. More importantly, in the case of Fig. 1(e), be-
cause jt01j is much increased, then the qubit-TLS interac-
tion @g is strengthened by 1 order of magnitude. Here we
assume that the quantum TLS is resonant to the qubit with
fs � 0:27. Since the level spacing @!01 of the qubit with
fs � 0:22 is different from that with fs � 0:27, thus at f�
0:493 the qubit with fs � 0:22 is off-resonant to the TLS.
This gives an even smaller effective qubit-TLS coupling.

For simplicity, we now assume that the flux qubit is
ideally cooled to the ground state j0i and then begins to
resonantly interact with the quantum TLS at time ti. When
Henv is not included, the time evolution of the density op-
erator of the TLS is governed by ��ti � �� � M�����ti�

FIG. 1 (color online). (a) Schematic diagram of an artificial
atom (AA) produced by a superconducting quantum circuit. A
symmetric SQUID and two identical Josephson junctions with
coupling energy EJ and capacitance CJ are placed in a super-
conducting loop pierced by a magnetic flux �e (green or gray).
The two junctions in the SQUID have coupling energy �EJ and
capacitance �CJ, and the flux (yellow or light gray) threading
through the SQUID loop is �s. Here � � 0:5, EJ=Ec � 100, and
Ec � e2=2CJ is the single-particle charging energy of the junc-
tion. (b),(c) Energy levels of the superconducting AA as a
function of the reduced magnetic flux f � �e=�0 � fs=2, for
fs � �s=�0 � 0:22 and 0.27, where only the four lowest levels
are shown and the energy is in units of EJ. (d),(e) Moduli of the
transition matrix elements jtijj (in units of Ic�

�0�
w ) as a function

of f, for fs � 0:22 and 0.27. Note that each figure in (b)–(e) is
symmetric about f � 0:5 and half of it is plotted. The vertical
dashed lines at f � 0:493 are just a guide to the eye.
(f) Transition diagram of the AA. At nonzero temperatures,
the flux qubit is thermally activated from the ground state j0i
to the first excited state j1i. A resonant transition from j1i to the
second excited state j2i is driven by a microwave field, so as to
eliminate the unwanted thermal population of j1i, and followed
by a fast decay to j0i. While the qubit is cooled to its ground
state j0i, the AA is then switched on, to resonantly interact with a
neighboring quantum system for a period of time. Repeating
these processes, both the qubit and the neighboring quantum
system can be simultaneously cooled.
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and the gain operator is defined by M���� �
Tr�exp��iV�=@�� 
 j0ih0j exp�iV�=@��, where Tr denotes
the trace over the qubit states and � is the interaction time
between the TLS and the flux qubit.

When Henv is considered, the dynamics of the density
operator is described by [11]

 

d�
dt
� ra ln�M������ L�; (1)

where ra is the rate for ‘‘switching on’’ the AA to reso-
nantly interact with the TLS (each cycle includes the
time required to cool the qubit) and L describes the dis-
sipation of the TLS due to Henv. We model the environ-
ment in Henv by a thermal bath. The operator L can be
written as [12] L���1

2��nth�1���0��
0
����0���0�� �

1
2�nth��

0
��

0
����

0
���

0
���H:c:, where � is the decay

rate of the TLS and nth is the average number of bosons
in the thermal bath (particularly, nth � 0 at zero tempera-
ture). Here we assume g > �, ensuring coherence between
the qubit and its ancillary circuitry.

For the neighboring quantum TLS, Eq. (1) can be ex-
actly solved. The solution for pe � hej�jei is

 pe�t� �
�
pe�0� �

nth

�

�
exp����t� �

nth

�
; (2)

and pg � hgj�jgi � 1� pe, where � � �2nth � 1� �
Nt ln�cos2�g���, with Nt � ra=� denoting the number of
cycles for switching on the AA during the lifetime
(�1=�) of the TLS. Because of the coupling to the qubit,
the decay rate is now scaled by a factor �. Clearly, pe �
nth=� and pg � 1� nth=� at steady state.

Because � is a periodic function of g�, both pe and pg
are also periodic; e.g., at g� � �2n� 1��=2, with n �
1; 2; . . . , �! �1 and pg abruptly changes to pg � 1; at
g� � n�, with n � 0; 1; . . . , � � 2nth � 1 and pg slowly
approaches pg � 1� nth=�2nth � 1�. These features are
clearly shown in Fig. 2(a) for pg with Nt � 150. To imple-
ment an efficient cooling, a smaller � is desirable, so we
can only focus on the region g� 2 �0; �=2�. Figure 2(b)
shows the time evolution of pg as a function ofNt for g� �
0:2�. Though g� is away from g� � �=2, one can still
drastically cool the TLS by evolving pg�t� to pg � 1 with a
large Nt.

Cooling a quantum resonator.—When the system con-
nected to the flux qubit is a quantum resonator, the total
Hamiltonian becomes Ht�Hq�Hres�V�Henv, where
Hres � @!aya describes the quantum resonator, V �
�@g���a� H:c:� is the interaction between them, and
Henv describes all the degrees of freedom in the environ-
ment and their coupling to the quantum resonator. Also, we
assume that when cooling the quantum resonator the flux
qubit is tuned in resonance to it.

For the quantum resonator coupled to the flux qubit as
well as to a thermal bath, the dynamics of the density
operator of the quantum resonator is also described by
Eq. (1). The operator L describes the dissipation of the

quantum resonator induced by the thermal bath [12]: L� �
� 1

2��nth � 1��aya�� �aya� 2a�ay� � 1
2�nth�aay� �

�aay � 2ay�a�, where � is the damping rate of the quan-
tum resonator and nth is the average number of bosons in
the thermal bath coupled to the quantum resonator. In the
present case, Eq. (1) can only be solved approximately.
Here we use ln�M���� 	 �M� 1� � 1

2 �M� 1�2, which
corresponds to neglecting terms of order O�sin6�g�

���
n
p
��.

The equation of motion for the boson number distribution
pn � hnj�jni of the quantum resonator becomes

 

dpn
dt
� an�1pn�1 � bn�1pn�2 � cn�1pn � anpn

� bnpn�1 � cnpn�1; (3)

with an� raS�n��1�
1
2S�n�����nth�1�n, bn�

1
2S�n� �

S�n�1�, and cn � �nthn, where S�n� � sin2�g�
���
n
p
�.

At steady state, dpn=dt � 0, which leads to a recursion
relation for the steady boson number distribution pn:

 pn�1 � pn

�
nth � 1

nth
�
NtS�n��2� S�n��

2nnth

�

� pn�1
NtS�n�S�n� 1�

2nnth
; (4)

where Nt � ra=� represents the number of cycles for
switching on the AA during the lifetime of the quantum
resonator. For N 
 1, pN�nth � 1� 
 pN�1NtS�N�S�N �
1�=2N, so we approximately have pN�1 � f�nth �
1�=nth � NtS�N��2� S�N��=2NnthgpN . This is the initial
condition for Eq. (4) and pN is determined by

PN
n�0pn�1.

Figure 3 displays the time evolution of both vacuum-
state probability p0 and average boson number hni as a
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FIG. 2 (color online). (a) Ground-state probability pg versus
time t (in units of 1=ra) and g� for Nt � ra=� � 150.
(b) Probability pg versus t and Nt for g� � 0:2�. Here nth �

0:5 and pe is chosen to be 0.4 at the initial time t � 0; g (�) is the
interaction strength (time).
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function of Nt for the quantum resonator, where g� �
0:2�. As shown in Fig. 3(a), one can evolve p0�t� to p0 �
1 using a large Nt. Figure 3(b) shows that hni � 0 when
p0 � 1, revealing that the quantum resonator can also be
effectively cooled. More interestingly, Figs. 2(b) and 3(a)
give quite similar results, although very different models
are used for the quantum systems connected to the qubit.
This reveals that the cooling is robust and effective, irre-
spective of the chosen neighboring quantum systems.

Discussion and conclusion.—The cooling approach
studied here has potentially wide applications. For in-
stance, the environmental noise is sometimes explained
as mainly due to two-level fluctuators, in which one or a
few fluctuators play a dominant role. Also, the environ-
ment is often modeled by a boson bath, in which the bosons
in resonance to the qubit play a dominant role. Here the
quantum TLS can be used to model a two-level fluctuator
and the quantum resonator can be used to model the
dominant bosons of the environment in resonance to the
qubit. Actually, the TLS defect that is most strongly
coupled to the qubit may be off resonant to the qubit. If
the off resonance is large, the effect of the TLS on the qubit
is not important. Otherwise, to cool the TLS defect, one
can vary the reduced flux f to tune the qubit to be in
resonance with the defect. Also, when the environmental
bosons in resonance with the qubit are cooled, one can tune
the qubit by changing f to further cool the off-resonant
bosons. After cooling the dominant noise sources of the
qubit, the quantum coherence of the cooled flux qubit will
be enhanced. The quantum TLS can also model a solid-
state qubit and the approach can be used to describe
cooling two coupled qubits. Naturally, the quantum reso-
nator can model a mechanical resonator at the nanometer
scale. The cooling of mechanical resonators is currently a

popular topic and its study provides opportunities to ob-
serve the transition between classical and quantum behav-
iors of a mechanical resonator [13]. In our proposal, the
quantum states can be manipulated quickly, due to the
advantages of the proposed solid-state three-level system.
Moreover, the cooling of both the flux qubit and the
mechanical resonator can simultaneously enhance the
quantum behaviors of the two subsystems. This will help
observe the transition between classical and quantum be-
haviors of the mechanical resonator via measuring the
quantum states of the qubit.

In conclusion, we have proposed an approach to simul-
taneously cool a flux qubit and its neighboring quantum
system. In each cycle of cooling, the flux qubit is first
prepared to the ground state, following an inverse process
of the state population inversion, and then switched on to
resonantly interact with the neighboring quantum system.
As typical examples, we model the quantum system con-
nected to the qubit by either a TLS or a resonator. Our
results show that the cooling is robust and effective, irre-
spective of the chosen quantum systems.
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FIG. 3 (color online). (a) Vacuum-state probability p0 versus
time t (in units of 1=ra) and Nt � ra=�. (b) Average boson
number hni versus t and Nt. Here nth � 0:5, g� � 0:2�, and hni
is chosen to be 1.5 at the initial time t � 0.
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