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Charge fluctuations from gate bias and background traps severely limit the performance of a charge qubit in
a Cooper-pair box �CPB�. Here we present an experimentally realizable method to control the decoherence
effects of these charge fluctuations using two strongly capacitively coupled CPBs. This coupled-box system
has a low-decoherence subspace of two states. Our results show that the interbox Coulomb correlation can help
significantly suppress decoherence of this two-level system, making it a promising candidate as a logical qubit,
encoded using two CPBs.
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I. INTRODUCTION

Various superconducting nanocircuits have been proposed
as quantum bits �qubits� for a quantum computer.1–5 In the
meantime, it has long been recognized that background
charge fluctuations can severely limit the performance of mi-
croelectronic devices, particularly those based on the ma-
nipulation of electrical charge, such as single electron
transistors6 and superconducting Cooper-pair boxes
�CPBs�.7–9 The struggle to suppress or even eliminate noise
from charge fluctuations in superconducting devices has
been a prolonged battle with limited success. Here, instead of
focusing on perfecting materials, we propose an alternative
experimentally realizable method to suppress the effects of
these charge fluctuations using two strongly �capacitively�
coupled CPBs.

Cooper-pair boxes are one of the prominent candidates for
qubits in a quantum computer. Recent experiments11 have
revealed quantum coherent oscillations in two CPBs coupled
capacitively and demonstrated the feasibility of a conditional
gate as well as creating macroscopic entangled states. Scal-
able quantum-computing schemes �see, e.g., Ref. 12� have
also been proposed based on charge qubits. Clearly, effective
suppression of charge noise is essential to the practical
implementation of scalable quantum computing in a charge-
based scheme. It has been shown9 that while operating at the
degeneracy point �where the two lowest charge states have
the same energy in the absence of Josephson coupling�, the
charge qubit has a long decoherence time of ��500 ns.
However, when the charge qubit is operated away from the
degeneracy point, it experiences strong dephasing by the
charge fluctuations, and the decoherence time of the system
is greatly reduced.7,9,10

Two separate CPBs generally experience uncorrelated
charge fluctuations as they are most strongly affected by their
own gate biases and the nearest fluctuating charge traps.
However, if the two boxes are strongly coupled capacitively
�with no tunnel coupling so that the two-box states do not
approach those of a single large box in the strong coupling
limit�, the fluctuations affecting one box will affect the other

through Coulomb interaction. In the limit of extremely
strong interbox coupling �corresponding to a very large mu-
tual capacitance between the two CPBs�, the two boxes
would experience an identical charge environment, so that, in
principle, a decoherence-free subspace13,14 could be estab-
lished for coupled-box states. However, in reality this limit
involves many degenerate charge states for the electrostatic
energy of the coupled boxes, so that logical qubit encoding is
impossible. Can we still achieve a decoherence-suppressed
logical qubit in two capacitively coupled boxes? Below we
show that there exists an intermediate parameter regime
where a strong interbox Coulomb correlation induces a sig-
nificant suppression of decoherence in certain two-box
states, so that considerable benefit can be reaped by encoding
a logical qubit in terms of these states.

II. CHARACTERIZATION OF TWO COUPLED
COOPER-PAIR BOXES

Consider two capacitively coupled CPBs �see Fig. 1�.
Each CPB is individually biased by an applied gate voltage
Vi and coupled to the leads by a symmetric dc superconduct-
ing quantum interference device �SQUID�. The dc SQUID is
pierced by a magnetic flux �i, which provides a tunable
effective Josephson coupling

EJi��i� = 2EJi
0 cos���i

�0
� , �1�

where �0=h /2e is the flux quantum. The system Hamil-
tonian is

HS = �
i

�Eci�ni − nxi�2 − EJi��i�cos �i�

+ Em�nL − nxL��nR − nxR� , �2�

with i=L ,R for left and right. Here the charging energy Eci
of the ith superconducting island and the mutual capacitive
coupling Em are given by15
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Eci =
2e2C�j

�
,

Em =
4e2Cm

�
, �3�

with � given by

� = C�iC�j − Cm
2 , �4�

where

C�i = Cm + Ci + CJi �5�

is the total capacitance of the ith island. The offset charge is

2enxi = QVi + Q0i, �6�

where Q0i is the background charge, and

QVi = CiVi + CbiVbi �7�

is induced by both the gate voltage Vi and the probe voltage
Vbi. The average phase drop �i across the two Josephson
junctions in the dc SQUID is conjugate to the Cooper pair
number ni on the box. Both CPBs operate in the charging
regime Eci�EJi and at low temperatures kBT	Eci. The
states of the two coupled boxes can thus be expanded on the
basis of the charge eigenstates 	nLnR
�	nL
	nR
.

When the two CPBs are strongly coupled, the total Hamil-
tonian can be rewritten in terms of the total charge on the
coupled boxes and the charge difference across the boxes.
Assuming, for simplicity,

C�L = C�R = C�, �8�

so that

EcL = EcR = Ec,

EJL = EJR = EJ, �9�

we have

HS = �Ec −

E

2
��nL + nR − nxL − nxR�2

+

E

2
�nL − nR − nxL + nxR�2 − EJ�cos �L + cos �R� ,

�10�

where


E =
2e2

Cm + C�

= Ec −
1

2
Em � 0. �11�

Notice that when Cm is much larger than Ci and CJi ,Ec es-
sentially represents the charging energy of individual Joseph-
son junctions, while 
E represents the charging energy of
the large capacitor Cm, so that 
E	Ec.

At the double degeneracy point of �nxL ,nxR�= � 1
2 , 1

2
�, the

two lowest energy states are given by

	 ± 
 =
1
�2

�	01
 ± 	10
� + 	�
±
 , �12�

where

	�
±
 = O� EJ

Em
���±�	00
 ± 	11
� + ¯ � , �13�

with a splitting of EJ
2 /2�Ec−
E� �see Fig. 2�. The symmetry

in these states indicates that they are well insulated from pure
dephasing and relaxation due to charge noise, as we will

FIG. 1. �Color online� Strongly coupled Cooper-pair boxes. A
bias voltage Vi is applied to the ith charge box through a gate
capacitance Ci, and a symmetric dc SQUID �with Josephson cou-
pling energy EJi

0 and capacitance CJi for each junction� is coupled to
the box. Also, each box is connected to a detector via a probe
junction �or a less invasive point contact�. When a measurement is
performed, the probe junction is biased with an appropriate voltage
Vbi. The two boxes are closely spaced long superconducting islands
with sufficiently large mutual capacitance Cm, and the barrier be-
tween them is strong enough to prohibit the interbox Cooper-pair
tunneling.

FIG. 2. �Color online� Dependence of the energy levels of the
coupled-box system on the reduced offset charge nxL for nxR=0.5.
Here 
Ei=Eci /4, and EJi=Eci /10, with i=L ,R. The energy is in
units of Ec. We choose ten two-box basis states 	m ,n
 that have the
lowest electrostatic energy. The two lowest levels remain nearly
unchanged in the vicinity of the degeneracy point �nxL ,nxR�
= � 1

2 , 1
2

�.
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show below. It is thus quite natural to adopt these two
coupled-box states 	± 
 to encode a logical qubit. Below we
calculate the dephasing and relaxation properties of the 	± 

states and discuss how they can be coherently manipulated.

III. CORRELATION-INDUCED
COHERENCE-PRESERVING SUBSPACE

To clarify the origin of the correlated environments for the
two coupled CPBs, we study the fluctuations16 of the reduced
offset charge nxi, which could originate from the gate voltage
Vi, probe voltage Vbi, and background charge Q0i. The inter-
action Hamiltonian between the charge noise and the coupled
CPBs takes the form

HI = − 2�Ec −

E

2
��nL + nR���nxL + �nxR�

− 
E�nL − nR���nxL − �nxR� . �14�

We can use the language of a two-level system to describe
each of the CPBs around the degeneracy point

�nxL,nxR� = �1

2
,
1

2
� ,

and rewrite the system Hamiltonian in terms of the Pauli
matrices

HS = �
i

Hi +
1

4
Em�zL�zR,

Hi = ��i�nxi� + �m�nxj���zi −
1

2
EJi��i��xi, �15�

with 	↑ 
i�	0
i, 	↓ 
i�	1
i, and i , j=L ,R �i� j�. Here

�i�nxi� = Eci�nxi −
1

2
� ,

�m�nxj� =
1

2
Em�nxj −

1

2
� , �16�

The interaction Hamiltonian Eq. �14� between the CPB sys-
tem and the environment can now be projected onto the
single-box two-level basis

HI = �
i
�Eci�nxi +

1

2
Em�nxj��zi = Ec��zL + �zR���nxL + �nxR�

− 
E��zL�nxR + �zR�nxL� . �17�

with i , j=L ,R, and i� j. Though each CPB is directly
coupled to its own charge environment, the interisland Cou-
lomb interaction in terms of Em ensures that the environment
is partly shared between the two islands, causing the CPBs to
experience correlated noises. Indeed, notice that in Eq. �17�
the first part of the Hamiltonian should not lead to dephasing
between the 	± 
 states since it affects both identically. When
each of the two environments is modeled by a thermal bath
of simple harmonic oscillators described by the annihilation

�creation� operator bji �bji
† �, the Hamiltonian of the whole

system, including the two baths, is

H = HS + HB + HI,

HB = �
n

���nLbnL
† bnL + ��nRbnR

† bnR� ,

HI =
1

2�
i
��zi +

Em

2Eci
�zj�X�i�, �18�

with i , j=L ,R �i� j�. Here, the bath operator

X�i� = 2Eci�nxi �19�

is given by

X�i� = �
n

�nixn
�i� � �

n

�Kn
�i��bni

† + bni� , �20�

with

Kn
�i� =

�ni

�2mni��ni

, �21�

where mni and �ni denote the mass and frequency of the nth
harmonic oscillator in the bath coupled to the box i, while �ni
characterizes the coupling strength between the ith oscillator
and the box.

We first focus on pure dephasing between CPB states with
EJi��i�=0, which can be solved analytically.14 For correlated
noises studied here, the reduced off-diagonal density matrix
elements for the two lowest energy eigenstates of the
coupled-box system decay as

�ab 
 exp�− ��t�� , �22�

where the damping factor is given by

��t� = �
i=L,R

�1 −
Em

2Eci
�2

�i�t� , �23�

and a ,b= + ,− �a�b�. Here + and − denote the two lowest
eigenstates. Also,

�i�t� =
1

�
�

0

�

d� Si���� sin��t/2�
�/2

�2

, �24�

and the power spectrum of the ith bath is

Si��� = Ji���coth� ��

2kBT
� , �25�

where

Ji��� = ��
n

�Kn
�i��2��� − �ni� . �26�

When t→�, �i�t� tends to t Si���	�→0. For the symmetric
case we are considering,


E = Ec −
1

2
Em, �27�

so that
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��t� = �
E

Ec
�2

�
i=L,R

�i�t� . �28�

In the limit of strong interbox coupling, 
E	Ec, pure
dephasing can then be strongly suppressed as compared to a
single CPB. For example, for 
E=Ec /10, the prefactor takes
the value 1/100, so that the dephasing time is two orders of
magnitude longer than when the boxes are only weakly
coupled. This is in strong contrast to the corresponding
single CPB expression for pure dephasing

��t� = ��t� . �29�

For the 1/ f noise arising from the background charge fluc-
tuations, the power spectrum is

Sfi��� = �2Eci

�e
�2�i

�
, �30�

and �i�t� can be written as7

�i�t� =
1

�
�

�c

�

d� Sfi���� sin��t/2�
�/2

�2

, �31�

where the cut-off frequency �c	1/�, with � being the deco-
herence time of the system.

The above calculation focuses on the pure dephasing of
the coupled boxes and is applicable to parameter regimes
away from the double degeneracy point

�nxL,nxR� = �1

2
,
1

2
� .

At the degeneracy point, we can estimate the effects of the
charge fluctuations by directly projecting the system-
environment coupling Hamiltonian �14� into the 	± 
 basis.
The matrix elements are

�+ 	HI	 + 
 = �− 	HI	 − 
 = − 2�Ec −
1

2

E���nxL + �nxR� ,

�− 	HI	 + 
 = 
E��nxL − �nxR� . �32�

From the first equation of Eq. �32�

�+ 	HI	 + 
 − �− 	HI	 − 
 = 0, �33�

so that there is no pure dephasing between 	+ 
 and 	−
 states
as the charge fluctuations affect both identically. On the other
hand, the second equation of Eq. �32�, i.e., the transition
matrix element, dictates that charge fluctuation does lead to
relaxation between these two states. Using the spin-boson
model above, one can calculate this transition rate straight-
forwardly. Here we emphasize that compared to a single
CPB, the system-reservoir interaction strength is 
E instead
of Ec, just like in Eq. �28� for pure dephasing. Furthermore,
charge fluctuations that couple to the two boxes equally will
not lead to relaxation because the coupling here is propor-
tional to �nxL−�nxR.

In short, a pair of capacitively coupled CPBs can have
strongly suppressed pure dephasing and relaxation around
the degeneracy point because of the reduced interaction
strength. Therefore 	± 
 are perfect candidates to encode a
logical qubit. Moreover, as shown in Fig. 2, the two lowest
levels are well separated from the higher levels in the
coupled CPBs and the leakages from the qubit states to
the higher-level states can be negligibly small. In contrast,
for the single CPB qubit in the charge-flux regime where
the charging energy is reduced,9 the two lowest levels are
not well separated from the higher levels10 and appreciable
leakages are expected.

IV. DISCUSSION AND CONCLUSION

Coherence-preserving quantum states can be prepared as
follows. First, consider an initial point on the nxL-nxR plane
close to �0,0�. Here the system ground state is 	00
. Then,
shifting adiabatically �e.g., along the nxL=nxR direction� to
the region around the degeneracy point, we arrive at the
coherence-preserving ground state 	+ 
. Now, using a two-
frequency microwave to interact with the system for a period
of time �basically a Raman process�, as in the case of trapped
ions,17 one can obtain any superposition of 	± 
 states, so that
an arbitrary single qubit operation is feasible. Readout of the
logical-qubit states can be achieved by various approaches.
For instance, one can rotate the logical qubit states to the
charge eigenstates 	01
 and 	10
, so that simple charge detec-
tion using, for example, single electron transistors, can deter-
mine the state of the coupled CPBs. In the case of probe
junction detection �Fig. 1 and Ref. 11�, when appropriate
bias voltages Vbi are applied to the probe junctions, the mea-
sured current Ii through the ith probe junction is proportional
to the probability for the ith box to have a Cooper pair in it.

Decoherence in two coupled qubits18,19 and during a con-
ditional gate20 have attracted much attention recently. It has
been shown that a decoherence-free subspace exists for two
physical qubits coupled to the same bath.19 Recently, Zhou et
al.21 proposed an encoded qubit using a pair of closely
spaced CPBs sharing a common lead, and the two boxes
were assumed to couple to an identical bath. In their pro-
posed setup, fluctuations originating from the gate voltage
may be identical because of the common lead. However, the
background charge fluctuations22 cannot be so since these
fluctuations originate from local charge traps near each box.
As shown in Eq. �17�, an identical bath could only be
achieved in the presence of interbox interaction and in the
limiting case of Eci=

1
2Em. Unfortunately, at this limit, the

two-level-system description for the individual CPB breaks
down. Thus the proposed ideal single-bath scenario can
never be achieved in the presence of background charge fluc-
tuations. Nevertheless, as shown in our study of the coupled
CPBs here, though the ideal single-bath case cannot be real-
ized to obtain a decoherence-free subspace, the strong inter-
box coupling does enable a coherence-preserving logical qu-
bit where the correlated baths lead to suppression of
decoherence in the coupled CPBs. Reference 23 also pro-
poses to use interbit couplings to reduce decoherence in a
model Hamiltonian.
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We emphasize that the encoding idea presented here is
based on actively employing the interbox interaction to cor-
relate different environments experienced by the individual
physical qubits. This goes beyond the decoherence-free sub-
space concept, where symmetry alone is used �passively� to
combat noise from a naturally existing common environmen-
tal reservoir to all the qubits.

In conclusion, we have shown that in two strongly capaci-
tively coupled CPBs, the charge fluctuations experienced by
the two boxes are strongly correlated. The interbox Coulomb
correlation creates a two-box subspace of two states in which
pure dephasing and relaxation are strongly suppressed due to
the correlated noises. These two coupled CPBs can therefore

be used to encode a logical qubit that possesses superior
coherence properties. We have also discussed how such logi-
cal qubits can be manipulated and measured.
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