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The nonlinear signal mixing of two driving forces is used to control transpavé@rdampedatchet devices.
The interplay between the relative phase and the frequency ratio of the two driving forces is sufficient to
generate an intriguing transport action that can be put to work to optimize shuttling and separation of particles
in a variety of physical and technological applications. Analytic results for a striking multiple current reversal
behavior including prominent, spikelike current features are obtained for doubly rocked and rocked-pulsated
Brownian ratchets. This tunable signal mixing is readily implementable and exhibits even richer behaviors than
those realized by the hard-to-implement modifiable-ratchet profiles.
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I. INTRODUCTION action of two(either independent or correlapeapplied sig-

Brownian ratchets or Brownian motors are nonlinear den!s, like colloids in arrays of optical tweez€fs], interact-

vices that, due to their intrinsic asymmetry, are capable of’9 Pinary mixiures driven or@asymmetrig periodic sub-

rectifying an external symmetric signgl]. The simplest States [16], ferrofluids [17], dislocation transport in
ratchet model is a Brownian particle diffusing in a periodic, ¢'yStalline solidg18,19, and electron pumping in quantum

; o : ; : ; ts[20].
asymmetric potential in one dimension. The input signal carfl© . .
be either deterministi¢i.e., ac drive or random and time _ 1he Key resultof this work is that, no matter how we feed

correlated2]. In particular, an ac signal can be injected so agW© Periodic signals into a ratchet deviaggnal mixingde-

to tilt periodically the ratchet potentiglockedratchet[3]) or ger:ngﬁﬁ ?Jtriscih r?;ha;rigrrng; t:g:; riz:;]gtesynﬁg]sigg %i%egﬂ?g
to modulate its amplitude with timépulsatedratchet[4]). P gnai p etfseq - P X

The fact that a random or deterministic signal is acting on thimdes' In particular, we prove that theectification of a

. o rimary signal by a ratchetan be controlled more effectively
ratchet device means that the rectifying Process occurs aw applying a secondary signghdditive or multiplicative
from thermal equnlbrlum;.bemg so, no conflict with the sec-;ith tunable frequency and phase than by tinkering with the
ond law of thermodynamics occurs. _ _ ratchet potential parameters. The latter approach is inconve-

Here we study the case of a ratchet subjected simultayient to implement experimentally, while modifying the in-
neously to two ac signals with period§=27/Q; and T,  put signals can be readily accomplished.
=2m/),. Our focus is on the case whéd/(), is rational As in the overdamped, adiabatic regime the complication
and does not address quasiperiodic drif&js We consider of chaos is absent, tuning the relative phase and the fre-
three distinct casega) the two input signals are both addi- quency ratio of the mixing drives provides a convenient and
tive and model a doubly rocked ratchéh) both signals are versatile way to inducing particle transport in a ratchet.
coupled multiplicatively to the ratchet potential, thus result- In Sec. Il we introduce the simple model of a one-
ing in a doubly pulsated ratchdt) one ac signal drives the dimensional, overdamped ratchet device driven by two exter-
ratchet, while the other one multiplicatively modulates itsnal input signals. Rectangular wave forms are adopted
amplitude (rocked-pulsated ratchetWe stress that experi- throughout in order to go beyond the well knowarmonic
mental realizations of all cases are relatively straightforwardnixing phenomenorj21-27 caused by the nonlinearity of
to implement in the laboratorgmostly affordable variations the substrate rather than by its asymmetry. In Sec. Ill the
of experimental setups widely reviewed in the literatirp. case when both signals are coupled additivétioubly

As an example of cas@) we mention transport of mag- rocked ratchetis studied under different adiabatic approxi-
netic flux quanta(vorticeg in superconducting devices mations. In Sec. IV we address the case of the two signals
[6-11, whereas some molecular motor experiments andnodulating the amplitude of the ratchet potentidbubly
quantum optical cold atom experimerjfg fall into catego- pulsated ratchgtin Sec. V A we consider the effects result-
ries(b) and(c). Asymmetric superconducting quantum inter- ing from the combination of an additive and a multiplicative
ference devicesSQUIDS) [12,13 and Josephson junctions signal (rocked-pulsated ratchetAn example of the general
arrays[14] allow simple implementations of all the cases case when signal mixing occurs due to the interplay of both
discussed her¢i.e., doubly rocked, doubly pulsated, and asymmetry and nonlinearity is analyzed in Sec. V B. Specific
rocked-pulsated ratchéfsas such devices can be conve- physical examples for the application of these ideas are spe-
niently driven by independent external signétither addi- cial SQUID devices, which are described in Sec. VI. The
tive or multiplicative. Finally, a variety of tunable physical application of our approach to other systefagy., colloidal
systems can be effectively controlled through the combinegbarticles or vortices in superconductpis straightforward.
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el V(x,1) = Vo(X)[1 +Ay(D)]. 3)
l A 1 G |
! s ‘.12 A Note that the noise strengihis proportional to the tempera-
v v ] PO ture, i.e.,DxT.
1+ + ) '.‘ / | Equation(2) allows these distinct ways of coupling an
Pt ! // “. additional control signah,(t) to a rocked ratchet driven by
@ /v, | i av || Aq(1):
5 = 2 g 1 (a) doubly rocked ratchet,
Popn™ = g An() =0,  Ayt) = Aq(t) + A(1), (4)

(b) doubly pulsated ratchet,

A1) =0, Ayt =Aq(t) + Ax(D), (5

with Ai+A,<1, and
(c) rocked-pulsated ratchet,

AdD) = Ag(),  Ant) = AglD), (6)
with A,<1.
In our analytical discussion we assume that the intrawell
(stochastig relaxation takes place on a much shorter time
scale than either both periods and T, (fully adiabatig, or
g o & 1o A 18 o4 one period,T; or T, (partially adiabatiz. We also present
results for the fully nonadiabatic case when both periods are
FIG. 1. (Color onling (a) Ratchet potentials. High, and low ~ comparable with the relaxation time. Without loss of gener-

V_ barrier configurations of the modulated potentiéik,t), i.e.,  ality, adopting the piecewise linear substrate poterjk)
V. (X)=Vo(x)(1+A,) [V.(x), dashed curve abovey_(x), dotted

curve. belovy _with A,=0.5. Refergnce raEchet potentigsolid q X for0<x<Iy,

curve: Vo(x)=gx/l; for 0<x<ly; Vo(x)=g—q(x=Iy)/1, for I

I, <x<I=l;+l,, with q=1,1;=0.9, and =1. The barrier heighAV, Vo(X) = o (7
coincides withg. (b) Response curvgz(A) of the potentialVy(x) q- q( 1) forl, <x<Il=l+I,

driven by a rectangular forca,(t) with A;=A (A,=0) in the adia- P

batic limit 3, — 0 at zero temperatur®=0 (dashed, black curye - . - .
and low temperatured/ AV,=0.05 (solid, red curve shown in Fig. _La) greatly S|r_npl|f|e§ the presentation below.
The barrier heighi\V, coincides withg.
i i i Our results have been obtained by using three different
In two Appendixes A and B we provide details of our ana-anproaches:
lytical approach to the rectification mechanism in the adia- (1) Direct simulation of the Langevin equatiag).
batic limit. Preliminary brief summaries of this work ap-

) (2) Fully adiabatic treatment of the Fokker-Planck equa-
peared in Ref[28]. tion
P 9 J
Il. MODEL —=—(V1+A, ]-A)P+D—P, 8
" ax{( o1 +An] = AP +D— } (8)
Let us consider the simplest possible Brownian ratchet

model: an overdamped Brownian partiod@) diffusing in a  for the probability densityP(x,t) [1,3], by introducing the

piecewise linear asymmetric potenti&j(x) depicted in Fig.  instantaneous probability current
1(a). Two rectangular input signals,

. , d
Jac(Aa(t), A1) = (Vo[ 1 +Ap] = AP + D= P €)
Ai(t) = A sgricod it + )], D
_ ) ) _ defined as its Stratonovich solution f8g and A, at timet.
with i=1,2; A;=0 and sgft--] denoting the sign of its ar-

. . . The average over the smallest common peﬁ'otbr both
gument[---], act on the particle according to the Langevin . ; . . o o
equation applied signals is obtained by numerical integration:

.
X= =V (x,0) + Aglt) + (D), @ i= fOTjdc<Aa<t>,Am<t>>dt. (10

where &(t) is a stationary Gaussian white noise wigt))

(3) Analytical calculations developed for several special
=0 and(&(t)&€(0))=2D4(t), and

cases.
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FIG. 2. (Color onling Input signalsA(t) (dashedl and Ay(t)
(solid) with Q,=3Q; (uppep and Q,=20, (lower); also ¢=¢»
:O, Alzl, andA2:0.9.

[ll. DOUBLY ROCKED RATCHET

A. Fully adiabatic limit

The advantage of taking tHally adiabaticlimit (2, and
0,—0) is that the outputj(Q,,Q,,A;,A,) of a doubly

PHYSICAL REVIEW E 70, 066109(2004)

Apm=(2n-1)¢, - (2m-1)¢; mod2m), (13
and
1
JalAg,A) = 5[] RAL— A +Jr(AL+AY], (14
1
Aj(ALA) = E[j RAL = Ag) — Jr(AL+ Ay, (15

for any integeram, n and m>n. The ¢;, ¢, modulation is
fully described by the multiplicative phase factp(A, )
with

m-¢l 1

T 2

p(¢) = (16)

For non-odd fractional driving, i.e.Q),# Q,(2m-1)/(2n
-1), the current equals the base valygA;,A,).
Our analytical analysis yields the following results.
(1) The doubly rocked ratchet curre@inh the fully adia-
batic limit) is insensitive ta()4,{), unless

Q, 2m-1
Q, 2n-1’ (7
Its intensity coincides with the “baseline” valjig(A;,A,) of
Eq. (14); spikes correspond to odd fractional harmonics;
their amplitudeAj(A;,Ay)/(2m-1)(2n-1) is suppressed at
higher harmonics, i.e., for largen, n.

(2) The sign of the spike factakj(A;,A,) is sensitive to

rocked ratchet is expressible analytically in terms of the curthe signal amplituded, ,A,. For instance, if we choosa;,
rent jr(A) of the well studied one-frequency rocked ratchetA, so thatA, +A, and|A; -A,| fall onto the rising(decaying

[3], corresponding to setting; =A, A,=0 with Q; — 0 [Fig.
1(b)]. Note that hergg(A) is a symmetric function oA,

JRAA) = Jr(=A) = ALu(A) = u(= A) 112, (11)

branch of jg(A) in Fig. 1(b), then Aj(A;,A,) is negative
(positive) (see Fig. 3.

(3) The current spikes af),/Q;=(2m-1)/(2n-1) de-
pend on the initial value ofp;, and for a fixed¢,, their
amplitude oscillates withp,— ¢, proportional to the modu-

where u(A) is the mobility of an overdamped particle run- ation factorp(A, ) (see Figs. 4 and)5

ning down the tilted ratchet potentish(x) - Ax. By inspect- All these properties are elucidated with Figs. 3-5, where
ing Fig. 2, one concludes that the overall ratchet currentesults from numerical simulations are displayed. We remark
i(Q4,0Q,,A;,A) results from the interplay of the two usual that the_ overall sign of our doubly ropked_ rat(_:het is always
one-frequency currents(A;+A,) and jg(A;-A,) driven by de'termmed by the polarity 0fy(x) [positive in Fig. 18], as

the ac amplitudess, +A, and A,-A,, respectively. That is, |Ai(A1,A2)[<lja(A1,Ao)| for any choice ofA, Ay,

for driving with two odd numbered fractional harmonics, i.e.,

B. Partially adiabatic limit

. 2m-1 . . . .
J(Ql,szgl—,Al,Az) In the partially adiabatic regime, where only one fre-
2n-1 quency tends to zer¢say, 2; —0) multiple current inver-
. (= 1)mn . sions are possiblg-ig. 6). The underlying mechanism hinges
= jalAnA) = Aj(ALA)P(An m), on the step structure of the one-frequency rocked ratchet cur-

(@m-1)(2n-1) rent of particles traveling in a tilted potentislh = |Aq|x, for

the nonadiabatic regimeee Fig. J, where(), is still small
but finite[3]. For instance, in the limi€), — 0 the net current
of the doubly rocked ratch¢s) can be approximated to yield

(12
with
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FIG. 3. Rectified current in a doubly rocked ratchet driven by

two rectangular signaldy(t),A,(t) and temperature, i.e., noisb,
=0.6. The substrate potentislh(x) is as in Fig. 1a); see Eq.(7).

FIG. 4. Rectified current in a doubly rocked ratchet and driven
by two rectangular signaly(t) and A,(t) with fixed amplitudes
0,=0.01 was kept constant ait}, increased(a) Numerical simu-  A;=3, A,=2, and noiséD=0.6. The substrate potentigh(x) is as
lations for ¢;=¢,=1 (circles and fully adiabatic approximation in Fig. 1(a); see Eq(7). Calculations in the fully adiabatic approxi-
(crosses The amplitudes of the driving forces correspond to themation for ¢,=¢,=37/2 (a) and ¢,=37/2, ¢p,=m/2 (b). O
rising branch of response curyg of Fig. 1(b), namely,A;=3 and  =0.01 was kept constant ai®, increased. Due to phase modula-
A,=2. (b) The same as ifia) but for two amplitudesA;=17 and  tion [see the factop(A,, ) in Egs.(12) and(16)], the current spikes
A,=8, belonging to the decreasing branchjgfln agreement with  in (a) and(b) are inverted{m,n) spikes with largem, n are hardly
Eqgs.(12)—(15), the current spikes ifa) and(b) are inverted(),/Q, visible.
for most commensuration spikes is indicated explicitly by using

m/n(=Q,/,); spikes with largem, n are hardly visible. the higher forcing frequenc{, is lower than the determin-

istic relaxation ratdcf. Fig. 1)

(01 % 0,89 = 31140240 +1 (02401, (19
mq
Qq =7 (19)
wherej.(€,,A,) is the average current across the static tilted 17
ratchet potentiaVy(x) * |A;|x driven by the rectangular sig-
nal A,(t). Note that forQ),> ), the commensuration spikes i.e., the Brownian particle reachesvig(x) minimum during
(12) can be neglected as they decay proportionall216().. each half periodl,/2 whenA,(t)=0. As a consequence, the
In order to clarify the resulting current structug®8), in particle moves an integer number of unit céliduring each
Fig. 6 we consider the simplified cagg=A,=A and (),  short periodT,, thus determining the steplike structure of the
>(),. During one half of the longer perioth/2, the total ac  currentsj. displayed in Fig. 7. A straightforward analytical
force A,(t) switches many times either between 0 add@  calculation of the average particle velocity at zero noise level

between 0 and -2 with frequency(),. We also assume that toward the rightleft) yields (see Appendix A for detaijs
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FIG. 5. (Color) Computed ratchet currepversuse, in the fully
adiabatic limit for ;=0 and different values 0f),/Q; (Q,/Q4

=1/1,1/2,1/3,1/5,3/6 Note the good agreement with the

modulation factop(A, ) in Egs.(12) and(16). Other simulation
parameters are as in Fig. 4.

ve(A) = T, (20)
for
AMY < A< A (21)
and
v.(A) =0, forA<AY, (22)
with
m_1y @n-Di+d —
2 2T, net
+ \/{—(Zn— DI+ d + fnet}2+ q—2 + 2 , (23
2T, L, T,

frer=qdl/(21415), and 8l =1, -1, (cf. Fig. 1), and whereg de-

PHYSICAL REVIEW E 70, 066109(2004)

We notice that on increasingy the resulting ratchet current
develops a negative tail made of entrained rectangular teeth
of the same size. Such a negative tail of noise-broadened
teeth persists in the presence of noise, although the teeth
become gradually suppressed, thus implying, at variance
with the fully adiabatic limit, a robust inverted output signal.
Finally, for A,/ A; <1 the particle currentdepends on the
driving amplitude in a much more complicated manner,
though still expressible in terms of E@l8). For a small
relative difference of ac amplitudes; —A,<A,, the current
j(A) exhibits multiple current inversions, as seen in Fig. 8. At
small amplitudes the curvg versusA is similar to that of
Fig. 6 for A;=A,=A. At higher amplitudes, the current peaks
change their shape from rectangular to triangular and the
“running average” ofj(A), {(j),, taken over several peaks,
increases steadiljFig. &a), inset§. Noise smooths out the
sharp peaks of(A) in Fig. 8b). In other words, instead of
having an average negative tail, the cutyg turns positive
above a certain value & and then attains a positive maxi-
mum. For larger difference®A;—A,)/A;, no current inver-
sion occurs, as shown in Fig. %A) exhibits two maxima
for large enough noiséred dashed line in Fig.)9 corre-
sponding to the superposition of two ratchet currgptg-ig.
1(b)] with shifted maxima.

C. Nonadiabatic regime

In a fully nonadiabatic regime the dependence of the par-
ticle current on the driving amplitude becomes more compli-
cated. For instancanultiple current inversiondiave been
detected with increasing amplitudeof the driving force

Ay(t) = A(sgricosQt] + sgricosQ,t]); (24)

see Fig. 10. Interestingly, even thoupkersusA is strongly
suppressed fof);=(), [see solid(red) curve in Fig. 10a)],

an appreciable ratchet effect persists wlgnis increased
beyond(}, [see Figs. 1®) and 1Qc)]. This implies that a
sustainedrectification effect can be achieved in ratchet de-
vices operating at high frequencies; namely, gradually in-
creasing the frequency differen€k - results first in cur-
rent steps equal t6Q,-Q,)! [Figs. 1@b) and 1Q@c)]; then
the current steps become smaller and current spikes with
different signs appeajfig. 1Qd)]; finally, in the limit Q,
—o, j(A,Q4,0,) evolves toward the valugA/2,0,Q).

IV. DOUBLY PULSATED RATCHET

Here the Brownian patrticle diffuses in a pulsated potential
V(x,t), whose amplitude switches among four different val-
ues AVy(1-A1—-Ay), AVy(1+A1-Ay), AVy(1-A+Ay), and
AVy(1+A;+A,). As m>n, let us consider the two time-
dependent potential¥y(x)[1-A;+A,(t)] for the half cycle
Aqi(t)=-Ay, and Vo(x)[1+A;+A,(1)] for the remaining half
cycle A,(t)=A;: They are both pulsated at the higher fre-
quency (), and, therefore, sustain currenig,(A,) and

notes the barrier height of the ratchet potential. The analytijp(A2), respectively(proportional toQ% for Q,—0, e.qg.,
cal expressiov.,(A)+v_(A)]/2 for the ratchet current com- [1]). Following the approach outlined in the previous case
pares very well with the simulation data displayed in Fig. 6.(a), and guided by the plots ofy(t), Ay(t) in Fig. 2, one
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FIG. 6. (Color) Rectified current in the doubly rocked ratchet wih=A,=A, T;=10°, T,/T,=240.(a) Simulation data foD=0 (red

solid triangle$, 5X 1072 (blue dot3, and 0.05(pink open triangles The black solid curve with steps is our analytical predictionBerO
(see text (b) Blowup of the dashed, red box {i@). The ratchet potentia¥y(x) parameters arg=0.4,1,=0.7, andl=1.

concludes that Eq12) applies to the present case, too, after Q,=(2m-1)Q, (26)
replacing the definitiori14) with
one immediately recognizes the existence of an “odd har-
1 monics” structure in the spectrum of the ratchet current, but,
JadALAY) = E[jpl(AZ) +Jpo(Ar)]. (250 at variance with Eq(12), no obvious factorization between
the A;,A, dependence anth, ¢», modulation could be de-
rived, as the adiabatic approximation is no longer tenable
Note in this context that the sign qf, becomes reversed here. Nevertheless, even in this case, the spike amplitudes
here with respect to caga). For are still inversely proportional to the rat{o,/();. Numerical
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On separating the time intervé2n—1)T; into a time uncor-
. related sequence ¢2m-1) shorter driving cycled, along
j (@A)

4 V.(x) (we assumen> n; see Fig. 2, one eventually casts the
total ratchet current in the forrfl2) with
Jal A AY) = (L[] (A) + (A, (29)
2+ . _
Aj(AL,AY) = (11[v-(A) - v.(A)], (30)
J + ] where
0 v2(A) = Al s (Ag) + e (= A) /2. (31)

We recall that in our notatiop.(A) is the static nonlinear
mobility of the tilted potentiald/,(x)—Ax.

It is easy to deduce thahj(A;,A,)| may grow larger than
5] lialA1,Ay)| and, therefore, a current reversal may take place
for appropriate values of the model parameters, as shown by
] the simulation results in Fig. 18. In fact, already a rela-

J (Qz,A) tively small modulation of the ratchet potential amplitude at

low temperatures can reverse the polarity of the simply

-4 rocked ratchey(x). Let us consider the simplest possible

case,(,=Q, and ¢;=¢,: As the ac drive points in the

1 —_— i “easy” direction ofVy(x), namely, to the right, the barrier

0 1 2 A 3 4 5 heightV(x,t) is set at its maximum valu&Vy(1+A,); at low
temperatures the Brownian particle cannot overcome this

FIG. 7. Simulated net currenis(Q,,A,) in the tilted rocked ~ barrier height within a half ac drive perioti/2. In the sub-
ratchetVo(X)  |Aqx for Aj=A,=A, Q,=1.5, andD=0; Vy(x) pa-  Sequent half period the driving sign&h(t) changes sign,
rametersp=0.4,1,=0.7, and =1. The current step structure is due thus pointing against the steeper side of We,t) wells,
to the fact that a particle moves sidewise an integer number ofvhile the barrier height drops to its minimum valié/q(1
potential cells; hence the “quantization” of the relevant average-A,): Depending on the value afV,/D, the particle may
velocities in units ofi(2,. have a better chance to escape a potential well to the left than

to the right, thus making a current reversal possible. Of
simulations support these predictions, as confirmed ircourse, the net current may be controlled via the modulation
Fig. 11. parameters\, and ¢,, too.
For both the doubly rocked and rocked-pulsated ratchets,
Eqg. (12) is symmetric undem« n exchange. This implies
V. ROCKED-PULSATED RATCHET that, as long as the fully adiabatic approximation is tenable,
each spectral spikem,n) of the ratchet current is mirrored
by a spike(n,m) of equal strengtlisee Figs. 3, 4, and 12

The mixing of an additive and a multiplicative signal pro- This is not true, e.g., in theartially adiabaticregime, where
vides acontrol mechanisnof potential interest in device de- the dynamics depends critically on whetligt/ Q, or Q,/€,
sign. In thefully adiabatic limit, the ac driven Brownian tends to zero.
particle can be depicted as moving back and forth over two In the partially adiabatic limit),<€),, additional current
alternating ratchet potentials inversions are observed for the rocked-pulsated raichgt
13). In order to understand the mechanism of the negative
rectangular current peaks for small driving amplitudeset
us consider the simplest possible case whgnl, i.e., the
potentialV(x,t) is switched off completely during the “idle”
Both potential configuration¥,(x) are capable of rectifying half of the shorter periodi.e., whenA,(t)=—A,]. Thus, a
the additive driving signalA(t); the relevant net currents particle, captured in a potential minimum whé&fix,t) is
j.(A,) are related to the curviy(A) plotted in Fig. 1b): switched on, starts freely moving to the rightAf(t)=A; or

toward the left if Aj(t)=—A; when V(x,t)=0. In order to
[ ] move to the neighboring potential cell, the particle has to
e 1

A. Mixing of two square-wave signals

Vi (X) = Vo(X) (L £A). (27)

i.(A) = (12A)jn travel further than the location of a potential maximifgix)

h during the “idle” time. Since the left maximum is the closest
one, the particle moves on average to the left for low ampli-
tudes. The interval of amplitudedg,<A<Agqp COITe-

with D — D/(1 £ A,). (28)  sponding to the first negative peak can be easily calculated

1A,
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FIG. 8. (Color Rectified currentj versus amplitudeA in the doubly rocked ratchet witth,=0.97, A;=A, T,;=1C T,/T,=240.
Simulation data foD=0 (a), D=0.005(b) (dashed, red curyeandD=0.02(b) (solid, black curvg Potential parameters are as in Fig. 7.
Insets: details of the curves f@=0 in (a) andD=0.005 in(b). See text for the remaining notation.

by imposing the condition that the particle has enough timeectification. Thus, the current becomes positive in agree-
to reach the location of the left potential maximum duringment with the polarity of the potential,.

T,/2 but cannot reach the right one spending the same

amount of time, i.e.(T5/2)Agiar=l2 and(T,/ 2)Agiop=11. This o ) _ )

equations provide the valuesg,=0.36 andAZtOp=0.84. B. Mixing of two sinusoidal signals

These values perfectly agree with our simulati¢sse, Fig. The effects we discussed above should not be mistaken
13). At higher values ofA; the asymmetry of the potential for a manifestation of harmonic mixingHM) [21-27,
during the “active” half of the shorter peridde., when the namely, the mechanism where two or more linearly superim-
potential is switched onA,(t)=A,] is responsible for the posed periodic input signals may develop a phase-dependent
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FIG. 9. (Color onling Same as in Fig. 8 but foh;=A and A,
=A/2. Rectangular spike@t low A) and sawtooth spikes coexist.
Noise smooths out the rugged structureDet0; for D=0.02 the
resulting curvej(A) exhibits two broad peaks.
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FIG. 10. (Color) Rectified current in the doubly rocked ratchet
with D=0, A;=A,=A, and frequencie$),,{), not subject to the
adiabatic condition:(a) ,=0.72, 0,=0.72; (b) Q,=0.72, O,
=0.84; (c) 04=0.72,0,=0.96; (d) 2,=0.72,Q,=1.14. Potential
parameters are as in Fig. 7.
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FIG. 11. Rectified current in a doubly pulsated ratchet with
piecewise linear potentiaVy(x) as in Fig. 1a) [see Eq.(7)] and
driven by two square-wave signals(t), Ax(t) with ¢1=¢,=7 and
A;=A,=0.5 (simulation§. Other parameter values a@=2, |,
=0.9,1=1, andD=0.6.Q,/Q; for all spikes is indicated explicitly.

dc output as an effect of nonlinearity. Notice that HM may
occur in a symmetric device, too. However, a simple pertur-
bation argumenf21] leads one to conclude that in the case
of a doubly rocked ratchet HM for a symmetric device in the
fully adiabatic regime may be totally suppressed by using
rectangularwave forms. Moreover, rectification induced by
the interplay of additive and multiplicative signals rests upon
a sort ofsynchronized gatingnechanism peculiar to the case
of a rocked-pulsated ratchet and requires no particular sub-
strate symmetry. In this regard, such a mechanism cannot be
considered as a HM manifestation, either; rather, it shows
some similarities with better studied time-dependent stochas-
tic processes, like stochastic resonar@9], and, more
closely related, the control mechanism of stochastic reso-
nance[30]. It thus may explain earlier reports of resonant
transport in certain pumped symmetric systefhg]. Note
that a binary mixturg¢31] is a good system for analyzing and
clearly separating the signal mixing related to nonlinearity
(like HM) and the asymmetry-induced signal mixing;
namely, it was showii31] that nonlinearity and asymmetry
result in spikes corresponding to different “winding num-
bers” of two mixing frequencies.

Asymmetry and nonlinearity-induced mixing are barely
separable in the case sihusoidalinput signals. This case is
analytically less tractablesee Appendix B and shows sig-
nificant differences with respect to the square-wave mixing
investigated so far. Spikes in the output current spectrum
occur for any rational value d,/Q,=m/n, includingeven
fractional harmonics, i.e.Q,/Q,;=2m/(2n-1) or Q,/Q,
=(2m-1)/2n, respectively; but it is no longer symmetric un-
der the exchange ah<n. This is so because the effect of
HM cannot be separated from asymmetry-induced mixing.
Moreover, these spikes decrease witlk n much faster than
those generated by square-wave input signals, and their sign
depends om,m, in a complicated fashion. However, the
mixing effect of two sinusoidal signals is so strong that cur-
rent reversals may still occur as an effect of frequency com-
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mensurability in the case of rocked-pulsated ratchste the
spikes corresponding tQ,=; andQ,=2Q;, in Fig. 14a)]. 0.8 -
Moreover, the sign of all the spikes can be easily controlled
by changing the phases of the input sign&gy. 14b)].

VI. ASYMMETRIC SQUID DRIVEN BY TWO J
FREQUENCIES

As mentioned before, the reported signal mixing can be
realized in a wide variety of physical systefis6—11. Here,
we focus on an important example, the asymmetric SQUID
[12,13, and demonstrate how the equations describing this
type of SQUID can be reduced to our model.

Following Refs.[12,13, we study SQUIDgFig. 15a)] 0.8 4 X1
that have two Josephson junctions in one branch of the
SQUID loop and one Josephson junction in the other branch :
When the junctions are overdamp@e., when the resistive 164 $ 11

term is larger than the capacitive terand when the SQUID

loop has a sufficiently small self-inductance, the dynamical
equation describing the evolution of the phase differepce J
can be reducefl 2] to 1

ho.
oR? = U SiN(@/2) = Jr sin( + 2 Pe/ Do) + 1(1) + ().

(32)

Here, e is the electron chargeR is the junction resistance
(we assume the same resistance for all junciosis the
critical current of the junctions on the left branch of the
SQUID, while J, is the critical current of the right junction.
This SQUID can be driven by an oscillating external mag- g g
netic field[which changes the flusb.,; in the loop and thus 0 2 4
produces the “flashing” potential; Fig. @3] or by an exter- 92/91
nal currentl(t), producing a rocking ratchet. To be more

precise, we focus here on the case when the SQUID is driven FIG. 12. Rectified current in a rocked-pulsated ratchet in the

by a current having two frequencies fully adiabatic regime. Additive signad(t), with A;=4 and Q,
~ ~ =0.01, and modulating signal,(t), with A,=0.5; noise levelD
[(t) =1y sgricod 27yt — ¢1) ] + |, sgricos27vst — ¢by) ] =0.4.(a) ¢1=¢p,= (fully adiabatic approximation (b) numerical

(33 simulation(circleg versus fully adiabatic approximatigicrossey
. i ¢1=7 and ¢,=0. Vy(x) parameters arg=2,1,=0.9,1=1.
Next, we map the dynamics of the SQUID to a “particle”

motion by introducing new variables and effective param-
eters: the particle coordinate= (¢+m)/2, the dimensionless
time r=(eRJ/2A)t, the critical current ratics=J,/J,, the
driving amplitudesA, ,=1, ,/J;, the dimensionless frequen- Note that the average velocity is linearly proportional to the
cies v, ,=2%7, ,/eRJ, the effective diffusion constard  dc voltage through the SQUID:

=2elkgT/hJ;, the dimensionless fluxe,=27®d,,/ Py, and

the noise¢ obeying the relationgé(7))=0 and (&(7)&(0)) JR .

=2D4&(7). The dynamics of this imaginary particle is de- (Voltage):7<x> (36)
scribed by Eq.(2) for a particular choice of the substrate

potential and driving:

Usquin(X) = = [sin(x) + (s/2)siN(2x + ¢ex— m/2)]. (35)

and can be directly measured in experiments.

. _ X Finally, we show[Fig. 15b)] that the piecewise linear
x= ar potential used for simulations approximates well the shape of
the SQUID potentialgsqyp, at least for certain values of the
- Msquip + A, sgricos2mv 7 — ¢y)] fexternal field. Morgover, the SQUID dynam_ics, when chang—
X ing the magnetic field, can be easily described as a flashing
_ of the potential Usqyp. Thus, the asymmetric SQUID
+ A2 SQLCOs2my,T = o)1+ (1) (34) [12,13 is a suitable system to check all predictions made in
with substrate potential this work.
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FIG. 13. Rectified current in a rocked-pulsated ratchet: the par- , X 1/1 (b)
tially adiabatic regime. Drive parameters arg=10°, T,/T,=600, J ]

b1=»=0, A,=1 (black dot$ and O (dotted curvg D=0. Vy(x)
parameters arq=0.75,1,=0.7,1=1.

0.4 1
VII. CONCLUSIONS

In this work we have studied overdamped, directed trans- Lo x il
port which is controlled via the mixing of two periodic sig- TamIO< 352025000 5000 5000 300000000 0000800025000
nals through different deterministic and Brownian ratchet i
setups: the doubly rocked ratchet, the doubly pulsated Lo
ratchet, and the rocked-pulsated ratchet. Both analytical an©.0
numerical results are presented for the fully and partially ;
adiabatic limits, i.e., when both or at least one of the input X /1
frequencies is much lower than the slowest system relaxatior
rate. The current as a function of the input frequencies ex- 0 ' 1' ' é ' é ' :1 N
hibits sharp spikes whefl, and(), are commensurate. This Q/0
may result in marked current inversions; the interplay of ad- L
ditive a'nd multiplicativg signals_in a rocked—pu!sated ratchet g 14 Mixing of two sinusoidal signal&, cogQ,t+¢,) and
determines a far-reaching rectification mechanism that Workg, cog,t+ ¢,) in a rocked-pulsated ratchet. Additive ac drive pa-
also for symmetric substrategating mechanisinin the par-  rameters areA;=4, 2;=0.01 with Q, being varied; modulating
tially adiabatic and in the nonadiabatic regimes, a multipleamplitude A,=0.8; D=0.2. (a) Circles, ¢,=¢,=m, simulation;
current inversion phenomenon was found as the driving amcrosses, ¢, = ¢p,=, adiabatic approximation(b) ¢;=m, ¢,=0,
plitudes were set to sufficiently close values. Moreover, amdiabatic approximationVy(x) parameters arg=>5, 1;=0.9, I=1.
unexpected enhancement of the ratchet current was observed/Q, of the most prominent spikes is indicated explicitly.
for relatively high, but comparable, input frequencies.

The use of nonlinear signal mixing with a second signal in ACKNOWLEDGMENTS
overdamped Brownian motors thus exhibits a rather rich be-
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not observed for our overdamped motion, but rather is the

_result of the nonlinear dynamics induced by the signal mix- APPENDIX A: AVERAGE PARTICLE CURRENT IN A

Ing. . NOISELESS DOUBLY ROCKED RATCHET (PARTIALLY
The results reported here can be employed to control di- ADIABATIC LIMIT)

rected transport at mesoscopic and nano scales, for instance
in SQUID devices, by engineering the transport characteris- Let us assume thdi{>1,, Aj=A,=A, ¢1=¢,, andD=0;

tics of colloidal mixtures, vortex matter, and other soft- moreover, letT; be much longer thail,. First we consider
matter system§l]. the half (longep period T, when the total driving force is

066109-11



SAVEL'EV et al. PHYSICAL REVIEW E 70, 066109(2004)

(a) position 1 * position 2 * ( a)
©w1/2 o
' e
Sol / 2 @ e fEt l] lZ
position 2~ position 17 (b)

o

[

piecewise

potential FIG. 16. (Color onling Forward(a) and backwardb) motion of

a particle in a periodic asymmetric potential. The notation here is
used in Appendix A.

4 l4
ti=—=—. A2
Ui 2A-glly (A2)
In order to drift past two cells during each short period, the
particle should overcome two maximd and 2 (see Fig.
16) during one half periodl,/2. This would take a time
2t; +t; with

Yoscillations of ¢

. 7
0 5 X 0
. o . th= b (A3)
FIG. 15. (Color onling (a) A schematic view of the asymmetric 2 v; 2A+g/l,

SQUID having two Josephson junctions on the left bragath of
them described by the gauge-invariant phage ¢) and one jo- because the particle has to move twice uphill and once
sephson junction on the right brangkith phaseg,). (b) The asym-  downhill (Fig. 16) with velocitiesv] and

metric substrate potentigsolid (red) curve fors=0.5] experienced

by a “particle” which mimics the evolution of the phase difference vh= 2A+ q (A4)
through the asymmetric SQUID. The piecewise linear potential 2

used in previous sectiorifere shown by the dashégreer) curve . .

approximates well the real SQUID potentiak) The flashing espectively. Thus, the equation

SQUID potential is produced by the magnetic field oscillations: the T

ac field changes frompe,=/2 [solid (red) curvel t0 ¢ey=/2 2 =21 (A=A?) +t5(A=A?) (A5)

+1 [dashedblue) curve. The potential heights, denoted gyn Eq. 2

(7), oscillates in time.

l,’

determines the lowest amplitu@éz) for a particle to be dis-
placed by two cells in the shorter modulation cy€le When

a potential minimunr(cf. Fig. 16), at any time. IfA>q/2l;,  time to overcome the first potential barrier, but not the sec-

the particle drifts toward the right with velocity ond one. Thus, the particle in Fig. 16 reaches an intermediate
location between™and 2 by the time instant when the total
N q driving force A, drops to zero. During the subsequent time
v =2A- 1. (A1) interval whenA, is null, the particle relaxes toward a poten-
! tial minimum, provided that the frequencf, is small
during the half(shortej period T, when the total driving enough, i.e.,
force is equal to 2. However, in order to fall into the next Iy |§ T, 7q
potential well, the particle has to overcome a potential bar- |UI(A—:O)| = a < P or ), < E (AB)

rier height AVy=q during a time interval not longer than

T,/2. This occurs if the amplitudé exceeds the critical Therefore, the average particle velocity during the half
value Afrl) determined by the condition that the particle period T,/2 when A,(t)=0 (note that here the average is
reaches the position*1in Fig. 16 during a time interval taken over the shorter cyclel,) is v, (A)=I/T, for
tI(Ail)) equal toT,/2, t] being the time the particle takes to Afrl)<A< Afrz). By extending the previous argument, we con-
move from a minimum to the closest barriet, hamely, clude thatv,(A)=nl/T,, with n a positive integer, if in one
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half periodT,/2 the particle travels a distance longer thanthe average over the phase spéacg), the independent vari-

xﬂ")=nll+(n—1)lz, but shorter tharxﬂr”*l)=(n+ Dl;+nl,. This  ablesx andy representing herg, andf,, respectively,
holds good ifT,/2 is longer thamt;+(n-1)t;, but shorter 1o

th(zna)n (n+1)('r[:1+‘;nt2. Th|s(n) gorrespon_ds to requiring that i :f J dxdyj(Cx+ By)p(x)]s(xyy)' (B2)
AlV<A<A."7, whereA.” is determined by -1J-1

Here, P(x) is the probability(for a random, “uniformly dis-

tributed” timet) that f;=x, while P is the conditional prob-
ability that f,=y, having setf;=x. On introducing new vari-
ablesz=Cx+By andx’ =x, the integral(B2) reads

% =nti(A?) + (n- DE(AD). (A7)
The solution to this equation is reported explicitly in Sec.
[l B. During the following half(longen period T4, the driv-
ing force A,(t) is either zero or equal to 4 Thus, an aver- 1 (B 1
age particle velocity_(A) can be obtained frono,(A) by = EJ Jdc(Z)de
exchanging ;< |,.
This approach allows us to reproduce both the step strug-ereafter, we omit the prime ix’ for simplicity; 1/B is the
ture of the particle curreniFig. 7) driven by one frequency Jjacobian of the transformation. If the frequencies of two sig-
in a tilted potential, and the rectangular tooth structure of theyals are incommensurate, then the probability to fiswly is
current driven by two signals with equal amplitudeand independent of the probability to finf,=x: I~3(x,y)=P(y).

different frequencie$),> O, (Fig. 6). ; .
If Ay< Ay, the qualitative behavior af, for A(t)=0 (see Thus, we derive the “incommensurate” net current

P(X)P[x,(z- Cx)/B]dx. (B3)
-C-B -1

Fig. 8) remains the same after replacing @ith A;+A,, as 1 (C+B 1

long as the particle has enough time to relax toward a poten-  Jincomm= Ef l'dc(Z)de dxP(x)P[(z— Cx)/B]

tial minimum during the time intervals when the total drive ~¢B -1

is small, i.e.,A(t)=AA=A;-A,. However, this condition (B4)

may be violated even fof), < wq/li, since the velocity on
the gentle slope over these intervals becomgdA)=q/l;
—AA. The identity

and the commensuration spikes

C+B 1
I T, Aj = jeomm™ Jincomm= EJ jdc(z)dzf_l dxP(x)

¥ <=, (A8) -Cc-B

P2 X{P[x,(z~ CX/B] - P[(z- Cx)/BI}. (B5)

defines the critical amplitude For th case of rectangul signalprofies -0
AA = % - % (A9) we obtain 1

so that forA;—A,>AA.; the simple velocity quantization P(X) = Preci= 5[6(x— 1)+ 8(x+1)], (B6)

nl/T, becomes invalid. This means that over the half period _ ) ]
T./2 with A,(t)=0 a driven particle is displaced bycells ~ While for the sinusoidal profilesf;=codt) and f,
plus an additional distance proportional to the drive ampli-=Cc04{2t)
tude. The same argument applies to the average velocity in 1
the half periodsT;/2 when A,(t)<0. This explains the P(X) = Pppe= ——.
. cos [ 2
changes of the tooth structure @A) from “rectangular” to V1-=x
“triangular” on increasing\; [see Figs. &) and 9.

(B7)

Next we need an expression for the conditional probability

APPENDIX B: MIXING OF TWO SINUSOIDAL SIGNALS P. For square waves and;=2(),, the probability thatf,
IN A DOUBLY ROCKED RATCHET (FULLY =y if f1=1,is(1/2)[8(y—-1)+8(y+1)]; sincef, is equal to 1
ADIABATIC LIMIT) and -1 for the same amount of time during the half period

Within the adiabatic approximation, the net currérior whenfy=1. Thus, we derive

any choice of the two signal profild$,(t)|<1 and|f,(t)] - 1
<1 can be written in the form Prec({lp=20) = S[ay -1+ dy+1].  (BY)
t
j=lim lfojdo[Cfl(t) + Bfy(t)]dt. (B1) For Q,=3(), the time intervals whetfi,=1 andf,=-1 are
to—> loJo different and depend on the conditional value fgf One

. . . . . obtains easil
Here, jqc=Au(A) is the current in a tilted potentidly—AX, y

and C andB are the amplitudes of the mixing signafs(t) ~ 2 1 )

=Bf,(t) and Ay(t) = Cf,(1). Precf{2=30Qy) = 55()/ -1+ 55()' +1)if x=1 (B9)
The average above can be rewritten under the “ergodic

hypothesis,” namely, by replacing the average over time witrand
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=2Q,, we realize immediately that the varialite Cx+By

Prec{Q2=30y) = 7 (y D+ 6(y+ 1) if x=- =Cx+2Bx2-B [here we made use of the identitigs
=cos A);t=2 cog(Q,t)-1=2x>-1] does not fill the entire
(B10) accessible phase spacé-(C+B),C+B]. Indeed, if
The general expressions fo),=(2n+1)Q;, C>4B>0 thenzx) is a monotonic function with values
betweerz(-1)=B-C andz(1) =B+C; hence the asymmetric
n+ P integration domain inB2).
- —d8y+1) ifx=1 - . .
B 2n+ 15(y v+ 5(y ) iTx=1, We also obtained two more useful analytical expressions:
rect™ C+B
2n+ 16(y l) 5(y+ 1) i x=- chn(::Somm_ J K(CyB,Z)jdc(Z)dZ,
-c-8B
(B11)
follow suit. For the case of cosine signals, the value of K:EJW d¢ , (B15)
cognQ4t) is known in terms of co€t=x; hence 4J4 JC?-(z+Bcosg)?
Peod2,=20) = dy-(2¢-1] (812 and
and Iincomm= 4[Jdc(c:+ B) +jadC~B)
~ ~ s
. PC0402 - 391) - 5[3/ (4X 3)()]1 (813) + jdc(_ C+ B) + jdc(_ C- B)] (BlG)
and in the general case If C>4B, then
~ n nfn-3 B+C
Peod 22 =n0y) = ﬁ{y— 1/2{(2x)“ - (2074 5( . ) 00720, f " dzi 2
o Jge M(Z) " J8B2+ 2CM() - 2C7 - 882
(B17)

X (2%)"4 - g(n;4>(2x)”‘6+ ” (B14)

with M(z)=C?+8B?+8Bz for cosine signals.

One conclusion of our approach is that the current spikes Therefore, the approach shown here is applicable to both
are related to the “commensuration” of the input signal prononlinearity- and asymmetry-induced signal mixing and may
files f; and f,. Moreover, harmonic mixing in symmetric be useful to interpret the more complicated case when the

substratesi.e., whenjy(2)=-j4{(~2)] can be given a simple
explanation, too. If we consider, for example, the cése

two mixing mechanisms cannot be separatsdch as in
Fig. 14).
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