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Using superconducting quantum-circuit elements, we propose an approach to experimentally construct a
Kitaev lattice, which is an anisotropic spin model on a honeycomb lattice with three types of nearest-neighbor
interactions and having topologically protected ground states. We study two particular parameter regimes to
demonstrate both vortex and bond-state excitations. Our proposal outlines an experimentally realizable artifi-
cial many-body system that exhibits exotic topological properties.
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I. INTRODUCTION

Interesting phenomena, such as the Aharonov-Bohm ef-
fect and Berry phases, can occur in physical systems with
nontrivial topology in real or parameter space. Topological
quantum systems are now attracting considerable interest be-
cause of their fundamental importance in diverse areas rang-
ing from quantum-field theory to semiconductor physics1

with the most recent example being the exploration of topo-
logical insulators.2,3 These topological physical systems may
also have potential applications because they are robust
against local perturbations. Specifically, a topologically pro-
tected quantum-state degeneracy cannot be lifted by any lo-
cal interactions.1,4 It is therefore natural to consider using
topological phases for applications requiring a high degree of
quantum coherence.1 For example, it has recently been
pointed out that non-Abelian anyons5–7 in a fractional
quantum-Hall system can lead to topological quantum
computing.8 Anyons are neither bosons nor fermions but
obey anyonic braiding statistics.5–7 Unfortunately, they have
not yet been convincingly observed experimentally in any
physical system.

Instead of only looking for naturally existing topological
phases, one could also design artificial lattice structures that
possess desired topological phases. One example is the Ki-
taev honeycomb model,9 which requires that the spin �natural
or artificial� at each node of a honeycomb lattice interacts
with its three nearest neighbors through three different inter-
actions: �x�x, �y�y, and �z�z. Depending on the bond pa-
rameters, this anisotropic spin model supports both Abelian
and non-Abelian anyons.9 Its realization could potentially
lead to experimental demonstration of anyons and implemen-
tation of topological quantum computing. However, the re-
quirement for anisotropic interactions is tremendously de-
manding and generally cannot be satisfied by natural spin
lattices.

Various artificial lattices may possess interesting topologi-
cal phases. For instance, it has been proposed that a triangu-
lar Josephson-junction array may have a twofold-degenerate
ground state that is topologically protected.10,11 A recent pro-
posal suggests the use of capacitively coupled Josephson-

junction arrays to simulate a two-component fermion model
that has topological excitations.12 There is also a suggestion
that a Josephson-junction array with properly designed inter-
actions and topology can be local-noise resistant.13 With re-
spect to the physical realization of the Kitaev model, there
are proposals using neutral atoms in optical lattices.14–16 One
similarity among all of these proposals, whether based on
Josephson-junction arrays or on optical lattices, is that they
all require extremely low temperatures and precise single-
atom manipulations. The reason is that topologically interest-
ing properties are not generally contained in the symmetry of
the system Hamiltonian. Instead they are only emergent
properties at very low temperatures.

Here we propose a quantum emulation of the Kitaev lat-
tice using superconducting quantum circuits �Ref. 17 gives a
brief summary of this work�. As for the topic of quantum-
analog simulations, see Ref. 18 for a brief review. In our
superconducting network, a Josephson charge qubit is placed
at each node of a honeycomb lattice. These charge qubits
behave like artificial spins and are tunable via external
fields.19–21 Each charge qubit interacts with its three nearest
neighbors through three different types of circuit elements.
One advantage of our proposal is that some circuit elements
involved and their functionalities at low energies have al-
ready been demonstrated experimentally—for example, the
�z�z and �x�x couplings between charge qubits have been
studied in experiments.22,23 Here we show theoretically that
they can indeed provide the needed anisotropic interactions
when included in a honeycomb lattice. We then identify the
ground states of this network in two different parameter re-
gimes and show that it can have both vortex and bond-state
excitations. We also describe how they can be generated us-
ing spin-pair operations.

II. KITAEV LATTICE BASED ON SUPERCONDUCTING
QUANTUM CIRCUITS

At low energies, superconducting �SC� qubits can behave
as artificial spins. Among the varieties of SC qubits �charge,
flux, phase,19–21 and other hybrids24–26�, only charge qubits
are known to interact with each other in all the individual
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forms of �x�x, �y�y, and �z�z via a mutual inductance, an
LC oscillator �i.e., a resonator consisting of inductance and
capacitance�, and a capacitance, respectively.22,27–29 Here L
denotes the inductance and C the capacitance. Therefore, to
emulate a Kitaev honeycomb lattice, we propose to build a
two-dimensional SC circuit network based on SC charge qu-
bits. More specifically, on a honeycomb lattice a charge qubit
is placed on each node �Fig. 1�b�� and one of the three circuit
elements is inserted along each bond of the lattice �denoted
as the x-, y-, or z-type bond�. A building block of this lattice
is shown in Fig. 1�a�, which consists of four charge qubits
that are connected via an x-, a y-, and a z-type bond. Each
charge qubit is a Cooper-pair box connected to a supercon-
ducting ring by two identical Josephson junctions to give it
tunability: each qubit is controlled by both the magnetic flux
�i piercing the superconducting quantum interference device
�SQUID� loop and the voltage Vi applied via the gate capaci-
tance Cg.

Naively, a circuit element should maintain its basic char-
acteristics when inserted in a larger network, at least in the
linear regime. However, as it has been shown in previous

studies of hybrid qubits,24–26 a superconducting qubit based
on one particular variable �for example, charge� can acquire
characters of another �for example, flux� when additional cir-
cuit elements are added to it. Therefore, here we first clarify
whether the different circuit elements in our honeycomb net-
work maintain their basic individual characteristics �particu-
larly the forms and strengths of the interactions� at low en-
ergies when lumped together.

We first write down the Lagrangian of the quantum cir-
cuits, choosing the average phase drop �i across the two
Josephson junctions of each charge qubit as the canonical
coordinates. After identifying the corresponding canonical
momenta, we then derive �this derivation is shown in the
Appendix� the total Hamiltonian of the quantum circuits as

H = �
i

Hi + �
x-link

Kx�j,k� + �
y-link

Ky�j,k� + �
z-link

Kz�j,k� .

�1�

Here the free Hamiltonian of the ith charge qubit is

Hi = Ec�ni − ngi�2 − EJi��i�cos �i, �2�

where Ec=2e2C� /� is the charging energy of the Cooper
pair box with the total capacitance C�=2CJ+Cg+Cm and
�=C�

2 −Cm
2 ; ni=−i� /��i is the number operator of the Coo-

per pairs in the ith box �which is conjugate to �i�; ngi
=CgVi /2e is the reduced offset charge induced by the gate
voltage Vi; and EJi��i�=2EJ cos���i /�0� is the effective
Josephson coupling energy of the ith charge qubit with �0
=h /2e as the flux quantum.

The three nearest-neighbor couplings, shown as the x, y,
and z bonds in Fig. 1�a�, are given by

Kx�1,2� = MI1I2,

Ky�1,3� = − 4�EJ1��1�EJ3��3�sin �1 sin �3,

Kz�1,4� = Em�n1 − ng1��n4 − ng4� , �3�

where

� = L��C��Cg + Cm�
��0

�2

,

Em =
4e2Cm

�
,

Ii = − Ic sin���i

�0
	cos �i. �4�

Here Ic=2�EJ /�0 is the critical current through the Joseph-
son junctions of the charge qubits �we assume identical junc-
tions for simplicity� while Ii is the circulating supercurrent in
the SQUID loop of the ith charge qubit. Note that the cou-
pling strength between nodes 1 and 3 �along a y link�, �
	 �Cg+Cm�2, is affected by the mutual capacitance Cm that
connects qubit 1 �3� with its nearest neighbor along a z link.
Compared to the case of two qubits coupled by an LC
oscillator,28 where �	Cg

2, the capacitive internode coupling
along the z link in the present circuit greatly increases the
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FIG. 1. �Color online� �a� Schematic of the basic building block
of a Kitaev lattice, consisting of four superconducting charge qubits
�labeled 1–4�: �i� qubits 1 and 2 are inductively coupled via a mu-
tual inductance M; �ii� qubits 1 and 3 are coupled via an LC oscil-
lator; and �iii� qubits 1 and 4 are capacitively coupled via a mutual
capacitance Cm. Inset: the three types of interqubit couplings are
denoted as x-, and y- or z-type bonds. Here each charge qubit con-
sists of a Cooper-pair box �green dot online or gray dot in print� that
is linked to a superconducting ring via two identical Josephson
junctions �each with coupling energy EJ and capacitance CJ�, to
form a SQUID loop. Also, each qubit is controlled by both a voltage
Vi �applied to the qubit via the gate capacitance Cg� and a magnetic
flux �i �piercing the SQUID loop�. �b� A partial Kitaev lattice �hon-
eycomb lattice� constructed by repeating the building block in �a�,
where a charge qubit is placed at each site. A plaquette is defined as
a hexagon in the lattice. The plaquette operator is defined as Wp

=�1
x�2

y�3
z�4

x�5
y�6

z and is shown for a given plaquette p.
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internode coupling along the y link because usually Cm

Cg. This is an important and positive consequence when
multiple circuit elements are introduced to create different
internode interactions.

At low temperatures, only the lowest-energy states of a
superconducting circuit element are involved in the system
dynamics, which is quantum mechanical. For the particular
case of a charge qubit, where Ec
EJ, the lowest-energy
eigenstates are mixtures of having zero and one extra Cooper
pair in the box, when the gate voltage Vi is near the optimal
point e /Cg �i.e., ngi


1
2 �. Defining �0�i and �1�i as the two

charge states having zero and one extra Cooper pair in the
box, we now have a two-level system as a quantum bit or
qubit. In the spin-1

2 representation based on these charge
states �0�i�↑ �i and �1�i�↓ �i �i is the index of the nodes�,
the system variables can be expressed as

ni =
1

2
�1 − �i

z� ,

cos �i =
1

2
�i

x,

sin �i = −
1

2
�i

y . �5�

Here we consider the simple case with ngi=ng �i.e., all gate
voltages on the different nodes are identical: Vi=Vg� and
�i=�e for all qubits. The low-energy Hamiltonian of the
system is then reduced to

H = Jx �
x-link

� j
x�k

x + Jy �
y-link

� j
y�k

y + Jz �
z-link

� j
z�k

z + �
i

�hz�i
z

+ hx�i
x� , �6�

where

Jx =
1

4
MIc

2 sin2���e

�0
	 � 0,

Jy = − ��EJ��e��2 � 0,

Jz =
1

4
Em  0,

hz = �Ec +
1

2
Em	�ng −

1

2
	 ,

hx = −
1

2
EJ��e� �7�

with EJ��e�=2EJ cos���e /�0�. The reduced Hamiltonian
�6� is the Kitaev model with an effective magnetic field with
z and x components. Here hx and hz play the role of a “mag-
netic” field. Since Jy 	hx

2, to maintain finite interqubit cou-
plings, hx cannot vanish. Therefore our Hamiltonian repre-
sents a Kitaev model in an always-finite magnetic field
although the field direction can be adjusted. This Hamil-

tonian has an extremely complex quantum phase diagram
because of all the �experimentally� adjustable parameters.
Here we are particularly interested in whether it has topo-
logically interesting phases and when such topological prop-
erties might emerge.

III. VORTEX AND BOND-STATE EXCITATIONS

Below we focus on two particular parameter regimes of
the finite-field Kitaev model of Eq. �6� under the general
condition that the z-bond interaction dominates over the
other interactions. In particular, when Jz
Jx , �Jy�
 �hz� , �hx�,
we identify a vortex state excitation. This case is described in
Sec. III A below. When hz=0 but hx is of the same order as
Jx and Jy, we identify a new excitation that we call the bond
state. We describe this case in Sec. III B. The vortex state is
a known topological excitation in the zero-field Kitaev
model while the bond state is specific to the finite-field Ki-
taev model.

A. Kitaev lattice with dominant z bonds in a weak magnetic
field

We first consider the case when

Jz 
 Jx, �Jy� 
 �hz�, �hx� �8�

and treat V=�i�hz�i
z+hx�i

x� as the perturbation. Using pertur-
bation theory in the Green’s function formalism,9 one can
construct an effective Hamiltonian for the lattice

H� = −
2hz

2

��z
�

z-link
� j

z�k
z −

2hx
2

��x
�

x-link
� j

x�k
x, �9�

where ��z�x� is the excitation energy of the state �i
z�x��g0�,

i.e., the energy difference between states �i
z�x��g0� and �g0�.

Here �g0� is the ground state of the unperturbed Hamiltonian,
i.e., Hamiltonian �6� with the perturbation term V excluded.
Note that the effective Hamiltonian H� only contains contri-
butions from the second-order terms because both the first-
and third-order terms vanish. Including the zeroth-order term
�unperturbed Hamiltonian�, the total Hamiltonian of the sys-
tem can be written as

H = Jx� �
x-link

� j
x�k

x + Jy �
y-link

� j
y�k

y + Jz� �
z-link

� j
z�k

z , �10�

where the effective z and x couplings are

Jz� = Jz −
2hz

2

��z
,

Jx� = Jx −
2hx

2

��x
. �11�

Below we focus on the Abelian excitations. When Jz�

Jx� , �Jy�, the dominant part of the Hamiltonian H is that
along the vertical links

H0 = Jz� �
z-link

� j
z�k

z . �12�

Under H0, the two spins along each z link tend to be aligned
opposite to each other ��↑↓� or �↓↑�� in order to lower their
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energies. Indeed, the highly degenerate ground state �g� of
H0 is an arbitrary vector in the Hilbert subspace spanned by
� i=1

N ���̄�i, where N denotes the total number of z links and
�= ↑ ,↓. Within the ground-state subspace of H0 and up to
fourth order,9 the effective Hamiltonian of the Kitaev lattice
takes the form

Heff = − Jeff�
p

Wp, �13�

where

Jeff =
Jx�

2Jy
2

16Jz�
3 �

Jx
2Jy

2

16Jz
3 ,

Wp = �1
x�2

y�3
z�4

x�5
y�6

z . �14�

Here Wp is the plaquette operator for a given plaquette p �see
Fig. 1�b��. The operator Wp for any plaquette p commutes
with the unperturbed Hamiltonian H0

�H0,Wp� = 0 �15�

so that �H0 ,Heff�=0 as well and the ground states �g�w of Heff
form a subset of the degenerate ground states �g� of H0. It is
straightforward to show that Wp

2�g�= �g� or Wp�g�= � �g�.
Since Jeff0, to minimize the energy of �g�w, we need

Wp�g�w = �g�w. �16�

In other words, the eigenvalues of the Wp operators in the
ground state �g�w are wp=1 for all plaquettes p.

When some plaquettes undergo transformations that lead
to wp=1→−1, the system gets into an excited state. The
lowest-energy excitation corresponds to the generation of a
pair of vortices when wp=1→−1 for two neighboring
plaquettes. In this excitation process, each of the two neigh-
boring plaquettes acquires a phase �, which is equivalent to
the addition of a flux quantum �0 through each plaquette. As
shown in Fig. 2�a�, such an excitation can be generated by
applying either of the following two spin-pair operators on
the ground state �g�w:

�Z̃i� = �̃i
z�g�w, �Ỹi� = �̃i

y�g�w �17�

with

�̃i
z  �i

zIi, �̃i
y  �i

y�i
x. �18�

Here the two operators �i
z ��i

y� and Ii ��i
x� act on the ground

state �g�w at the bottom and top sites of the ith z link, respec-
tively. This pair of vortices, generated by either �̃i

z or �̃i
y, are

topological states with an excitation energy of

�� = 4Jeff �19�

above the ground state. As shown in Refs. 9 and 16, these
excitations exhibit the braiding statistics of Abelian anyons.
The ratio between this excitation gap for the anyons and Jz is

��

Jz

 � JxJy

Jz
2 	2

� 1. �20�

For example, if Jz
10 GHz and both Jx and Jy are one tenth
of Jz, this gap would be about 1 MHz, corresponding to a

temperature of 0.1 mK. This small gap requires an extremely
low experimental temperature for suppressing the thermal
activation of the ground state to the vortex states. Note that a
different perturbative approach30 shows that in the parameter
region Jz��Jx� , �Jy�, the spin-pair operators �̃i

z and �̃i
y gener-

ally create both vortex and fermionic excitations. However,
in the limit of Jz�
Jx� , �Jy�, the dominant excitations are vor-
tex states,30 which is consistent with the conclusion drawn
above.

B. Kitaev lattice with dominant z bonds in a uniform
magnetic field along the x direction

If we stay in the regime where the z-bond couplings are
dominant �Jz
Jx , �Jy�� but place each charge qubit at the
optimal point where ng= 1

2 so that hz=0, a different quantum
phase arises when �hx� is comparable to Jx , �Jy�. In other
words, we now consider the regime

Jz 
 Jx, �Jy�, �hx�, and hz = 0. �21�

Here the zeroth-order Hamiltonian is again the coupling
along the z bonds: H0=Jz�z-link� j

z�k
z �notice that here the cou-

pling strength is Jz, not Jz�� with the same highly degenerate
ground state �g� as discussed in the previous section. To
clarify the low-energy excitation spectrum in this regime, we
again use perturbation theory in the Green’s function formal-
ism to remove the linear terms and derive an effective
Hamiltonian in the ground state sub-Hilbert space of H0. Up
to second order, the effective Hamiltonian takes the form

Heff
�z� = − Keff �

z-link
� j

x�k
x, �22�

where

(a)

zσ

zσ

xσ

xσ
yσ

yσ

(b)

2w

2b1b

1w

FIG. 2. �Color online� �a� Two types of vortex excitations w1

and w2. A pair of vortices are generated along the horizontal direc-
tion for w1 �vertical direction for w2� by the spin-pair operator �̃z

�zI ��̃y �y�x� acting on a z link. �b� Two bond-state excitations
b1 and b2, which are also generated by the spin-pair operators �̃z

and �̃y on a z link.
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Keff =
hx

2

Jz
. �23�

The spin-pair operator Pz=� j
x�k

x at a z bond �again the two
Pauli operators act on the bottom and top nodes of the par-
ticular z bond� commutes with the zeroth-order Hamiltonian
�Pz ,H0�=0 �although it anticommutes with the four plaquette
operators Wp connected to this z bond�. Similar to Wp, the
pair operator Pz also has two eigenvalues pz= �1. Thus the
ground state �g�b of Heff

�z� should satisfy pz=1 for all the z
bonds in the system. In other words

Pz�g�b = �g�b �24�

for all z bonds. Since no two z bonds share a node in the
honeycomb lattice and the lattice is completely covered by
all the z bonds, we can solve the eigenstates of Pz of each z
bond and obtain the ground state of Heff

�z� as

�g�b =
1

2N/2 �
i=1

N

��↑↓�i + �↓↑�i� . �25�

This is a nondegenerate ground state, which forms a simple
subset of the highly degenerate ground states �g� of H0. It is
maximally entangled within each z bond but not entangled at
all between different z bonds. In other words, the two-spin-
correlation function decays to identically zero beyond a z
bond. The lattice is now an ensemble of maximally entangled
“spin” pairs that are completely independent from each other.
This ground state is reminiscent of �and simpler than� the
dimerized valence bond solid state discussed in the context
of spin Hamiltonians.31,32 There valence bond states refer to
a singlet �↑↓−↓↑� for the electron spins, which is dictated by
the Coulomb interaction and Pauli principle between elec-
trons.

When the pair operators �̃i
z and �̃i

y are separately applied
to the ground state at the ith z bond �see Fig. 2�b��, the
excited states

�Z̃i� = �̃i
z�g�b, �Ỹi� = �̃i

y�g�b �26�

are called a bond state—while the pair operators are differ-
ent, the states they generate are only different by an overall
phase because �g�b is a factored state for all z bonds. A bond
state at the ith z bond corresponds to the change in pz=1
→−1 at that particular bond. It is 2Keff above the ground
state in energy. Notice that a bond state is an excitation that
is completely localized to a particular z bond. Furthermore,
bond states are generated by the same pair operators that
generate the vortex excitations although the ground states of
the system are different in these two cases. In contrast to
�g�w, the ground state �g�b is nondegenerate and the bond-
state excitations are very different from the vortex states.
This transition from vortex excitations to bond states occurs
when we vary the parameters of the system �i.e., tuning ng to
1/2 and reduce �e from close to �0 /2 so that hx increases to
the same magnitude as Jx and/or Jy�, during which the topo-
logical property of the system changes.

IV. THE BRAIDING OF EXCITATIONS

A vortex looping around another vortex can produce ei-
ther a sign change or no sign change to the wave function.
The first case is denoted as an e-type vortex looping around
an m-type vortex and the second case corresponds to an
e-type vortex looping around an e-type vortex �see, e.g., Ref.
16 for a more detailed discussion�. This indicates anyonic
statistics between the e and m vortex states. Therefore, braid-
ing, which refers to moving one quasiparticle around an-
other, is an important tool to determine the statistics of the
quasiparticles �in the present case the vortices�. Here we
show an alternative procedure for braiding an excitation with
another, which can be applied to both vortex and bond states.

Let us consider two particular evolutions for the system.
The first evolution Uv contains spin-pair operations �̃i

y

=�i
y�i

x applied to the ground state �g̃� at three successive z
bonds along the vertical path Pv as shown in Fig. 3�a�. Here
�g̃��g�w for the vortex case and �g̃��g�b for the bond-state
case. The second evolution Uh contains spin-pair operations
�̃i

z=�i
zIi applied at four successive z bonds along the hori-

zontal path Ph as shown in Fig. 3�a�. After these two opera-
tions in series, the state of the system is UhUv�g̃�, where

Uh = �̃4
z �̃3

z �̃2
z �̃1

z , Uv = �̃3
y�̃2

y�̃1
y . �27�

Now we turn the evolutions backward by applying Uv
−1 and

Uh
−1 to the system successively so as to fuse1,9 the excitations

(c)

(a)
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zσ4

zσ

4
zσ 1
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zσ3

zσ

3
xσ

2
xσ

2
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1
xσ

1
xσ

1
yσ

1
yσ

2
yσ

2
yσ

3
yσ

vacuum (b)

vU hU

1
vU
− 1

hU
−

vP

vPhP

hP

FIG. 3. �Color online� Schematic of the procedures for braiding
excitations. �a� The operations Uh and Uv for creating excitations,
which are achieved by successively applying spin-pair operators at
z bonds along the horizontal �Ph� and vertical �Pv� paths. Here the
paths Pv and Ph intersect at a z bond. �b� A combined operation
Uh

−1Uv
−1UhUv for both, braiding the excitations created in �a�, and

fusing them to the vacuum. �c� The operations Uh and Uv for cre-
ating excitations, which are also achieved by successively applying
spin-pair operators at z bonds along Ph and Pv but the paths Pv and
Ph do not intersect at a z bond.
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to the vacuum �i.e., the ground state� �see Fig. 3�b��. The
final state of the system is now

�� f� = Uh
−1Uv

−1UhUv�g̃� . �28�

When the paths Pv and Ph intersect at a z bond, such as in the
example given in Fig. 3�a�, where �̃2

y and �̃2
z anticommute,

Uh and Uv anticommute as well: UhUv=−UvUh. The final
state thus becomes

�� f� = − �g̃� . �29�

In other words, a phase flip ei� resulted from the evolutions.
For vortex excitations, this is equivalent to the case of an
e-type vortex looping around an m-type vortex as shown in
Ref. 16. In contrast, when similar operations are applied but
the paths Pv and Ph do not intersect at a z bond �see Fig.
3�c�, for example�, UhUv=UvUh, so that

�� f� = �g̃� �30�

yielding no phase flip in the final state as compared to the
initial state. For vortex excitations, this is equivalent to the
case of an e-type vortex looping around another e-type vor-
tex.

The braiding of excitations, i.e., whether there is or there
is no phase flip, can be revealed by means of Ramsey-type
interference.16,33 To achieve this, one can keep the same Uv
as above but use

Uh = ��̃4
z�1/2��̃3

z�1/2��̃2
z�1/2��̃1

z�1/2, �31�

where

��̃i
z�1/2  ��i

z�1/2Ii, �32�

i.e., each �i
z is replaced by half of the rotation. In the braid-

ing case shown in Fig. 3�a�

�̃2
y��̃2

z�1/2 = i��̃2
z�−1/2�̃2

y �33�

at the crossing point of paths Ph and Pv. Thus

�� f� = Uh
−1Uv

−1UhUv�g̃� = ��̃2
z�−1/2�i��̃2

z�−1/2��g̃� = i��̃2
z�−1�g̃�

= i�̃2
z �g̃� = i�Z̃2� �34�

similar to the case with an e vortex braiding with a superpo-
sition state of an m vortex and the vacuum.16 However, in the
case without braiding �see Fig. 3�c��

�� f� = Uh
−1Uv

−1UhUv�g̃� = �g̃� . �35�

Therefore, the braiding of excitations can be distinguished by

verifying if an excited state �Z̃2� occurs at the crossing point
of paths Ph and Pv.

While the vortex state described by Eq. �13� and the bond
state described by Eq. �22� are very different excitations,
they have similar braiding properties. In the braiding proce-
dure shown above, the system is initially in the vacuum �ei-
ther �g�w or �g�b�; after the braiding operations in Eq. �28�,
the system is fused to the vacuum again but with a sign
change to the ground-state wave function no matter which
ground state the system starts with. In order to distinguish
the difference between the vortex and bond-state excitations,
one needs to focus on the intermediate steps of the braiding

operations. Take Uv in Eq. �27� as an example. When it is
applied to �g�w, the spin-pair operator �̃1

y in it first creates a
pair of e vortices and then the other spin-pair operations �̃2

y

and �̃3
y successively move one vortex downward along the

vertical path Pv. The final state Uv�g�w is also a pair of vor-
tices but the two vortices are separated by three z bonds in
the vertical direction �see Fig. 3�a��. Importantly, this pair of
vortices Uv�g�w is degenerate with the pair of vortices
�̃1

y�g�w. However, in sharp contrast to the vortex case, when
Uv in Eq. �27� is applied to �g�b, each of the spin-pair opera-
tions �̃i

y, i=1,2 ,3 creates a bond state and the final state
Uv�g�b is nondegenerate with the bond state �̃1

y�g�b.

V. IMPLEMENTATION OF QUANTUM ROTATIONS

As indicated in previous sections, single-qubit rotations
are needed to create vortex and bond-state excitations, and to
perform braiding operations. Below we show that these
quantum rotations of individual qubits in the honeycomb lat-
tice can be achieved via electrical and magnetic controls. The
key is to reduce the coupling between a specific qubit and its
neighboring qubits to such a degree that its single-qubit dy-
namics dominates for a period of time.

To generate a �z rotation at a particular charge qubit, we
consider the following approach by controlling both the
magnetic flux through SQUID loops and the local electric
field. Specifically, when the magnetic flux in the SQUID
loop of each charge qubit is set to �e=�0 /2, hx=0, and Jy
=0 so that the honeycomb lattice is now decoupled into a
series of one-dimensional chains. For a charge qubit Ec

EJ��e� thus Ec
Jx. We further assume that Ec
Em so
that Ec
Jz as well. One can now shift the gate voltage for a
period of time � at the ith lattice point far away from the
usual working point ng
 1

2 of the Kitaev lattice so that the
corresponding single-qubit energy �hz
Ec �instead of 
EJ�
is much larger than both Jz and Jx. Such a parameter regime
should be reasonably easy to achieve for a charge qubit. This
operation of shifting ng should yield a local z-type rotation
on the ith qubit

Ri
z��� = exp�− i��hz�/���i

z�  exp�− i��i
z/2� , �36�

where

�hz = hz�ngi� − hz�ng� . �37�

When �2�hz� /�=� �where nging�, Ri
z���=−i�i

z so the
�i

z operation on the ith qubit is given by

�i
z = ei�/2Ri

z��� �38�

while half of the rotation is

��i
z�1/2 = ei�/4Ri

z��/2� . �39�

The corresponding inverse rotations can be achieved by
shifting the gate voltage to ngi�ng.

A �x rotation of a particular charge qubit can be generated
by a similar approach. Specifically, when ng= 1

2 and �e=0,
one has hz=0, hx=−EJ, and Jx=0. Again the honeycomb lat-
tice is separated into a series of one-dimensional chains.
Here we assume that EJ
 �Jy� ,Jz, achievable in this charge-
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qubit system, which allows us to perform a single-qubit ro-
tation driven by EJ. When ng= 1

2 , for a time � we switch off
the flux in the SQUID loop of the ith qubit �the working
point of this Kitaev lattice is usually at 0��e��0 /2�, pro-
ducing a local x-type rotation on the ith qubit

Ri
x��� = exp�i��EJ�/���i

x�  exp�i��i
x/2� , �40�

where

�EJ = EJ −
1

2
EJ��e� . �41�

The �i
x rotation on the ith qubit is

�i
x = e−i�/2Ri

x��� , �42�

where 2�EJ� /�=�. Note that when the flux in the SQUID
loop of the ith qubit is switched off to produce a local x
rotation, the flux in the SQUID loop of the nearest-neighbor
qubit that is connected to the ith qubit via an LC oscillator
should be simultaneously shifted to a value around �0 /2 so
as to keep �Jy� between these two qubits much smaller than
EJ.

With both �i
z and �i

x rotations available for the ith qubit,
the �i

y rotation is given by

�i
y = e−i�/2�i

z�i
x. �43�

Therefore, one can construct all the wanted operations �̃i
z and

�̃i
z for generating both vortex and bond-state excitations by

using the single-qubit rotations �i
z and �i

x.
In order to obtain accurate z- and x-type single-qubit ro-

tations, we assume that Ec and EJ are much larger than the
interqubit coupling. Actually this somewhat stringent condi-
tion can be loosened for realistic systems. As shown in Ref.
34, accurate effective single-qubit rotations can still be
achieved using techniques from nuclear magnetic resonance
when the interqubit coupling is small compared to single-
qubit parameters �instead of much smaller than Ec and EJ�.

VI. DISCUSSION AND CONCLUSION

In this paper, our main objective is to construct an experi-
mentally feasible proposal to emulate the Kitaev model on a
network made of superconducting nanocircuits. To focus on
the topological properties of the system, we choose the limit
of identical qubits and identical coupling strength. Further-
more, we fix the mutual inductances and the capacitances of
the various circuit elements involved. There are basically
two tunable parameters: the gate voltage on the Cooper-pair
boxes �ng� for each charge qubit and the magnetic flux �e
through the SQUID loops connected to the Cooper-pair
boxes. Within the regime where z bonds dominate in inter-
action energy scale �Jz much larger than all other couplings,
including Jx, Jy, hx, and hz�, we have explored two limiting
cases: one with weak effective magnetic fields ��hx� , �hz�
�Jx , �Jy��, the other with the effective field only along the x
direction. We have identified some properties of the relevant
ground states and the low-energy excitations, the vortex and
bond states. However, much more study is needed to com-
pletely clarify the energy spectrum, the phase diagram, and

the dynamics of this superconducting network.
One observation we have made is that the vortex excita-

tions and bond-state excitations can be generated using the
same spin-pair operations, starting from different ground
states ��g�w and �g�b� that depend on the system parameters.
We have also shown that while �g�w is highly entangled, �g�b
is only entangled locally but not globally. This quantum
phase transition requires more extensive studies to identify
the critical point and related critical phenomena, such as how
system entanglement changes near the transition point, and
most importantly how its topological properties change. It
would also be worthwhile to investigate the system spectrum
�from vortex excitation to bond-state excitation� and dynam-
ics during this transition, similar to our study of quantum
phase transitions between Abelian and non-Abelian phases of
the Kitaev model.35 While such studies are generally numeri-
cally intensive, it would help reveal the exotic topological
properties of this many-body model.

With the elementary building blocks given in Fig. 1�a�,
one can construct Kitaev spin models on other types of lat-
tices as well �see, e.g., Refs. 36 and 37�. In particular, it has
been shown that in the absence of a magnetic field, the Ki-
taev model on a decorated honeycomb lattice36 can support
gapped non-Abelian anyons. The quantum analog simulation
of Kitaev models on different lattices using superconducting
circuits should shed light on the novel properties of these
topological systems.

There are two important open issues in the study of build-
ing a superconducting qubit network to emulate a spin lat-
tice. One is the role played by the decoherence of individual
qubits and the other is the measurement of correlated states
on a qubit network. It is well known that charge qubits suffer
from fast decoherence. However, it is not clear how decoher-
ence would affect the topological excitations. Indeed, the
faster decoherence of charge qubits may allow the system to
reach its ground state faster. Furthermore, topological exci-
tations are supposed to be robust against local fluctuations so
that decoherence in individual nodes may not easily destroy
excitations such as the vortex state. Quantum measurement is
another open issue in the study of collective states, whether
ground states or low-energy excitations, of a qubit lattice.
While single-qubit measurement of superconducting qubits
can now be done with quite high fidelity38,39 and two-qubit
correlation measurements have been done,40 measuring mul-
tiqubit correlations requires further theoretical and experi-
mental studies. We hope that our proposal acts as another
incentive for researchers in the field of superconducting qu-
bits to look for ways to perform measurements that can re-
veal quantum correlations.

In conclusion, we have proposed an approach to emulate
the Kitaev model on a honeycomb lattice using supercon-
ducting quantum circuits and shown that the low-energy dy-
namics of the superconducting network should follow a
finite-field Kitaev model Hamiltonian. We analytically study
two particular limits for system parameters, explore their
ground-state characteristics, and identify their low-energy
excitations as vortex states and bond states. We further show
that both vortex- and bond-state excitations can be generated
using the same spin-pair operations, starting from different
ground states. Our proposal points to an experimentally re-
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alizable many-body system for the quantum emulation of the
Kitaev honeycomb spin model.
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APPENDIX: DERIVATION OF THE HAMILTONIAN

Below we derive the Hamiltonian of the honeycomb lat-
tice constructed with superconducting quantum circuits as
described in Fig. 1. For simplicity all charge qubits have the
same parameters. Furthermore, the mutual inductances M,
the LC oscillators, and the mutual capacitances Cm for the x,
y, and z couplings are also identical, respectively. Since the
self-inductance of the SQUID loop in each charge qubit is
small, the voltage drop across this loop inductance can be
ignored as compared with the voltage drops across the Jo-
sephson junctions in the loop. Also, we assume that the ca-
pacitance of the LC oscillator is much larger than the gate
capacitance and the mutual capacitance, i.e., C
Cg ,Cm. The
total electrical energy of the qubit lattice can be written as
�the 1-2 ad 1-3 couplings are magnetic and will be discussed
later�

T = �
z-link

T14, �A1�

where the summation is over all the z links. the term T14
contains the charging energies of the nodes on either end of
a z link in the building block, together with the coupling
across the link. It is given by

T14 = �
i=1,4

1

2
C���0

2�
	2��̇i

2 + 2�2�

�0
	 ȧi + CgVgi

C�

�̇i�
− Cm��0

2�
	2

�̇1�̇4 +
1

2
C�̇L

2 , �A2�

where

ȧ1 = �Cg + Cm��̇L − Cm�̇L�,

ȧ4 = �Cg + Cm��̇L� − Cm�̇L, �A3�

and C�=2CJ+Cg+Cm. Here ��0 /2���̇iVJi is the average
voltage drop across the two Josephson junctions of the ith

charge qubit and �̇LVL ��̇L�VL�� is the voltage drop
across the LC oscillator connected to qubit 1 �4�.

The Langrangian of the qubit lattice is

L = T − U , �A4�

where U is the total potential energy of the system, including
Josephson coupling energy and magnetic energy in all the
inductors in the network. To derive the system Hamiltonian,
we choose �i and �L as the canonical coordinates. The cor-
responding canonical momenta are thus

pi =
�L

��̇i

,

pL =
�L

��̇L

. �A5�

More explicitly

p1 = C���0

2�
	2

�̇1 − Cm��0

2�
	2

�̇4 + ��0

2�
	�ȧ1 + CgVg1� ,

p4 = C���0

2�
	2

�̇4 − Cm��0

2�
	2

�̇1 + ��0

2�
	�ȧ4 + CgVg4� ,

pL = C�̇L − Cm��0

2�
	��̇4 + �̇5� + �Cg + Cm���0

2�
	��̇1 + �̇2� ,

�A6�

where the subscript 5 denotes the qubit which is connected to
qubit 2 via the mutual capacitance Cm. In the limit of C


Cg ,Cm, pL�C�̇L. Thus one has

�̇1 =
C�X1 + CmX4

��0/2��2�
,

�̇4 =
CmX1 + C�X4

��0/2��2�
,

�̇L =
pL

C
�A7�

with �=C�
2 −Cm

2 , and

X1 = p1 − ��0

2�
	�ȧ1 + CgVg1� ,

X4 = p4 − ��0

2�
	�ȧ4 + CgVg4� . �A8�

The Hamiltonian of the honeycomb lattice is thus

H = �
z-link

�p1�̇1 + p4�̇4 + pL�̇L� − L = �
z-link

T14 + U ,

�A9�

where
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T14 =
C�X1

2

2��0

2�
	2

�

+
C�X4

2

2��0

2�
	2

�

+
CmX1X4

��0

2�
	2

�

+
pL

2

2C
.

�A10�

We now perform two gauge transformations so that p1 and p4
become

p1 − ��0

2�
	ȧ1 = p̃1,

p4 − ��0

2�
	ȧ4 = p̃4. �A11�

After these gauge transformations, �̇1 and �̇4 become

�̇1 −
C�

�
�2�

�0
	ȧ1 = �̇̃1,

�̇4 −
C�

�
�2�

�0
	ȧ4 = �̇̃4 �A12�

and T14 can be expressed as

T14 =
1

2
C�K2�p̃1,Vg1� +

1

2
C�K2�p̃4,Vg4�

+ CmK�p̃1,Vg1�K�p̃4,Vg4� +
pL

2

2C
, �A13�

where

K�p̃i,Vgi� =

p̃i − ��0

2�
	CgVgi

��0

2�
	�1/2

. �A14�

Based on the building blocks, instead of the z links, the
Hamiltonian of the qubit lattice can now be rewritten as

H = �
BB

TBB + U . �A15�

Here the summation is over all the building blocks and TBB,
for a building block shown in Fig. 1�a�, is given by

TBB =
1

2
C�K2�p̃1,Vg1� +

1

6
C�K2�p̃2,Vg2� +

1

6
C�K2�p̃3,Vg3�

+
1

6
C�K2�p̃4,Vg4� + CmK�p̃1,Vg1�K�p̃4,Vg4� +

pL
2

2C
,

�A16�

where the prefactor 1
6 in the second, third, and fourth terms

�instead of 1
2 as in the first term� is due to the lattice geom-

etry that each of the qubits 2–4 is shared by three building
blocks.

The potential energy of the system consists of the Joseph-
son energy −EJi��iL�cos �i of each qubit, the magnetic en-
ergy �L

2 /2L of each LC oscillator, the self-inductance energy
1
2LqIi

2 of each qubit, and the mutual-inductance energy

−MIiIj between every pair of nearest-neighbor qubits
coupled via M. In particular, the Josephson coupling energy
is

EJi��iL� = 2EJ cos���iL

�0
	 . �A17�

The supercurrent in the SQUID loop of the ith qubit is

Ii = − Ic sin���iL

�0
	cos �i. �A18�

Here Ic=2�EJ /�0 is the critical current of the Josephson
junction, �0=h /2e is the flux quantum, Lq is the SQUID
loop inductance of each qubit, and the total magnetic flux
�iL in the loop of qubit i is given by

�iL = �i + LqIi − MIj �A19�

with �i the externally applied magnetic flux in the loop of
qubit i, and Ij is the supercurrent in the loop of qubit j that is
coupled to qubit i via M. Based on the building blocks, the
potential energy U can been written as

U = �
BB

UBB �A20�

with

UBB = − EJ1��1L�cos �1 −
1

3
EJ2��2L�cos �2

−
1

3
EJ3��3L�cos �3 −

1

3
EJ4��4L�cos �4 +

�L
2

2L
+

1

2
LqI1

2

+
1

6
LqI2

2 +
1

6
LqI3

2 +
1

6
LqI4

2 − MI1I2, �A21�

where the prefactors 1
3 and 1

6 are again due to the lattice
geometry that each of the qubits 2–4 is shared by three build-
ing blocks.

Usually, the self-inductance Lq and the mutual inductance
are much smaller than the Josephson inductance of each
junction in the qubit loop. Thus, one can expand Eqs. �A17�
and �A18� around ��i /�0 and keep the leading terms, as in
Ref. 27. The potential energy is then reduced to

UBB = − EJ1��1�cos �1 −
1

3
EJ2��2�cos �2 −

1

3
EJ3��3�cos �3

−
1

3
EJ4��4�cos �4 +

�L
2

2L
+ MI1I2, �A22�

where the supercurrents Ii are replaced by

Ii = − Ic sin���i

�0
	cos �i. �A23�

In Eq. �A22�, we have also omitted constant terms which are
reduced to identity operators in the qubit subspace because
these terms only shift the zero energy of the system.

Using the gauge transformation
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�i = �̃i +
C�

�
�2�

�0
	ai, �A24�

when the fluctuations of ai are weak so that20

C�

�
��a2� � �0 �A25�

one has

cos �i � cos �̃i − �C�

�
�2�

�0
	ai�sin �̃i. �A26�

The potential energy UBB is given by

UBB = − EJ1��1�cos �̃1 −
1

3
EJ2��2�cos �̃2 −

1

3
EJ3��3�cos �̃3

−
1

3
EJ4��4�cos �̃4 +

1

2L
��L + �2�L

�0
	�Y1 + Y2��2

− �2�2L

�0
2 	�Y1 + Y2�2 + MI1I2 �A27�

with

Yi =
C��Cg + Cm�

�
EJi��i�sin �̃i. �A28�

Here the terms modifying the Josephson coupling energy are
ignored because they are much smaller than the Josephson
coupling energy.

The term pL
2 /2C in Eq. �A16� is the kinetic energy of the

LC oscillator and the term 1
2L ��L+ � 2�L

�0
��Y1+Y2��2 in Eq.

�A27� is the potential energy of the LC oscillator. When the
frequency of the LC oscillator is much larger than the qubit
frequency, the LC oscillator remains in the ground state so
that these terms can be removed from the Hamiltonian.20

Thus, the Hamiltonian of the system can finally be written as

H = �
i

Hi + �
x-link

Kx�j,k� + �
y-link

Ky�j,k� + �
z-link

Kz�j,k� .

�A29�

Here

Hi =
C�

2
K2�p̃i,Vgi� − EJi��i�cos �̃i �A30�

with K�p̃i ,Vgi� given in Eq. �A14�. For the building block
shown in Fig. 1�a�, the three nearest-neighbor couplings Kx,
Ky, and Kz are given by

Kx�1,2� = MI1I2,

Ky�1,3� = − 4�EJ1��1�EJ3��3�sin �̃1 sin �̃3,

Ky�1,4� = CmK�p̃1,Vg1�K�p̃4,Vg4� , �A31�

where

� = L��C��Cg + Cm�
��0

�2

. �A32�

In Eq. �A29�, the terms with sin2 �̃i are also removed be-
cause they are reduced to the identity operators in the qubit
subspace. The canonical coordinates �̃i and momenta p̃i are
conjugate variables, and they obey the commutation relation

��̃ j, p̃k� = i�� jk, �A33�

where p̃j =−i�� /��̃ j. Defining ñi p̃i /�, one obtains Eq. �1�
by replacing ñi and �̃i in Eq. �A29� with ni and �i.

Below we give two examples of parameter regimes where
the physics we discussed in this paper can be realized. For a
quantum circuit with two charge qubits coupled by a mutual
capacitance, the typical parameters are CJ�500 aF, Cm
�30 aF, Cg�0.5 aF, and EJ�15 GHz �see, e.g., Ref. 22�.
Here we choose Cm=200 aF so as to have a stronger capaci-
tive coupling, CJ�400 aF, and Cg�0.5 aF. These param-
eters give Ec�80 GHz and Jz�8 GHz. We also choose
EJ=20 GHz and apply a magnetic flux �e in each qubit loop
such that EJ��e��4 GHz. This gives �hx��2 GHz. Because
hz can be independently controlled by the gate voltage, it is
easy to obtain �hz���hx�. Finally, we choose M �6.6 nH and
the parameters of the LC oscillator are chosen as L
�3.8 �H and C=4Cm=800 aF. We then have Jx��Jy�
�4 GHz. The parameter regime given in Sec. III A �i.e.,
Jz
Jx, �Jy�
 �hz� , �hx�� can thus be approximately achieved.
Also, Jz is much smaller than the frequency of the LC oscil-
lator �=1 /�LC�20 GHz so that the lattice dynamics can
be reasonably described by the Kitaev model in this regime.
Note that Ec�80 GHz and EJ=20 GHz, which are much
larger than Jz. Thus, the local quantum rotations �i

z and �i
x

for generating topological excitations can also be achieved.
Though Ec and EJ are much larger than or comparable to the
frequency of the LC oscillator, the local quantum rotations
are implemented by changing the external fields applied lo-
cally on the qubits involved. It is expected that the total
Kitaev lattice will not be affected so much by these local
operations because the topological properties should be ro-
bust against local fluctuations.

For the parameter regime of Sec. III B, we choose L
�2.5 �H, M �4.9 nH, and ng= 1

2 . The applied magnetic
flux in each qubit loop is such that EJ��e�=3 GHz. Other
system parameters are chosen to be the same as those in the
case above. Thus, we have Jz�8 GHz, Jx��Jy���hx�
�3 GHz, and �hz�=0. These parameters are much smaller
than the frequency of the LC oscillator ��20 GHz, allow-
ing us to consider only the ground state of the oscillator.
Thus the Kitaev lattice can also be realized in this regime.
Moreover, because Ec�80 GHz and EJ=20 GHz, which
are much larger than Jz, the local quantum rotations �i

z and
�i

x at the ith site can be implemented.
With the parameters considered here, the vortex excitation

energy would be on the order of 0.1 GHz or larger, corre-
sponding to an experimental temperature of 10 mK or higher,
already accessible by currently available dilution refrigera-
tors.
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