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A resonator with eigenfrequency �r can be effectively used as a cooler for another linear oscillator with a
much smaller frequency �m��r. A huge cooling effect, which could be used to cool a mechanical oscillator
below the energy of quantum fluctuations, has been predicted by several authors. However, here we show that
there is a lower limit T� on the achievable temperature, given by T�=Tm�m /�r, that was not considered in
previous work and can be higher than the quantum limit in realistic experimental realizations. We also point out
that the decay rate of the resonator, which previous studies stress should be small, must be larger than the decay
rate of the cooled oscillator for effective cooling.
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I. INTRODUCTION

Recently, a tremendous experimental effort has been de-
voted to the task of cooling mechanical oscillators below the
energy of quantum fluctuations. In spite of many experimen-
tal improvements, the quantum limit has not been
achieved.1–5 Several papers that propose cooling mechanisms
using electromagnetic �radio frequency, microwave or light�
resonators6–9 or other cooling mechanisms10–15 to fulfill this
task have appeared recently. These papers predict an enor-
mous cooling effect. However, they do not explicitly state
that there is a lower limit on the achievable temperature,
associated with the ratio between the frequencies of the cool-
ant and cooled oscillators, which cannot be overcome and
can play an important role for realistic experimental realiza-
tions. Moreover, some formulas that appear in the literature
can give temperatures below this limit, which will be de-
scribed in more detail below. This lower temperature limit
can be important for the most feasible designs using radio
frequency or microwave resonators.

The electromagnetic resonators can be easily imple-
mented on-chip beside a nanomechanical oscillator and kept
at low temperatures. Such structures, also known as micro-
electromechanical systems �MEMS� and nanoelectrome-
chanical systems �NEMS�, have already been realized,16–18

achieving high frequencies in the GHz range ��m
�10 GHz� but with small quality factors Qm�10–500.
Nevertheless, they can be used as sensitive elements for
weak force-displacement detection19,20 and they have been
proposed as possible qubits.21,22 For such systems, the fre-
quency of the basic mode of the NEMS becomes comparable
to the resonance frequency of the electromagnetic resonator
�r. In this case, the temperature limit proportional to �m /�r,
which was negligible for optical-frequency coolers, can de-
termine the lowest achievable temperature T�. The aim of
this work is to call the attention of experimentalists to this
fundamental limit, which could help them design more effec-
tive cooling systems.

II. SEMICLASSICAL APPROACH

For the sake of simplicity, we will consider a RLC tank
circuit �the results can be applied to any electromagnetic
resonator, such as a transmission-line resonator, cavity,
Fabry-Pérot resonator, etc.�. A mechanical oscillator is
coupled to the capacitor such that the capacitance depends
parametrically on the displacement of the oscillator. Such a
system was thoroughly analyzed in Ref. 23, and we only
briefly introduce the equations of motion here. If the me-
chanical oscillator is a part of one of the capacitor electrodes,
the capacitance C�x��C0�1−x /d� depends on the displace-
ment x of the oscillator from the equilibrium position, where
C0=�S /d0 is the capacitance at x=0, and d is the renormal-
ized distance between the electrodes d=d0 /�. Here � is the
coupling constant between the mechanical oscillator and the
RLC circuit, and it can be expressed as the ratio between the
mechanical oscillator capacitance Cm, which depends on the
oscillator displacement, and the total capacitance C0 �we
consider the case Cm�C0�, i.e., �=Cm /C0. If the RLC tank
circuit is pumped by a microwave source Vp=Vp0 cos �pt,
the voltage between the capacitor’s electrodes is V0
=�rVp0 /�r, and the Coulomb energy of the capacitor de-
pends on its capacitance, which in turn, depends on the os-
cillator displacement. Thus, the electromagnetic resonator
and mechanical oscillator �i.e., cantilever� can be described
by a system of differential equations of two coupled damped
linear oscillators:

d2Q

dt2 + �r
dQ

dt
+ �r

2Q�1 −
x�t�
d
� =

Vp�t� + Vf�t�
L

, �1�

d2x

dt2 + �m
dx

dt
+ �m

2 x =
Ff�t�

M
+

Q2�t�
2MC0d

, �2�

where �r,m are damping rates, �r,m are angular frequencies,
Vf is a fluctuating voltage across the capacitor, Ff is a fluc-
tuating force acting on the mechanical oscillator with mass
M, and Q�t�=qp�t�+qf�t� is the total charge on the capacitor.
Equation �2� is nonlinear but can be linearized keeping in
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mind that we are interested to calculate charge fluctuations
qf�t�, which are much smaller than charge oscillations qp�t�
driving by coherent microwave source. It is convenient to
express qf�t� and Vf�t� in terms of quadrature amplitudes

qf�t� = qc�t�cos �pt + qs�t�sin �pt ,

Vf�t� = Vc�t�cos �pt + Vs�t�sin �pt ,

and rewrite Eqs. �1� and �2� in the dimensionless variables

q̃c,s � qc,s/�C0��r,

x̃ � x/���m/M�m
2 ,

� � �mt ,

�̃m � �m/�m,

�̃r,p � �r,p/�m,

�̃r � �r/2�m,

Ṽc,s � �̃rVc,s
�C0/��r,

F̃f � Ff/�M�m
2 ��m,

Ṽ0 � �̃rV0
�C0/4M�m�rd

2.

Here Tr and Tm are the temperatures of the electromagnetic
resonator and mechanical oscillator, respectively. Consider-
ing Langevin fluctuating forces caused by quantum
noise,24,25

Vc,s�t� =�L�r
��r

2
coth� ��r

2kBTr
�	c,s�t� ,

Ff�t� =�M�m��m coth� ��m

2kBTm
�	m�t� ,

and using the slowly-varying-amplitude approximation23

Eqs. �1� and �2� read

dq̃

d�
= − Ãq̃��� + F̃��� , �3�

where

Ã =	
�̃r 
̃ 0 0

− 
̃ �̃r 0 − Ṽ0

− Ṽ0 0 �̃m 1

0 0 − 1 0

 , �4�

F̃��� =	
��̃r coth���r/2kBTr�	c���

��̃r coth���r/2kBTr�	s���

��̃m coth���m/2kBTm�	m���
0


 , �5�

q̃��q̃c , q̃s , ṽ , x̃�, ṽ�dx̃ /d�, and 
̃= �̃p− �̃r. Here Tr and Tm
are the base temperatures of the resonator and mechanical
oscillator, respectively. Thus, we have a system of coupled
Langevin equations,24 which allow us to calculate the sta-
tionary covariance matrix defined as ���q̃q̃T�s for �→�.
The diagonal terms of the covariance matrix determine the
mean squared values of the vector components q̃. For ex-
ample, �ṽṽ��ṽ2�s is the normalized mean squared velocity
of the mechanical oscillator. The covariance matrix can be
determined from the system of linear equations

Ã� + �ÃT = B̃ ,

where B̃ is a correlation matrix defined as �F̃i���F̃j�����
= B̃ij��−���. If the fluctuating forces are uncorrelated, i.e.,

�	x���	x������=x,x���−��� �here x ,x� stand for c ,s, or m�, B̃
takes the form of a diagonal matrix with elements

B̃ii =	
�̃r coth���r/2kBTr�

�̃r coth���r/2kBTr�

�̃m coth���m/2kBTm�
0


 . �6�

The mean value of energy of the mechanical oscillator fluc-
tuations is

Em = �ṽṽ��m. �7�

Now, one can easily calculate the effective temperature of
the mechanical oscillator from the definition relation for Tm

�

�ṽṽ =
1

2
coth� ��m

2kBTm
� � . �8�

As we will see later, the most appropriate parameters for

cooling purposes are 
̃=−1, 2�̃m�r� Ṽ0�1. In this limit and
for �r��m, �m��r, the �ṽṽ can be expressed as

�ṽṽ =
1

2
coth� ��r

2kBTr
� +

�̃r�̃m

Ṽ0
2

coth� ��m

2kBTm
� . �9�

Thus, the lowest temperature of the mechanical oscillator is
limited by the first term if the second term is made negligibly
small by sideband cooling. As a matter of fact this term
simply shows that even in our semiclassical approach, we
cannot “cool” the mechanical oscillator below the zero-point
energy, which is consistent with the Heisenberg uncertainty
principle. Indeed, it follows from Eqs. �7� and �8� that the
energy saved in the mechanical oscillator is
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Em =
��m

2
coth� ��r

2kBTr
� . �10�

In this limit, the effective temperature Tm
� of the mechanical

oscillator takes the simple form

Tm
� =

�m

�r
Tr. �11�

The cooling factor Tm
� /Tm as a function of the normalized

pumping amplitude Ṽ0 is shown in Fig. 1. Even though this
result was derived within semiclassical physics, the same
limit can be obtained using the quantum approach, as we
shall show below.

Here we should emphasize that the temperature of the
resonator Tr is usually much higher than the ambient tem-
perature if the resonator is heavily pumped by the microwave
source. This is caused by the phase noise of the microwave
source, which is directly proportional to the output power.
Microwave sources are characterized by the single sideband
noise spectral density26

L���� = 10 log� SV

Umw
2 � , �12�

where Umw
2 is the mean square voltage of the microwave

source, and SV is the spectral density of the voltage noise.
The effective temperature Tr of the pumped resonator can be
calculated as

Tr = Tr0 +
�r

�r

Umw
2

2kBZr
10L����/10, �13�

where Tr0 is the temperature of the resonator without pump-
ing and Zr=�L /C is the characteristic impedance of the reso-
nator. Now, both terms in Eq. �9� depend on the pumping
power. The first one increases with pumping power while the
second one decreases. Since the highest cooling power is

expected for7 �̃r�1, the effective temperature of the me-
chanical oscillator is higher than

Tm0 �
Umw

2

2kBZr
10L����/10. �14�

Thus, for microwave resonators the first term in Eq. �9� be-
comes important, especially for the cooling of mechanical
oscillators with high resonant frequencies approaching the
GHz range. The minimal temperature Tm0 is directly propor-

tional to the pumping power in the limit Ṽ0�1, which is the
relevant limit in order to determine the lowest achievable
temperature of the mechanical oscillator cooled by sideband
cooling. For present state-of-the-art microwave generators
L�21 MHz�=−160 dBc/Hz�, the effective temperature of
the mechanical oscillator Tm

� as a function of pumping volt-
age is shown in Fig. 2. The parameters were chosen accord-
ing to recently achieved values �see Refs. 27 and 28� as
follows: the base temperature, characteristic impedance, and
angular frequency of the resonator are given by Tr0
=50 mK, Zr=50 �, and �r=2��21 GHz, respectively,
and the angular frequency of the mechanical oscillator �m
=2��21 MHz. The quantum regime of the mechanical os-
cillator can be achieved if the voltage of the microwave
source is below 0.1 mV. However, the cooling of the me-
chanical oscillator by simple coupling to the microwave
resonator requires a higher microwave voltage.7 Therefore,
the coupling should be designed to be as strong as possible in
order to achieve the quantum regime. For example, for a
mechanical oscillator with resonance frequency smaller than
1 MHz, one cannot achieve the quantum limit with realistic
microwave sources if the coupling is small. Namely, the
cooling of a mechanical oscillator with angular frequency
�m�2��300 kHz to the quantum regime, as proposed in
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0.1

1

T
* m

/
T
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V
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~

FIG. 1. The cooling factor Tm
� /Tm as a function of the normal-

ized pumping amplitude Ṽ0 of the noiseless microwave source for

�̃r=103, �̃m=10−5, �̃r=10−1, and kBTm=kBTr���r,m calculated nu-
merically �circles� and from Eqs. �8� and �9� �solid line�.

FIG. 2. The minimal effective temperature of the mechanical
oscillator as a function of the pumping voltage of the microwave
source with sideband noise spectral density �a� L�21 MHz�
=−160 dBc /Hz, Tr0=50 mK, Zr=50 �, �r=2��21 GHz, �m

=2��21 MHz �solid line� and �b� L�300 kHz�=−150 dBc /Hz,
Tr0=50 mK, Zr=50 �, �r=2��1.5 GHz, �m=2��300 kHz
�dashed line�.
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Ref. 7, would require a voltage Umw�0.5 mV. However,
the best commercially available microwave sources with fre-
quency �1 GHz achieve L�300 kHz�=−150 dBc /Hz only,
and therefore the thermal energy of the mechanical oscillator
would be much higher than its zero-point energy for such a
microwave voltage. Moreover, even for an ideal microwave
source the quantum limit cannot be achieved because of the
lower limit for sideband cooling �dashed line in Fig. 2�. Su-
perconducting qubits,10,12 which have sizes similar to those
of mechanical nano-oscillators, can be a better option than
microwave resonators.

III. QUANTUM APPROACH

In order to achieve the quantum regime of the mechanical
oscillator, the temperature should be lower than the energy of
quantum fluctuations, which, together with Eq. �11�, imply
the inequality

�mTr

�r
� Tm

� �
��m

2kB
.

Thus the microwave resonator should be in the quantum re-
gime as well, and the classical description is no longer valid.
Therefore, we now turn to the analysis of this problem using
the quantum description when the resonator’s frequency is
higher than its temperature and the resonator is in its ground
state with high probability. In this case the cooling limit can
be derived in a transparent manner using a thermodynamic
approach. Another advantage of this approach is that a large
part of the analysis �in particular, the derivation of the lowest
achievable temperature� is also valid for nonlinear coolers,
including the case where the resonator is substituted by a
two-level system �qubit� as suggested in Ref. 10. The ther-
modynamic approach is also valid regardless of the specific
form of the coupling and driving terms in the Hamiltonian,
up to some mild requirements that will be explained below.

The Hamiltonian that we shall use in our analysis is given
by

Ĥ = �rar
†ar + �mam

† am + Ĥcoupling + Ĥdrive, �15�

where ar
† and ar �am

† and am� are, respectively, the creation
and annihilation operators of the resonator �oscillator�. The

term Ĥcoupling represents the oscillator-resonator coupling,

and the term Ĥdrive represents the driving force. We shall
assume that the last two terms in the Hamiltonian are small:

The smallness of Ĥcoupling means that the energy eigenstates
will, to a good approximation, be identified with well-
defined excitation numbers in the oscillator and resonator,

while the smallness of Ĥdrive justifies a description of the
system using time-independent energy levels. In the follow-
ing we start by using thermodynamics arguments to derive
an expression for the lower limit on the achievable tempera-
ture, and we later use a master-equation approach to treat the
specific example discussed in Sec. II.

We first consider the situation depicted in Fig. 3. Each
arrow describes a transition from a state �i , j� to another state
�i� , j��, where the meaning of the quantum numbers is ex-

plained in Fig. 3. We denote the rate at which such a transi-
tion occurs by W�i,j�→�i�,j��. In other words, the probability
current of the transition is given by P�i,j�W�i,j�→�i�,j��, where
P�i,j� is the occupation probability of the state �i , j�. In the
steady state, we can write detailed balance equations for the
occupation probabilities of the different quantum states in the
form

0 =
dP�i,j�

dt
= �W�i+1,j−1�→�i,j�P�i+1,j−1� − W�i,j�→�i+1,j−1�P�i,j��

+ �W�i−1,j+1�→�i,j�P�i−1,j+1� − W�i,j�→�i−1,j+1�P�i,j��

+ �W�i+1,j�→�i,j�P�i+1,j� − W�i,j�→�i+1,j�P�i,j��

+ �W�i−1,j�→�i,j�P�i−1,j� − W�i,j�→�i−1,j�P�i,j�� . �16�

Now we determine some relations among the rates W. Let us
start with the situation when the driving force is switched off
and the resonator is in contact with its surrounding environ-
ment, which is at temperature Tr. Assuming that the environ-
ment induces transitions between states that are different by
one photon in the resonator as described in Fig. 3 and Eq.
�16��, the rates must obey the thermal-equilibrium relation

W�i,j�→�i+1,j�

W�i+1,j�→�i,j�
= exp�−

��r

kBTr
� . �17�

Note that these transitions do not change the state of the
mechanical oscillator, since without the driving force the os-
cillator and resonator are effectively decoupled ��m��r�.
The oscillator is itself in contact with its environment at
temperature Tm, but for optimal cooling we assume that the
insulation is good enough that we can completely neglect
environment-induced transitions, i.e., we have assumed that
W�i,j�→�i,j�1�→0 in Fig. 3 and Eq. �16�. We now assume that
the driving force couples states of the form �i , j� and �i
+1, j−1� but does not drive any other transitions �this as-
sumption must be justified for a given model, as will be done

FIG. 3. Energy-level diagram of a high-frequency resonator and
low-frequency mechanical oscillator with different possible transi-
tions. The first and second quantum numbers represent the number
of excitations in the resonator and mechanical oscillator, respec-
tively. The vertical arrows represent the environment-induced decay
in the resonator, and slanted arrows represent driving-induced tran-
sitions. Decay in the mechanical oscillator is assumed to be negli-
gibly small.
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below for the system of interest�. Since the driving force is a
classical one, the transitions it induces must have equal rates
in both directions, i.e.,

W�i,j�→�i+1,j−1� = W�i+1,j−1�→�i,j�. �18�

The reason why there is no Boltzmann factor in Eq. �18� is
that these transitions are mainly induced by the classical
driving force, and any contributions to their rates from the
thermal environment are negligible.

Using Eqs. �17� and �18�, it is not difficult to verify that
the pairs of terms in Eq. �16� all vanish when

P�i,j� =
1

Z
exp�−

�i + j���r

kBTr
� , �19�

where Z is the partition function. This steady-state probabil-
ity distribution P�i,j� can now be rewritten as

P�i,j� =
1

Zr
exp�−

i��r

kBTr
� �

1

Zm
exp�−

j��r

kBTr
�

=
1

Zr
exp�−

i��r

kBTr
� �

1

Zm
exp�−

j��m

kBTm
� � , �20�

with

Tm
�

Tr
=

�m

�r
. �21�

Here Zr and Zm is partition the function of resonator and
mechanical oscillator, respectively. We therefore find that if
the above picture about the allowed transitions and the rela-
tions governing their rates are valid, we can reach the final
temperature Tm

� given by Eq. �21�.
The above derivation suggests an intuitive picture for the

cooling mechanism. The purpose of the driving force is to
facilitate the transfer of excitations between the resonator
and oscillator. Before the driving starts, the low-frequency
oscillator has many more excitations than the high-frequency
resonator. Once the driving starts, the excitation imbalance
causes excitations to start flowing from the oscillator to the
resonator. As the number of excitations in the resonator goes
above the thermal-equilibrium value, excitations start to dis-
sipate from the resonator to the environment. A steady state
is eventually reached with the resonator in thermal equilib-
rium with the environment and both the resonator and the
oscillator having the same average number of excitations �in
fact, the resonator and the oscillator will have the same
excitation-number probability distribution�. This picture of
the cooling mechanism reveals another point that is generally
not noted in the literature. Although �r is desired to be
smaller than �m in order to avoid heating effects, it should
not be too small, because it provides the mechanism by
which excitations are dissipated from the resonator into the
environment. In particular, it must be larger than �m, such
that the dissipation of excitations is faster than the heating of
the oscillator by its environment.

We now consider what would happen if one were able to
drive the transitions shown in Fig. 4. With optimal param-
eters for cooling, one would obtain the minimum tempera-
ture

Tm
�

Tr
=

�m

2�r
. �22�

Note that this situation would require driving the system at a
frequency 2�r−�m. The argument can be generalized to ob-
tain any value n in the denominator of Eq. �22�, or more
explicitly

Tm
�

Tr
=

�m

n�r
. �23�

The question is whether such transitions can be realistically
driven in a given system with a specific form of resonator-
oscillator coupling and a given type of driving force �it is
worth reiterating at this point that the above considerations
and results do not depend on the particular form of the cou-
pling and the driving force�.

In order to determine the feasibility of realizing condi-
tions where Eq. �23� with n�1 is the relevant lower limit on
the achievable temperature, we now turn from the above gen-
eral arguments to the specific situation considered in Sec. II.
Equations �1� and �2� result from a Hamiltonian of the form

Ĥ = �rar
†ar + �mam

† am + g�ar + ar
†�2�am + am

† �

+ A cos��pt + ���ar + ar
†� , �24�

where g is the oscillator-resonator coupling strength, and A is
the amplitude of the driving force. Starting with a simplified
version of the above Hamiltonian that does not contain the
last two terms, we have an energy-level diagram similar to
the one shown in Figs. 3 and 4 �without the induced-
transition arrows�. The resonator-oscillator coupling term
mixes the different quantum states together in the eigenstates
of the Hamiltonian. This mixing allows the driving term,
which would normally affect only the resonator, to drive
transitions that remove excitations from the oscillator and
add excitations to the resonator, or vice versa. Therefore, in

FIG. 4. Same as in Fig. 3, but with the driving force inducing
different type of transitions. The driven transitions in this case re-
move one excitation from the oscillator state and add two excita-
tions to the resonator state, or vice versa.
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order to determine the transitions that can be driven by the
external force, we need to evaluate matrix elements of the
form ��i,j��ar+ar

†���k,l�, where we now use the eigenstates of
the Hamiltonian �i.e., slightly modified from the case of two
uncoupled oscillators�. To first order in perturbation theory,

��i,j� � �i, j� +
�2i + 1�g

�m
��j�i, j − 1� − �j + 1�i, j + 1��

+
g

2�r − �m
��i�i − 1��j + 1��i − 2, j + 1�

− ��i + 1��i + 2�j�i + 2, j − 1�� . �25�

Using the above approximation, we find that

��i,j�ar + ar
†��i+1,j−1� � −

2g��i + 1�j

�m
. �26�

It is straightforward to see from Eq. �24� that

��i,j�ar + ar
†��i+2,j−1� = 0.

Using numerical calculations we find that

��i,j�ar + ar
†��i+3,j−1� � −

12g3��i + 1��i + 2��i + 3�j

�2�r − �m�3 .

�27�

The above results imply that the driving term can be used
to drive transitions of the form �i , j�↔ �i+1, j−1�, which can
be used to remove excitations from the oscillator and add
them to the resonator. These transitions correspond to the
picture shown in Fig. 3, and their resonance frequency is
given by �p=�r−�m. The steady-state effective temperature
for the oscillator is given by Eq. �21� when driving these
transitions, assuming that heating effects are avoided. By
driving the system at the frequency �p=3�r−�m, one could
in principle drive the transitions �i , j�↔ �i+3, j−1� and reach
a lower minimum temperature. However, the fact that the
corresponding matrix element is proportional to the third
power of the small coupling strength g suggests that this
matrix element will be extremely small for any realistic pa-
rameters, hindering the possibility of utilizing this cooling
mechanism.

We now turn to the heating effects that have been ne-
glected above. We note that the driving term in Eq. �24� can
also drive transitions of the form �i , j�↔ �i+1, j+1�, and the
relevant matrix element is given by

��i,j�ar + ar
†��i+1,j+1� �

2g��i + 1��j + 1�
�m

. �28�

These undesired transitions are induced if either the driving
amplitude A or the resonator’s damping rate �r is compa-
rable to or larger than �m. If either one or both of the above
conditions are satisfied, the driving force must be considered
within the resonance region of the above transition. As a
result, additional excitations would be steadily pumped into
the system, resulting in a higher temperature than what
would be obtained from the simple picture of transition rates
that we have presented above �note that this heating

is a consequence of the nonlinearity in the system
Hamiltonian�.29 The ideal parameters for cooling are there-
fore given by �p=�r−�m, A� ��r−�p�, and �r� ��r−�p�;
naturally �m is desired to be much smaller than the smallest
of three parameters that determine the cooling power: �r,
Ag /�m, and �Ag�2 / ��r�m

2 �. This condition on �m ensures that
the oscillator heating from its contact with the environment
is slower than the cooling it experiences as a result of the
driving. Using a numerical simulation, we shall see shortly
that the above heating effects can be made negligible with
the proper choice of parameters. We should also mention
here that in this section we have not considered the noise in
the driving force, i.e., we have assumed an ideal microwave
source. Such noise would directly heat the resonator, result-
ing in a higher base temperature, as discussed in Sec. II. It is
also important to note that the linearity of the resonator, i.e.,
the cooler, helps reduce its direct heating by the driving
force. If one uses a nonlinear system, e.g., a Cooper-pair box,
this direct heating mechanism �even if an ideal microwave
signal is used� could be the most dominant heating
mechanism.29,30

In order to give a concrete example that illustrates the
cooling dynamics, we now turn to a master-equation ap-
proach. The density matrix � of the system evolves in time
according to the master equation

d�

dt
= −

i

�
Ĥ,�� + �1 + N̄r��r�ar�ar

† −
1

2
ar

†ar� −
1

2
�ar

†ar�
+ N̄r�r�ar

†�ar −
1

2
arar

†� −
1

2
�arar

†�
+ �1 + N̄m��m�am�am

† −
1

2
am

† am� −
1

2
�am

† am�
+ N̄m�m�am

† �am −
1

2
amam

† � −
1

2
�amam

† � , �29�

where

N̄r =
1

e��r/kBT − 1
�30�

and similarly for N̄m. The coefficients �r and �m are decay
rates for the resonator and oscillator, respectively.

An example illustrating the dynamics of cooling the me-
chanical oscillator by the microwave resonator is shown in
Fig. 5. The results were obtained by numerically solving Eq.
�29� using the Hamiltonian in Eq. �24�. The effective tem-
peratures of the oscillator and resonator are obtained by cal-
culating their respective entropies from their reduced density
matrices �S=−Trace�� log ��� and fitting these values to the
temperature-entropy relation for a harmonic oscillator. The
initial heating of the resonator is a result of the transfer of
excitations from the oscillator to the resonator. For large t,
the system reaches a steady state where the ratio between the
effective temperatures of the oscillator and the resonator is
approximately equal to �m /�r.

GRAJCAR et al. PHYSICAL REVIEW B 78, 035406 �2008�

035406-6



IV. CONCLUSIONS

We have shown that both the classical and the quantum
treatment give the same final result: the cooling factor Tm

� /Tr

is limited by the ratio �m /�r. This lower limit for the cooling
becomes crucial for radio frequency and microwave resona-
tors pumped by a real �noisy� microwave source since their
effective temperature Tr is usually much larger than the am-
bient temperature. We should also emphasize that our results
apply, with minor modifications, to other types of coolers,
e.g., a Cooper-pair box.

Note added in proof. Recently some related manuscripts
appeared on the e-print archive.31–34
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