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We investigate the electronic band structure of an undoped graphene armchair nanoribbon. We demonstrate
that such nanoribbon always has a gap in its electronic spectrum. Even if the parameters of the noninteracting
Hamiltonian are fine tuned to a point where single-electron calculations predict a metallic dispersion, the
system becomes unstable toward the spontaneous deformation of the carbon-carbon bonds dangling at the
edges of the nanoribbon. This deformation produces a spectral gap. However, to directly observe this instability
it is necessary to have a precise control over the parameters of the system, which is rarely possible in practice.
As a result, the nanoribbon’s Hamiltonian deviates from the instability point. This deviation plays the role of
an effective external field biasing the instability in a particular direction. Since the radicals passivating the edge
affect the dangling bonds, one may vary this field to some extent by choosing different radicals for passivation.
Unfortunately, this approach lacks the accuracy required for a thorough cancellation of the effective field.
Disordering the effective field is a more convenient tool of controlling the electronic properties. Such disorder
can be introduced through random substitution of the radicals passivating the edges by different radicals. We
show that disorder could tune a nanoribbon of finite length back to the gapless regime. This would significantly
influence the electronic properties of the system. Specifically, we show that the electrical transport through a
nanoribbon is strongly affected by edge disorder.

DOI: 10.1103/PhysRevB.79.125420 PACS number�s�: 73.22.�f, 71.20.Tx

I. INTRODUCTION

Graphene attracts considerable attention due to its unusual
electronic properties, including: large mean-free path, “rela-
tivistic” dispersion of the low-lying electron states, and “val-
ley” degeneracy.1 These remarkable features suggest that
some day graphene mesoscopic structures might revolution-
ize nanoscience. Thus, a substantial amount of effort has
been invested investigating graphene devices, such as quan-
tum dots,2 bilayer structures,3 and nanoribbons.4

Studying the physics of nanoribbons, a certain discrep-
ancy between results of first-principles calculations,5,6

experiments,7,8 and single-electron approximations9–12 was
stumbled upon: whereas the single-electron approximation
predicts that, depending on its width, an armchair nanorib-
bon could be either semiconducting or metallic, both experi-
ments and first-principles calculations suggest that it is al-
ways semiconducting: a nanoribbon of any width W has gap
� at the Fermi level, and ��1 /W.

Three different mechanisms are proposed to explain this
disagreement. According to the first mechanism, the gap is
due to electron-electron interactions.13 At zero doping the
interaction induces a charge gap. The physics here is similar
to the Mott transition in the Hubbard model at half filling. If
the Coulomb coupling constant g is large �g� t, where t is
the carbon-carbon hopping amplitude�, the gap scales as g. If
g is small, the gap vanishes faster than g. Since g�1 /W,
such mechanism is consistent with the observed scaling �
�1 /W for small W only. For large W the gap decays faster
than 1 /W.

Another way to explain the gap is outlined in Ref. 5,
where first-principles computations have shown that the

length of the carbon-carbon bonds at the hydrogen-
passivated edges is shorter than the length of the bonds in the
bulk. Due to this, the hopping amplitude across the bonds
dangling from the nanoribbon edge �tedge� differs from t,

tedge = t + �tch, �1�

�tch � 0.1t , �2�

see Fig. 1, where the short bonds are shown in bold. The
subscript “ch” stands for “chemical.” Because of �tch, the
nanoribbon’s Hamiltonian acquires an additional term. This
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FIG. 1. A schematic of a graphene sheet, with one edge passi-
vated by hydrogen. Deformed bonds are shown by bold lines, atoms
of carbon and hydrogen are represented by the symbols “C” and
“H.” The vectors �1,2,3 connect nearest neighbors on the graphene
lattice. The vectors a1,2 are the primitive lattice vectors. The dashed
line rhombus is the graphene unit cell.
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term modifies the scattering off the nanoribbon edge and
opens a gap in the electronic spectrum. Assuming that �tch
depends mainly on the chemical properties of the edge �e.g.,
the nature of the passivating radical or the absence thereof�
and insensitive to the nanoribbon width W, one can demon-
strate that the effective strength of this coupling is inversely
proportional to W. Thus, the relation ��1 /W is recovered.

The third explanation for the opening of the gap was pro-
posed in Refs. 14–16. According to these references, the gap
may be explained, if, besides the nearest-neighbor, one adds
longer-range hopping terms to the graphene Hamiltonian.

The third-nearest-neighbor hopping term affects the size
of the gap and introduces two modifications to the nanorib-
bon Hamiltonian. It slightly alters the electron propagation in
the bulk. This detail, however, is unimportant for us. More
significant, the third-nearest-neighbor hopping brings extra
edge scattering, characterized by a constant t3. The latter
interferes with the scattering caused by the deformed bonds.
As a result, the constant for total edge scattering is a sum,

�t = �tch + t3. �3�

The spectral gap is proportional to ��t�.
In addition to these mechanisms, other ways to open the

gap might be present as well. Which mechanism dominates
depends on a variety of factors, such as electrostatic screen-
ing by the gate electrode, mechanical forces applied to the
nanoribbon,17 and edge passivation.

A. Summary of our results

Equation �3� suggests that one could, at least in principle,
fine tune the Hamiltonian of the nanoribbon to the point,
where the total edge scattering vanishes completely: �tch
=−t3. �This may be achieved through a careful choice of the
radicals passivating the edges.� At such a point the single-
electron calculations predict that the gap closes, and the na-
noribbon becomes metallic. However, this result is incorrect.
We will show that the metallic state of the armchair nanor-
ibbon is unstable. Specifically, we prove the following: near
the point where total scattering off the boundary vanishes
��t=0� the total energy of the nanoribbon becomes a de-
creasing function of ��t�. As a result, the system would try to
steer away from �t=0 point by changing either �tch �by de-
forming the dangling bonds more �or less�� or t3 �by deform-
ing all bonds of the nanoribbon� or by inducing some other
type of deformation to create a gap-opening scattering off the
nanoribbon’s edge.

To understand the physics behind this, it is convenient to
describe such deformation using a real one-component �Ising
type� order parameter �t. At the mean-field level we can state
that the elastic energy of the deformed bonds is

�b � ��t�2 � 0. �4�

This expression assumes that the single-particle Hamiltonian
is fine tuned to the metallic dispersion point: the elastic en-
ergy is the lowest when �t=0.

In addition to the elastic energy, the energy of the con-
ducting electrons has to be accounted for. It is given by

�el � �2 ln��/t� � 0. �5�

Since ����t�, the total energy, �b+�el, always has a mini-
mum at not zero ��t�.

In practice, this instability has little chance to be observed
directly. Indeed, it is a challenging job to adjust the system to
guarantee that �t=0: one has to make a delicate selection of
the radical for edge passivation to ensure this condition. For
a generic radical �t�0. Within the analogy between our na-
noribbon and the Ising model, we can say that our phase
transition is biased by external field coupled to the order
parameter. We will refer to this as the “edge field.” By se-
lecting different passivating radicals we can vary the edge
field. This field enters into the mean-field energy as a term
f�t �see Table I�.

Since it is difficult to switch the edge field off, our system
is always away from the critical regime. Yet, even a system
with a strong edge field may be tuned to the gapless state by
disordering this field. Therefore, the edge disorder may be
used as a tool to control the spectral properties of nanorib-
bons.

Disorder can be introduced by passivating the edges with
radicals of two different types, randomly distributed along
the length of the nanoribbon. The hopping amplitude at the
edge tedge would become a function of the coordinate along
the ribbon,

tedge�x� = t + �tch + �tdis�x� , �6�

where �tch is independent of x, while �tdis�x� is the disor-
dered part. Consequently, the total scattering constant ac-
quires the disordered part as well,

�t�x� = �t + �tdis�x� , �7�

�t = �tch + t3. �8�

In such system the electronic spectrum is very sensitive to
the relative strengths of �t and �tdis; when the disorder is
weak, the spectrum has a �pseudo�gap due to a nonzero �t
term; when �t=0, the pseudogap closes, and the nanoribbon
is in the disorder-dominated regime.

The crossover between these two regimes can be observed
with the help of transport measurements. In a nanoribbon,
whose length L is thermodynamically large, the conductance
vanishes exponentially in both regimes: when there is no
disorder, the finite gap removes the density of states from the
Fermi level; when there is disorder, the wave functions are
localized. Thus, for very long nanoribbons the conductance
is suppressed regardless of the disorder strength.

TABLE I. Analogy between the Ising model and the nanoribbon
of graphene.

Ising model Nanoribbon

Order Magnetization Bond deformation u,

parameter S u��t

External field Magnetic field H “Edge field” f

Energy aS2+bS4−HS au2 ln u+bu2− fu
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The situation is different for a mesoscopic sample. Note
that the localization is a weaker phenomenon than the gap
opening in the sense that the inverse of the localization
length lloc

−1 is the second order in the disorder strength,

lloc
−1 = O��tdis

2 � , �9�

while the inverse of the length scale,

lgap
−1 � �/vF, �10�

characterizing the gap size, is linear in �t,

lgap
−1 = O���t�� . �11�

That is, a longer nanoribbon is required to observe a well-
developed localization. Therefore, it is possible to choose L
sufficiently short to have no localization features at any edge
disorder, and yet long enough to observe the spectral gap
when the disorder is low. Thus, at weak edge disorder, the
low-temperature conductance of the sample is exponentially
suppressed due to the gap; otherwise, the conductance is fi-
nite down to the lowest temperatures. Therefore, the disorder
effectively closes the gap. Thus, we find that increasing dis-
order in graphene can increase its conductivity. This counter-
intuitive result is consistent with other works �e.g., Ref. 18�
finding an increase in conductivity with disorder.

This paper is organized as follows. In Sec. II we derive
the model for a nanoribbon with deformed edges. The insta-
bility of the nanoribbon is discussed in Sec. III. In Sec. IV
we investigate the effect of disorder on the transport proper-
ties of the nanoribbon. Section V presents the conclusions.

II. MODEL

In this section we will obtain the Hamiltonian for a
graphene nanoribbon with deformed edge bonds. Our deri-
vation relies on basic facts of the graphene physics, which
are discussed in Ref. 1. We will not generalize our model to
include longer-range hopping. The interested reader is re-
ferred to Refs. 15 and 16, where these effects are studied.

A. Tight-binding model for graphene

For completeness, in this section we quickly rederive ba-
sic single-electron properties of a graphene sheet. This gives
us an opportunity to introduce notation we will need below.

It is common to describe a graphene sample in terms of a
tight-binding model on a honeycomb lattice. Such lattice can
be split into two sublattices, denoted by A and B.

The Hamiltonian of a graphene sheet is given by

H = − t�
R

�
i=1,2,3

cR
† cR+�i

+ H.c., �12�

where R runs over sublattice A. The vectors �i �i=1,2 ,3�
connect the nearest neighbors. These are �see Fig. 1�

�1 = a0�− 1,0� , �13�

�2 = a0�1/2,�3/2� �14�

�3 = a0�1/2,− �3/2� . �15�

The symbol a0 denotes the carbon-carbon bond length,
which is about 1.4 Å.

The corresponding Schrödinger equation can be written as

	
R
A = − t
R+�1

B − t �
i=1,2


R+�1+ai

B , �16�

	
R+�1

B = − t
R
A − t �

i=1,2

R−ai

A , �17�

where 
R
A �
R+�1

B � denotes the wave-function value at the site
R �at the site R+�1� of sublattice A �sublattice B�. The
primitive vectors of the honeycomb lattice are

a1 = a0�3/2,�3/2� , �18�

a2 = a0�3/2,− �3/2� . �19�

They connect nearest neighbors on the same sublattice.
Since the primitive cell contains two atoms, it is conve-

nient to define a two-component �spinor� wave function,

�R = 	 
R
A


R+�1

B 
 . �20�

With this notation the action of H on spinor �k can be ex-
pressed as

H�k = 	 0 − tk

− tk
� 0


�k, �21�

tk = t�1 + 2 exp	− i
3kxa0

2

cos	�3

2
kya0
� . �22�

For every k there are two eigenstates,

�k� = 	ei�k

1

 , �23�

exp�i�k� =
tk

�tk�
, �24�

with the eigenvalues,

	k� = � �tk� = � t�1 + 4f�k� , �25�

f�k� = cos	3

2
kxa0
cos	�3

2
kya0
 + cos2	�3

2
kya0
 .

�26�

The states with negative �positive� energy are filled �empty�
at T=0.

The quantity 	k vanishes at six points within the
Brillouin zone �see Fig. 2�: (0, �4� / �3�3a0�) and
(�2� / �3a0� , �2� / �3�3a0�). These are the locations of the
famous Dirac cones of graphene.

These six cones can be split into two equivalence classes:
the locations of any two cones inside the same equivalence
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class differ by a reciprocal-lattice vector. Thus, we do not
need all six of them. Two inequivalent cones are sufficient,

cone K: kK = „2�/�3a0�,2�/�3�3a0�…; �27�

cone K�: kK� = „0,4�/�3�3a0�… . �28�

B. Nanoribbon spectrum

Consider now the electron states of the armchair nanorib-
bon �see Fig. 3�. Such nanoribbon is defined by the condition

0�y�W. The width of the nanoribbon W is a multiple of
�3a0 /2,

W =
�3a0

2
M , �29�

where M is an integer.
The Schrödinger equation for the edge sites differs from

Eqs. �16� and �17�. For sites on the upper edge �y=W� we
can write

	
R
A = − t
R+�1

B − t
R+�1+a2

B , �30�

	
R+�1

B = − t
R
A − t
R−a1

A . �31�

Note the absence of the summation over the lattice vectors in
the right-hand side of these equations. This boundary condi-
tion is called “free.” It can be easily generalized for the lower
edge.

An armchair nanoribbon is invariant under a shift over
3a0 along the x axis. Thus, a 3a0 long nanoribbon segment
can be thought of as a nanoribbon unit cell. There are
�M +1� graphene unit cells in a nanoribbon unit cell. The
nanoribbon Brillouin zone is

−
�

3a0
� kx �

�

3a0
. �32�

Now we assume that all the carbon-carbon bonds of our
system have the same hopping amplitude t �that is, the de-
formation of the edge bonds is absent�. The wave function
�R satisfies the free boundary conditions Eqs. �30� and �31�
at R= �x ,W� and similar conditions at R= �x ,0�. It is not
convenient, however, to work with such boundary conditions
directly. Fortunately, if we add an additional row of lattice
sites15 at each edge and demand that the wave function van-
ishes at these auxiliary sites �see Fig. 3�, then the wave func-
tion at the real edge sites satisfies the free boundary condi-
tion. In other words, our free boundary-condition problem
for a nanoribbon of width W is equivalent to the zero
boundary-condition problem for a nanoribbon of width �W
+�3a0�, Ref. 15. Thus, we want

�R�y=−�3a0/2 = �R�y=W+�3a0/2 = 0. �33�

The eigenfunction of the Hamiltonian H �Eq. �12�� satisfying
Eq. �33� can be written as follows:

�R� = �c1�kx,ky�e−ikyy + c2�kx,−ky�eikyy�e−ikxx, �34�

where c1,2 are complex coefficients. Note that this eigenfunc-
tion has a well-defined value of the momentum kx along the
x axis, but not of the momentum ky along the y axis, since
our system has no translational invariance in the y direction.

The values of ky and c1,2 in Eq. �34� must be chosen to
satisfy Eq. �33�. Since the spinor �k� remains the same
when the sign of ky changes, we derive

sin�ky�W + �3a0�� = 0, �35�

c1 = − exp�− i�3kya0�c2. �36�

We then obtain the following quantization condition:

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
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K’

K

FIG. 2. Shaded hexagon schematically shows the Brillouin zone
of graphene. The Dirac cones are located at the corners of the zone.
In an armchair nanoribbon the condition Eq. �37� imposes the quan-
tization of ky. This splits the whole spectrum into a finite number of
1D branches. A branch is represented by a horizontal line. Gapless
branches �solid lines� pass through Dirac cones whereas branches
with a gap �broken lines� do not. A given branch may be repre-
sented by more than one line on this figure �see discussion before
Eq. �43��.
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FIG. 3. A segment of an armchair nanoribbon of width W. The
auxiliary sites at the edges �where the wave function must vanish�
are shown by the hatched circles. The nanoribbon unit cell is en-
closed inside the dotted line. The deformed bonds at the edges are
shown in bold.
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ky =
2�n

�3�M + 2�a0

, �37�

where n is an integer. Thus, the nanoribbon spectrum 	n�kx�
consists of a set of one-dimensional �1D� branches labeled
by an integer n.

Using the above results it is possible to construct explic-
itly the nanoribbon eigenfunction. However, for our purposes
it is more convenient to define an effective Hamiltonian for a
given branch. Let us look for a nanoribbon Hamiltonian
eigenfunction in the form

�R = �n�x�sin� 2�n
�3�M + 2�a0

	y +
�3a0

2

� , �38�

where the spinor ��x� is defined as

�n�x� = 	 
n
A�x�


n
B�x − a0�


 . �39�

In this equation x=3a0m /2, and m is an integer.
Substituting the expression for �n into the Schrödinger

Eqs. �16� and �17�, we obtain

	�n�x� = 	 0 − t

− t 0

�n�x� + 2 cos	 �n

M + 2

�	0 − t

0 0

�n�x + 3a0/2� + 	 0 0

− t 0

�n�x − 3a0/2�� . �40�

In k space this equation has the form 	�n=H�n��n, where
the effective Hamiltonian for branch n is

H�n� = 	 0 − tkxn

− tkxn
� 0


 , �41�

tkxn = t�1 + 2 cos	 �n

M + 2

exp	− i

3

2
kxa0
� . �42�

This Hamiltonian possesses accidental symmetry: the nanor-
ibbon remains unchanged under a shift by 3a0 along the x
axis, yet the effective Hamiltonian H�n� is invariant under a
shift by 3a0 /2. That is, the effective symmetry of the Hamil-
tonian is higher than the geometric symmetry of the under-
lying system. This symmetry is destroyed when the edge
bonds are deformed. However, since in this paper we are
interested in the low-energy properties of the system, this
peculiarity will play no role in what follows.

Within our labeling scheme the same branch may appear
under different values of index n. Obviously, n and −n cor-
respond to the same branch. Furthermore, if n�0, n��0,
and n=−n� mod�M +2�, both n and n� define the same
branch. This means that there are �M +1� independent
branches,

0 � n � M + 2. �43�

This is precisely the number of graphene unit cells in a na-
noribbon unit cell. The Hamiltonian of the nanoribbon is the
direct sum of the H�n�’s: H=�nH�n�.

The dispersion associated with a specific branch is given
by Eq. �25�, where ky is fixed by Eq. �37�. In other words, a
branch samples the function 	k along the line ky =const.

Let us now find out under which circumstances the gap-
less branches appear. Branch n �n satisfies Eq. �43�� is gap-
less if the complex equation �a system of two real equations�
tkx,n=0 has a root satisfying Eq. �32�.

Solving this system of trigonometric equations one can
prove that a zero eigenvalue at kx=0 appears when
cos��n / �M +2��=−1 /2. The latter condition is fulfilled if the

argument of the cosine is 2� /3. This is possible provided
that n=n0, where

n0 =
2�M + 2�

3
, �44�

and n0 is an integer. In other words, the gapless branch is
present only when �M +2� is divisible by 3. This agrees with
the conclusions of Ref. 12, where the single-electron calcu-
lations for a nanoribbon with no edge deformation were per-
formed.

The effective Hamiltonian for the gapless branch is

H0 = H�n0� = 	 0 − tkx

− tkx

� 0

 , �45�

tkx
= t�1 − exp	− i

3kxa0

2

� , �46�

	kx� = � 2tsin	3

4
kxa0
 . �47�

The gapless branch is characterized by ky =4� / �3�3a0�.
Since k= (0,4� / �3�3a0�) is the location of the cone K� �see
Eq. �28��, one can say that the gapless branch is found in the
nanoribbon spectrum only when the quantization condition
Eq. �37� allows for existence of the branch passing through
the cone K�.

III. SPONTANEOUS GENERATION OF THE GAP

In this section we show that the electronic branch, which
appears to be gapless according to the calculations reported
above, is, in fact, unstable toward the spontaneous opening
of the gap. We prove that the edge bond deformation is one
possible instability leading to the gap generation.

A. Modification of the Hamiltonian due to edge deformation

To establish such an instability we need to calculate the
ground-state energy of the nanoribbon with edge bonds de-
formed as shown in Fig. 1.
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To achieve this aim we first determine how the edge de-
formation affects the Hamiltonian of the gapless branch. We
denote by �H=�Hl+�Hh the contribution to the Hamiltonian
due to edge deformation. The subscript “l” �“h”� corresponds
to a bond deformation at the lower �higher� edge of the na-
noribbon �see Fig. 3�.

The matrix element of �Hl between two states is equal to

����Hl��� = − �tch�
m

�Rm

A�
Rm

B + c.c. �48�

The summation in this formula runs over the deformed bonds
at the lower edge: Rm= �3a0m ,0�.

Substituting in Eq. �48� wave functions consistent with
Eq. �33�, i.e.,

�R = �e−ikxx sin� 2�n0

�3�M + 2�a0
	y +

�3a0

2

�

= �e−ikxx sin	 4�y

3�3a0

+
2�

3

 , �49�

we find

����Hl��� = − �tch�
†	0 1

1 0

� sin2�2�/3�

��
m

exp�− 3ia0�kx − kx��m� . �50�

Therefore, for kx, kx� satisfying Eq. �32�, the Hamiltonian �Hl
equals to

�Hl = −
3�tch

8M + 8
	0 1

1 0

�kx,kx�

, �51�

where the factor of 2�M +1� in the denominator comes from
the wave-function normalization.

It is trivial to demonstrate that �Hl=�Hh. Superficially,
this identity appears to be incorrect: clearly, there should be
a difference between the lower and higher edges at the level
of the Hamiltonian. However, we must remember that Eq.
�51� is not the full Hamiltonian �Hl �which is indeed differ-
ent from �Hh�, but rather its projection on the subspace
spanned by a specific branch. These projections cannot dis-
criminate between the lower and the higher edge.

The total edge Hamiltonian �H is equal to twice �Hl.
Thus, the Hamiltonian for a nanoribbon with the de-

formed edge bonds,

H0 + �H = 	 0 − �teff − tkx

− �teff − tkx

� 0

 , �52�

�teff =
3�tch

4M + 4
, �53�

whose eigenvalues are equal to 	kx�= �	�kx�, where

	�kx� = ���teff�2 + 4t�t + �teff�sin2�3kxa0/4� , �54�

which has a gap �=2��teff�.
Since our formerly gapless branch acquired a gap, it

might be confusing to refer to such branch as “gapless.”

Instead, we will call it “n0 branch,” where n0 is given by Eq.
�44�.

Heuristically, one can say that the gap appears because the
boundary conditions at the edges have changed. Indeed, we
explained that the gapless branch exists because the quanti-
zation condition Eq. �37� makes this branch pass through the
Dirac cone. When the edge scattering is introduced by the
bond deformation and the third-nearest-neighbor hopping,
the boundary conditions are altered as a result. The latter
induces a modification of the quantization rule. Thus, in k
space, the n0 branch shifts slightly off the cone pinnacle’s
location and acquires a gap.

B. Edge instability

To demonstrate the existence of an edge-induced instabil-
ity we need to calculate the energy of the n0 branch,

�el/L = − 2�
−�/�3a0�

�/�3a0�

	�kx�
dkx

2�
. �55�

It is easy to show that

�el/L � �el
0 /L −

2��teff�2

3�ta0
	ln t

�teff
 + const.
 , �56�

where �el
0 is the ground-state energy calculated at �teff=0.

The next term is the most singular correction to �el
0 due to

�teff. This correction is not analytic in �teff.
One also needs an expression for the nanoribbon lattice

energy due to the bond deformation,

�b/L = 2 �
1

3a0
�

�u2

2
=

1

3a0
�u2, �57�

where u is the variation in the edge bond length, � is the
stiffness of the bond �the energy �b /L is composed of the
energy of two deformed bonds per unit cell of the nanorib-
bon; the energy of a single deformed bond is �u2 /2�.

To proceed further we need to know how to relate the
deformation of the bond u and �tch. Such information may be
extracted from the quantum chemical calculations.19 How-
ever, to demonstrate that our system is unstable it is enough
to assume that at small u we have �tch�u. Then one can
write the following formula for �b:

�b/L = �
�M + 1�2

a0
��teff�2, �58�

where � is a phenomenological constant.
Finally, it is straightforward to check that the total nano-

ribbon energy �el+�b has two minima at �teff= ��t�, where

�t� � t exp�− 3�t��M + 1�2� � 0. �59�

This expression shows that the energy is smallest when the
bonds at the edges are deformed and the n0 branch has a gap.

Note that the calculations presented above rely on the
mean-field approximation. The latter is applicable to our
one-dimensional system since the order parameter �the bond
deformation� is of Ising type. Thus, no Goldstone mode is
present, and we do not have to worry about critical fluctua-
tions.
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Above we demonstrated that an armchair nanoribbon of
any width has a gap in its electronic spectrum. There are two
caveats to our discussion, however.

First, we proved that for our system at least one gap-
opening instability exists. We did not prove, yet, that the
discussed mechanism is the only possible path to generate
the spectral gap. For example, the electron-electron interac-
tion can induce a gap.13 Ultimately, the strongest instability
must be determined by comparing the energies associated
with particular mechanisms. The energy �t� characterizes the
strength of the edge deformation instability. This energy
scale quickly vanishes for wider nanoribbons �when M is
large� or “stiff” edge bonds �when � is large�. Under these
conditions other mechanisms might be important.

Second, as we mentioned in Sec. I, the n0 branch may
have a gap due to single-particle corrections to the Hamil-
tonian H0, which has been disregarded in this section. We
assumed that the edge bonds deform in response to the elec-
tronic instability. However, it is likely that they are distorted
by chemical forces, which are more powerful than any in-
trinsic instability. First-principles numerical simulations sup-
port this point: analyzing Fig. 3 of Ref. 5, we note that the
edge bonds are distorted even in nanoribbons where the un-
stable n0 branch is absent; moreover, the deformation mag-
nitude is independent of the nanoribbon width.

In addition to this, we neglected the third-nearest-
neighbor hopping terms, which also contribute to the gap.
Fortunately, it is not difficult to account for the latter: as it is
shown in Ref. 15, apart from unimportant small corrections
to the dispersion relation, the third-nearest-neighbor hopping
acts to renormalize �tch �see Eqs. �4� and �10� of this refer-
ence�. Therefore, to include the third-nearest-neighbor hop-
ping, one has to substitute �tch by �t, Eq. �3�.

Unless finely tuned, the parameter �t is nonzero. This
circumstance prevents us from observing the instability of
the gapless state directly: our order parameter �t is coupled
to the fictitious “field,” which takes the system away from
criticality �see Table I�.

In such a situation the value of �teff and corresponding
spectral gap is determined not by Eq. �59� but rather by the
strength of the external “edge field:” �teff� f .

Thus, the nanoribbon’s spectral properties are controlled
by the chemical structure of the edges and the third-nearest-
neighbor hopping. If we find a way to vary the effects of the
chemical edge structure, we may tune the electronic proper-
ties of the nanoribbon to our needs.

This problem can be dealt with the help of two different
approaches. First, one can try to select carefully the passivat-
ing radicals to bring the nanoribbon close to the instability
point. Clearly, this proposal requires considerable experi-
mental work. The second approach seems more promising:
to close effectively the gap it is enough to disorder the edge
field. We will examine this idea in Sec. IV.

IV. NANORIBBON WITH EDGE DISORDER

In this section we investigate how the chemical disorder
at the edges affects the nanoribbon’s spectrum. We will see
that the disorder effectively weakens the edge field.

Consider now a nanoribbon whose edges are treated by
two different radicals, “�” and “�,” such that

�t� = �tch,� + t3 � 0, �60�

�t� = �tch,� + t3 � 0, �61�

��t�� = ��t�� = �t0. �62�

The latter equality is assumed for convenience in calcula-
tions. It is not required for our proposal to work.

When these radicals randomly attach to the nanoribbon’s
edges, the edge field becomes disordered. By adjusting the
concentrations n�,� of the two radicals, it is possible to vary
the relative strengths of �t and �tdis,

�t = n��t� + n��t� = �t0�1 − 2n�� , �63�

�tdis�x� = �t�x� − �t . �64�

These two quantities are defined by Eq. �6�.
The effective Hamiltonian for the n0 branch in the pres-

ence of disorder is equal to

H = H0 + �H�x� , �65�

�H�x� = −
3

4M + 4
	0 1

1 0

��t + �tdis�x�� . �66�

The coordinate representation of �H�x� may be obtained
through a procedure similar to the derivation of �Hl in Sec.
III. Below we will assume a Gaussian distribution law for the
random quantity �tdis with the correlation function,

��tdis�x��tdis�x��� = �2f„�x − x��/a… , �67�

or, in Fourier space,

��t̂dis,kx
�t̂dis,−kx�

� = �2aLf̂�akx��kx,kx�
. �68�

Here,

�2 � ��t0�2�n� − n�
2� �69�

sets the scale for the disorder strength variation, the scale a is
the disorder correlation length. The function f�z� is a “broad-
ened � function.” It is even and non-negative, vanishes
quickly for �z��1. In addition, this function is normalized by
the condition,

�
−�

+�

dzf�z� = 1. �70�

Its Fourier transform f̂ satisfies

f̂�0� = 1. �71�

In the plane-wave basis, the Hamiltonian �H can be written
as

�H = −
3

4M + 4
	0 1

1 0

	�t�kx,kx�

+��2a

L
�kx,kx�


 , �72�

�kx,kx�
=

1
��2aL

�tdis,kx−kx�
, �73�
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���kx,kx�
�2� = f̂„a�kx − kx��… . �74�

In Eqs. �72� and �73�, the length L appears in the denomina-
tor due to wave-function normalization. In these equations
we defined the dimensionless random field �k,k� to show ex-
plicitly how the disorder matrix elements scale with the na-
noribbon length L.20

As we see from Eq. �72�, the disordered and homoge-
neous parts of the edge Hamiltonian enter as two different
terms. Each term induces a specific modification of the nan-
oribbon’s spectrum: the ordered part opens a gap, the disor-
der part localizes the wave functions. The localization, how-
ever, is a weaker phenomenon than the gap generation.
Intuitively, this sounds quite reasonable: the effects of disor-
der may “average out” to zero, while the ordered term acts
“coherently” over the whole sample length. To make this
statement rigorous we will apply perturbation theory in or-
ders of �H. We will show that for a nanoribbon of a certain
length the disorder may be treated with the help of perturba-
tion theory, while the ordered term may not. To prove this we
separately consider the two pieces of �H.

A. Homogeneous edge deformation �t

Perturbation theory is applicable when the level spacing
���a0t /L is much larger than the matrix elements of �H.

To establish the applicability range of the perturbation
theory in orders of �t, we have to compare �� with the gap
�. Thus, perturbation theory works if

L � lgap = a0�M + 1��t/�t� . �75�

The length scale lgap is analogous to the Compton length lC
=1 / �mec� of the Dirac equation.

When the disorder is absent �n�=0�, the gap has its big-
gest value, and lgap is the shortest,

lgap
min = a0�M + 1��t/�t0� . �76�

Thus, one can say that perturbation theory in �t works for
any value of n� if

L � lgap
min. �77�

B. Disordered edge deformations �tdis

Perturbation theory in �tdis is applicable when

a0t

L
�

1

M + 1
��2a

L
. �78�

This inequality may be transformed into

L � lloc = �M + 1�2a0
2

a

t2

�2 . �79�

The scale lloc is the localization length. �Our treatment of the
disordered regime adopts the treatment of Ref. 20.�

When �t=0 �or, equivalently, n�=n�=1 /2� the disorder is
the strongest. We can define the shortest possible localization
length lloc

min. It can be estimated as follows. If n�=n�=1 /2, �
has its largest possible value,

�max = �t0, �80�

lloc
min = �M + 1�2a0

2

a

t2

��t0�2 . �81�

Therefore, if the sample length satisfies

L � lloc
min, �82�

the perturbation theory in the disorder strength is justified for
any concentration n�.

C. Conductance of a mesoscopic sample

It is possible to prove that lgap
min� lloc

min. Indeed, this inequal-
ity is equivalent to

�M + 1�
t

�t0
�

a

a0
. �83�

Both factors on the left-hand side of this expression are
much larger than unity. Therefore, unless a is very big, lgap

min

� lloc
min. Loosely speaking, this inequality suggests that the

disordered field is a much weaker perturbation than the or-
dered one.

Consider now a nanoribbon whose length L satisfies

lgap
min � L � lloc

min. �84�

This means that even the strongest disorder �lloc= lloc
min� cannot

create a well-developed localization in our nanoribbon; on
the other hand, when the sample is close to perfect order
�n��1 /2� the spectral gap fully manifests itself. Let us now
study the electrical conductance of such nanoribbon.

Assume first that our system has no edge disorder: �t�x�
=�t�. Then lgap= lgap

min, and Eq. �75� is violated. Therefore, the
“edge field” opens a gap in the spectrum. The dimensionless
conductance g of a sample with the gap is exponentially
small at T=0,

ln g � −
L

lgap
= −

1

M + 1

�t

t

L

a0
. �85�

When we slightly disorder our system by introducing a small
concentration n� of radicals �, the conductance increases
since �t decreases �see Eq. �63��. Thus, remarkably, here
disorder improves electrical conductance.

In the opposite limit of complete disorder, we have �t
=0, and the localization length becomes lloc= lloc

min. Perturba-
tion theory may now be applied since Eq. �79� holds true.
Instead of a disorder-induced localization, which is a nonper-
turbative phenomenon, in a sufficiently short nanoribbon the
disorder creates weak corrections to the properties of H0. In
such sample the conductance remains finite even at T=0.

Thus, we reach the following counterintuitive conclusion:
a completely ordered nanoribbon shows “insulating” behav-
ior, while a disordered one shows “metallic.” �We put quotes
around insulating and metallic for metal and insulator are
quantum phases, which can be unambiguously defined only
in the thermodynamic limit L→�; however, the latter limit
is incompatible with Eq. �84�.�

As the system moves from perfect order to total disorder,
it passes through a crossover from insulating to metallic con-
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ductance. Indeed, Eq. �85� is applicable only when L / lgap is
much bigger than unity. If

L/lgap � 1 ⇔ g � 1, �86�

one can validate the perturbation theory not only in orders of
�tdis, but also in orders of �t �see Eq. �75��. Therefore, once
L exceeds lgap, the exponential dependence of g is replaced
by a slower function, and g remains of order unity down to
the completely disordered regime.

D. Conductance of a long nanoribbon

Finally, let us comment on the conductance behavior in a
thermodynamically large sample, whose length satisfies

lgap
min � lloc

min � L . �87�

In this situation both terms of �H cannot always be treated
by means of perturbation theory. Consequently, the conduc-
tance is always exponentially suppressed: when there is per-
fect order, the conductance follows Eq. �85�; in the opposite
case �complete disorder� we have

ln g � −
L

lloc
. �88�

The latter equation is a manifestation of wave-function local-
ization, which can only be observed in a sample whose
length exceeds lloc.

Comparing Eqs. �85� and �88� with the help of Eq. �87�,
we note that, as well as in the case of a short nanoribbon, the
conductance of a perfectly ordered sample is much smaller
than the conductance of a totally disordered sample.

The conductance g of a long nanoribbon is a nonmonoto-
nous function of disorder �see Fig. 4�. Such a behavior is a
consequence of the crossover from the gap dominated to the
disorder-dominated regime. When the concentration n� is
small, the gap is the dominant parameter controlling the con-
ductance. Under such circumstances Eq. �85� is obeyed. The
disorder acts mainly to reduce the gap. Thus, if disorder is
weak, then g is an increasing function of n�.

As n� keeps growing, lgap increases, while lloc decreases.
The crossover occurs at

lloc � lgap, �89�

and the sample enters the disorder-dominated regime. The
conductance is given by Eq. �88�. It is a decreasing function
of n� when the latter is close to 1/2.

V. CONCLUSIONS

In this paper we studied the spectral properties of the
armchair nanoribbon. We have seen that a nanoribbon with
metallic dispersion is unstable. It was proved that the system
might generate spontaneous deformation of the edge bonds,
which opens a gap. While such deformation increases the
energy of the affected bonds, it also reduces the electronic
energy.

We also pointed out that this instability is difficult to ob-
serve in a real system. The culprit is the nonzero scattering
from the nanoribbon’s edges. Although it might be hard to
get rid of this scattering, it is quite possible to reduce its
effect on the electronic spectrum by disordering the scatter-
ing potential. This may be achieved by random substitution
of the radicals passivating the edges.

We demonstrated that the disorder can vary the electrical
conductance of a nanoribbon. In case of a short nanoribbon,
the conductance would change from insulating regime at low
disorder to a metallic regime at high disorder; when the na-
noribbon’s length is large, the conductance is a nonmonoto-
nous function of the disorder. Thus, the disorder may be a
useful tool which allows one to control the electric transport
through nanoribbons.
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FIG. 4. Qualitative behavior of the conductance of the long
nanoribbon as a function of disorder �n� is the concentration of the
disordering radical�. The dashed line marks the crossover from the
gap dominated to the disorder-dominated regime. Note the counter-
intuitive trend left of the dashed line: the conductance is increasing
with increasing disorder.
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