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I. INTRODUCTION

The generation of superpositions of macroscopic quantum
states in superconducting devices1–5 have motivated further
research on quantum information processing in these sys-
tems. Two types of superconducting qubits based on Joseph-
son junction devices have been proposed and experimentally
demonstrated. One involves two Cooper-pair charge states in
a small superconducting island connected to a circuit by a
Josephson tunnel junction and a gate capacitor �see, e.g.,
Refs. 2,3,6�. An alternative approach is based on the phase
states of a Josephson junction or the flux states in a ring
superconducting structure.4,5,7 Further, experimental observa-
tions on quantum oscillations and the demonstration of con-
ditional gate operations in two coupled charge qubits3 are
necessary first steps towards future realizations of quantum
information processors.

A crucial step in quantum information processing is the
measurement of the output quantum states. However, a quan-
tum state cannot be ascertained by a single quantum mea-
surement. This is because quantum states may comprise
many complementary features which cannot be measured si-
multaneously and precisely due to uncertainty relations.
However, all complementary aspects can in principle be ob-
served by a series of measurements on a large enough num-
ber of identically prepared copies of the quantum system.
Then we can reconstruct a quantum state from such a com-
plete set of measurements of system observables �i.e., the
quorum8�. Such a procedure is called “reconstruction of
quantum states” or quantum state tomography �QST�.

Quantum state tomography is not only important for
quantum computation, which requires the verification of the
accuracy of quantum operations, but it is also important for
fundamental physics. Many theoretical studies for tomogra-
phic reconstruction of quantum states have been done, e.g.,
Refs. 9,10,12,13. Experimentally, tomography has been in-
vestigated for a variety of systems, including, e.g., the vibra-
tional state of molecules,14 the motional quantum state of a
trapped atom,15,16 two-photon states,17 the electromagnetic
field,18 and rare-earth-metal-ion-based solid-state qubit,19 the
two-qubit states in the trapped ions.20 The quantum states of

multiple spin-1
2 nuclei have also been measured in the high-

temperature regime using NMR techniques.21–23

For continuous variable cases �e.g., the molecular vibra-
tional mode,14 motional quantum states of a trapped ion,15,16

a single-mode18 of the electromagnetic field�, the quantum
states can be known by the tomographic measurement of
their Wigner function. For the discrete variable case �e.g., in
NMR systems�, the measurements on the density matrix in
NMR experiments are realized by the NMR spectrum of the
linear combinations of “product operators,” i.e., products of
the usual angular momentum operators.23

Based on the state tomography, a quantum “black box”
connected to an unknown external reservoir can also be char-
acterized. This “black box” transfers any known input state
to an unknown output state. The determination of the quan-
tum transfer function for this black box is called quantum
process tomography.24 This procedure needs to input a large
enough number of different known states into the “black
box,” then to make tomographic measurements on output
states, finally to obtain the quantum transfer function, which
determines the “black box.” This procedure would be very
important for the case when the noisy channel is unclear.
Process tomography has been experimentally realized, e.g.,
in optical systems,25 NMR.26

To our knowledge, there is no adequate theoretical analy-
sis or experimental demonstration for the reconstruction of
qubit states in solid state systems, besides our recent work in
Ref. 27. There, we considered a very general class of spin
Hamiltonians used to model generic solid state systems.27

Here, the emphasis is not on a general model but on a spe-
cific system, superconducting qubits. Recent technical
progress makes it possible to realize quantum control in su-
perconducting quantum devices and ascertain either the
charge2,3 or the flux4 qubit states. Furthermore, practical ex-
periments on quantum computing require the knowledge of
the full information of the quantum state, so the reconstruc-
tion of quantum states in solid state systems is a very impor-
tant issue.

In this paper, we analyze how to reconstruct charge qubit
states in superconducting circuits. In principle, if all qubits
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can be measured at the same time in superconducting circuits
as in optical systems �e.g., Ref. 10�, then only single-qubit
operations are enough to assist the implementation of the
reconstruction of any multiple-qubit state. However, our pro-
posal only considers one qubit measurement at a time. This
is because simultaneous measurements of many qubits are
currently very difficult to implement11 in superconducting
circuits. Another reason is that simultaneous measurements
require many probes in contact with the qubits, inducing
more noisy channels. These multiple noisy channels will
quickly reduce the coherence of the qubit states, decreasing
the accuracy of the reconstructed states. So for two-qubit and
multiqubit state tomography, appropriate two-qubit opera-
tions are necessary, due to the constraint of a single-qubit
measurement at a time.

Although our analysis of the tomographic reconstruction
of charge qubit states might seem somewhat similar to the
one used for NMR systems,21–23 there are significant differ-
ences on how to realize the state tomography in Josephson
junction �JJ� charge qubits. For example, NMR QST �like
optical QST� also only involves single-qubit operations. A
question we will focus on is the following: is it possible to
do QST with the currently accessible experimental capability
on JJ qubits? In view of the short relaxation and decoherence
times, it is also necessary to estimate quantum operation
times required for reconstructing charge qubit states. In par-
ticular, it is not trivial to find an appropriate two-qubit op-
eration to realize all two and multiple qubit measurements.

Here, we theoretically analyze in detail the necessary ex-
perimental steps for the tomographic reconstruction of dc-
SQUID-controlled charge qubit states. This analysis can be
easily generalized to other proposals of controllable super-
conducting qubits �e.g., flux and phase qubits�. In Sec. II, the
reconstruction of single-qubit states is described in detail.
The time scales of operations for measurements of all three
unknown matrix elements are also estimated by using cur-
rently accessible experimental parameters. In Sec. III, all op-
erations required to reconstruct two-qubit states are given,
the time scales for the first and second qubit measurements
are estimated using experimentally accessible parameters. In
Sec. IV, using an example, we generalize our two-qubit to-
mography to the multiple-qubit case. Finally in Sec. V, we
discuss the “process tomography” of singe-qubit charge sys-
tems based the “state tomography.” Sections III–V contain
our most important results. The conclusions and further dis-
cussions are given in Secs. VI and VII, respectively.

II. RECONSTRUCTION OF SINGLE-QUBIT STATES

The content of this section on single-qubit operations and
the reconstruction of single-qubit states is known 28 to spe-
cialists in the optical, NMR and other areas �e.g, Refs. 8–10
and 12–23�, where the QST is extensively studied. But here
we specify a detailed description of the steps needed for the
experimental realization of the tomographic reconstruction
for charge qubit states. This should be helpful to solid state
experimentalists who are not specialists on the QST.

A. Theoretical model and single-qubit states

We consider a controllable dc-SQUID system which con-
sists of a small superconducting island with n excess Cooper-

pair charges, connected by two nominally identical ultras-
mall Josephson junctions; each having capacitance CJ

0 and
Josephson coupling energy EJ

0. A control gate voltage Vg is
coupled to the Cooper-pair island by a gate capacitance Cg.
The qubit is assumed to work in the charge regime, e.g., the
single-electron charging energy EC=e2 /2�Cg+2CJ

0� and Jo-
sephson coupling energy EJ

0 satisfy the condition EC�EJ. If
the applied gate voltage range Vg is near a value Vg=e /Cg,
only two charge states, denoted by n=0 and n=1, play a key
role, then this charged box is reduced to a two-level system
�qubit� whose dynamical evolution is governed by the
Hamiltonian6,29

H = −
1

2
�Ech�ng��z −

1

2
EJ��x��x, �1�

where we adopt the convention of charge states �0�= �↑ � and
�1�= �↓ �. The charge energy �Ech�ng�=4 EC�1−2ng� with ng

=CgVg /2e can be controlled by the gate voltage Vg. The
Josephson coupling energy EJ��x�=2 EJ

0 cos���x /�0� is ad-
justable by the external flux �x, and �0=h /2e is the flux
quantum. Our goal here is to determine any single charge
qubit state by the controllable dynamical operation governed
by the Hamiltonian �1�.

Any single-qubit state �mixed or pure� can be represented
by a density matrix operator in a basis ��0�= �↑ � , �1�= �↓ �� as

� = ��00 �01

�10 �11
� =

1

2 	
k=0,x,y,z

rk�k, �2a�

or

� = �00�0�
0� + �01�0�
1� + �10�1�
0� + �11�1�
1� , �2b�

where �k=x,y,z are Pauli operators and �k=0 is an identity op-
erator. Four real parameters rk �k=0, x, y, z� can be expressed
as

r0 = �00 + �11, rx = �01 + �10,

ry = i��01 − �10�, rz = �00 − �11.

The normalization condition �00+�11=1 ensures that the qu-
bit �2a� and �2b� can actually be determined by three real
parameters rx, ry, rz corresponding28 to a Bloch vector r�,
which satisfies the condition �r��	1 �see Fig. 1�a��. The state
� is pure if and only if �r��=1. When the state � is pure, the
Bloch vector r� defines a point on the unit three-dimensional
sphere.

These three coefficients rk �k=x, y, z� can be obtained
from measurements of �x, �y, �z. The correspondence be-
tween these three measurements and the coefficients rk is
given by

rk = Tr�� �k� ,

due to the relation Tr��i� j�=2�ij, where �ij is the Kronecker
delta.

B. Quantum operations and measurements on single-qubit
states

In principle, the state of the charge qubit can be read by a
single-electron transistor �SET�2,3,29 coupled capacitively to a
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charge qubit. Here we consider the ideal case in which the
SET is coupled to the qubit only during the measurement.
When the SET is coupled to the qubit, the dissipative current
I flowing through the SET is proportional to the probability
of a projective operator measurement �1�
1� on the qubit
state, which has actually been applied by the experiment.2,3

The �1�
1� measurement is equivalent to a �z measurement
on the state �,

p1 = Tr���1�
1�� =
1

2
�1 − Tr���z�� = �11

due to the relation

�1�
1� =
1

2
��0 − �z� .

The parameters r0 and rz can be determined by the result of
the measurement �1�
1�, together with the normalization con-
dition.

We can also relate the two other measurement operators,
�x and �y, to the operator �1�
1� �essentially �z�, which is the
measurement experimentally realized in the charge qubits.
This is because the current I flowing through the SET is
sensitive to the charge state �1�, so the single qubit operations
must be performed so that the desired parameter rx or ry is
transformed to the measured diagonal positions.

Now, we describe the steps to measure rx or ry. Let us first
choose the external flux �x=0 and suddenly drive the qubit
to the degeneracy point for a time

tx =

�

2EJ�0�
=


�

4EJ
0

such that the qubit state can be rotated −� /2 along the x
direction, here EJ�0�=EJ��x=0�.

The probability p2 of the measurement �1�
1� on the ro-
tated state is

p2 = Tr�Rx�tx�� Rx
†�tx��1�
1��

= Tr
exp�i
�

4
�x�� exp�− i

�

4
�x��1�
1��

= Tr
� exp�− i
�

4
�x��1�
1�exp�i

�

4
�x��

=
1

2
�1 + ry� , �3�

where Rx�tx�=exp�iEJ�0��xtx /2
�, Eq. �3� means that the
measurement �1�
1� on the state rotated −� /2 along the x
direction is equivalent to the measurement �y, and the rota-
tion −� /2 of the qubit is equivalent to an inverse rotation of
the measuring instrument, see Fig. 1.

In order to make the third measurement �x, the qubit state
needs now to be rotated −� /2 �or � /2� along the y direction.
This can be done �e.g., −� /2 rotation� as follows:

�i� Set �x=�0 /2 and ng=0; let the system evolve a time
tz,1=
� /8EC such that a rotation of −� /2 along the z direc-
tion is realized.

�ii� After the time tz,1, set �x=0 and ng=1/2 and let the
system evolve a time period tx,1=
� /2EJ�0�=
� /4EJ

0 such
that the system rotates −� /2 along the x direction.

�iii� Set �x=0 and ng=1/2 again and let the system
evolve a time tz,2=3
� /8EC and a rotation −3� /2 along the
z direction is obtained.

Combining the above three steps, shown in Fig. 2, a −� /2
rotation of the qubit along the y direction is realized.

�iv� After the above rotations, a measurement �1�
1� on
this rotated state must be made, which is equivalent to mea-
suring �x. Then, the measured probability becomes

FIG. 1. �Color online� The black Bloch vector indicates a qubit
state; the �yellow arrows� rx, ry, and rz represent the three compo-
nents of the Bloch vector along the x, y, and z axes. The 0 and 1 in
the north and south poles of the Bloch sphere denote the measured
states �0� and �1�, respectively. The measurement instrument is at-
tached to a pole �e.g., “1”� of the sphere. A −� /2 rotation of the
qubit state along the x direction is equivalent to a � /2 rotation of
the measuring instrument along the x direction.

FIG. 2. �Color online� The Bloch vector is the same as Fig. 1. A
−� /2 rotation of the qubit along the y direction is equivalently
realized by the rotation � /2 of the measuring instrument along the
z direction �from �a� to �b��, then a � /2 rotation along the x direc-
tion �from �b� to �c��, and a 3� /2 rotation along z direction �from
�c� to �d��.
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p3 = Tr�Rz,x,z� Rz,x,z
† �1�
1��

= Tr
exp�i
�

4
�y�� exp�− i

�

4
�y��1�
1��

=
1

2
�1 + rx�

with Rz,x,z=Rz�tz,1�Rx�tx,1�Rz�tz,2�, and

Rz�tz,1� = exp�i
2EC



�ztz,1� = exp�i

�

4
�z� ,

Rx�tx,1� = exp�i
EJ

0



�xtx,1� = exp�i

�

4
�x� ,

Rz�tz,2� = exp�i
2EC



�ztz,2� = exp�i

3�

4
�z� .

We explained how to measure the single-qubit states by
single qubit operations and measuring �1�
1�. Below, we give
an example that shows a reconstructed single-qubit state can
be graphically represented, and we further give estimates of
the operation times to obtain each of the matrix elements of
single-qubit states.

C. An example

The three measurement results �p1 , p2 , p3� can be used to
obtain four coefficients �r0 ,rx ,ry ,rz� that define a single-
qubit state. A single-qubit state can be reconstructed follow-
ing the steps presented above and an example is described
here. If we obtain rx=1, ry =�3, rz=1 by the three experi-
mentally measured probabilities �p1, p2, and p3� on a quan-
tum ensemble of an unknown charge qubit state �, then

�00 = �11 =
1

2
,

�01 =
1

4
�1 − i�3� ,

�10 =
1

4
�1 + i�3� .

Thus, the reconstructed state � can be written as

� =
1

2
��0�
0� + �1�
1��

+
1

4
��1 + i�3��1�
0��

+
1

4
��1 − i�3��0�
1��

whose real �ij
�R� and imaginary �ij

�I� parts are graphically rep-
resented in Fig. 3.

D. Operation time estimates

The coherent operations required for the tomographic
measurements are limited by the decoherence time T2. Now

let us explore whether the single-qubit state can be recon-
structed with the current experiments. To estimate the corre-
sponding time scales for quantum operations to obtain the
measurements of �y and �x, we first take the suggested pa-
rameters from Ref. 29, that is, EJ

0=100 mK �about 8.6 �eV
or 2.08 GHz� and EC=1 K �about 86 �eV or 20.8 GHz�.
Here, we use temperature units for energies as in Ref. 29.
Thus the approximate time scales of one-qubit operations to
obtain ry and rx are

tx � 5.9 � 10−11s

and

ty = tz,1 + tx,1 + tz,2 � 7.1 � 10−11s.

These time scales, required to reconstruct the single-qubit
states, are within the measured values2,3 of the decoherence
time T2 �of the order of magnitude of ns� of single-qubit
charge states.

Now let us consider another set of experimental values.
For example, if the Josephson and charge energies are taken
�second paper in Ref. 3� as 2EJ

0=45 �eV �about 520 mK or
10.9 GHz� and 4EC=580 �eV �about 6.73 K or 140 GHz�,
then the time scales required to reconstruct single-qubit
states are about tx�2.3�10−11 s and ty �3.0�10−11 s,
which are within the decoherence time T2=5 ns obtained by
that experiment.3

If we take the Josephson and charge energies from Ref.
30, that is, 2EJ

0 /h=13.0 GHz �about 625 mK or 53.7 �eV�
and 4EC /h=149.1 GHz �about 7.16 K or 618 �eV�, then the
time scales required to reconstruct single-qubit states are
about tx�1.9�10−11 s and ty �2.6�10−11 s, which are also
less than one order of magnitude of the decoherence time
T2=325 ps measured by that experiment.30

III. RECONSTRUCTION OF TWO-QUBIT STATES

A. Theoretical model and two-qubit states

In this section, we focus on the reconstruction of two-
qubit charge states. Any two-qubit state �1 can be character-
ized by a density matrix operator

FIG. 3. �Color online� Graphical representation of the density
matrix � for single-qubit states, see the example explained in Sec.
II. The real �ij

�R� and imaginary �ij
�I� parts of the density matrix ele-

ments �ij = 
i���j� �i, j=0, 1� are plotted in �a� and �b�, respectively.
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�1 =
1

4 	
i,j=0,x,y,z

ri,j�1i � �2j , �4�

where the 16 parameters ri,j are real numbers. The normal-
ization property of the quantum state requires that r0,0=1, so
the state �1 in Eq. �4� can in principle be reconstructed31 by
15 measurements described by the operators �1i � �2j, where
all i and j are not simultaneously taken to be 0. If one of �1i
�i=0, x, y, z� or �2j �i=0, x, y, z� is an identity operator
among the measurement operators �1i � �2j, we call such a
measurement a single-qubit measurement and only write out
the nonidentity Pauli operator in the following expressions.
For example, the operator �1x � �20 is called �x measurement
of the first qubit, and abbreviated by �1x. So there are nine
two-qubit measurements among measurements �1i � �2j. Re-
call that only one-qubit is involved during the measurement
process in our approach. If we want to obtain these nine
two-qubit measurements, then two-qubit operations must be
applied32 such that the single-qubit measurement can be
equivalently transformed into expected two-qubit measure-
ments.

Now our task is to find a nonlocal two-qubit operation and
use this operation to realize all necessary two-qubit measure-
ments on two-qubit states. Here we consider a model pro-
posed by Makhlin et al.,6 where two charge qubits are
coupled in parallel to a common inductor with inductance L.
The Hamiltonian6 is

H = −
1

2	
l=1

2

��Ech�nl,g��lz + EJ��lx��lx�

− Eint��1x,�2x��1y � �2y , �5�

where it is assumed that both qubits are identical, so the
charge energies �Ech�nl,g� and Josephson coupling energies
EJ��lx� take the same form as in Eq. �1�, but now �Ech�nl,g�
and EJ��lx� for each qubit can be separately controlled by
the gate voltages and external fluxes. The interaction energy
Eint for two coupled qubits can be written as

Eint��1x,�2x� =
EJ��1x�EJ��2x�

EL

with

EL = � CJ
0

Cqb
�2� �0

2

�2L
�

and Cqb
−1= �2CJ

0�−1+Cg
−1. Thus, the interaction between the

two qubits can be controlled by two external fluxes �lx ap-
plied to each qubit.

B. Quantum operations and measurements on two-qubit states

Now, we discuss how to reconstruct two-qubit states from
the experimental measurements ��1�
1��l �l=1, 2�. Single
charge qubit operations can be realized by controlling the
gate voltage and Josephson couplings. However the two-
qubit operations need to couple a pair of interacting charge
qubits. The realization of the coupling of two charge qubits
must simultaneously turn on the Josephson couplings of the

two charge qubits in Eq. �5�, then �lx terms must be included
in the two-qubit operation. However the charge energies for
two qubits can be switched off by applying gate voltages
such that nl,g=1/2 �l=1, 2�, so a two-qubit operation can be
governed by a simpler Hamiltonian

H� = −
1

2 	
l=1,2

EJ��lx��lx − Eint��1x,�2x��1y � �2y , �6�

where charging energies are set to zero, �Ech�nl,g�=0 �l=1,
2�, with n1,g=n2,g=1/2, and the external magnetic fields are
chosen such that

�1x = �2x �
�

2
�2q + 1��0

with the positive integer number q. The coupling
Eint��1x ,�2x� can be controlled by the external fluxes �1x

and �2x.
The basic two-qubit operation can be given by the time-

evolution operator U�t�=exp�−iH�t /
�, which can be written
by using the Pauli operators as

U�t� =
1

2
�cos 
� + cos ���I + inz

sin ��

2
��1x + �2x�

+ i
sin 
� − nx sin ��

2
�1z � �2z

+ i
sin 
� + nx sin ��

2
�1y � �2y

−
cos 
� − cos ��

2
�1x � �2x, �7�

where


� =
t



Eint��1x,�2x�, nz =

a
�1 + a2

,

nx =
1

�1 + a2
, a =

EJ

Eint��1x,�2x�
,

�� =
2



Eint��1x,�2x��1 + a2.

Since the two external fluxes satisfy the condition �1x=�2x,
we let EJ��1x�=EJ��2x�=EJ in the expression Eq. �7� for the
two-qubit operation. The physical meaning of the angles ��
and 
� becomes clearer by virtue of the “conjugation-by-
�� /4�	” operation33 on the time evolution operator U�t�,
which is defined as

U��t� = exp�i
�

4
��1y + �2y��U�t�exp�− i

�

4
��1y + �2y�� ,

here, �=�1y +�2y. In the conjugate representation, the time
evolution U��t� corresponds to rotations34 around the y axis
by an angle 
� and the �nx, 0, nz� axis by an angle ��. By
choosing the duration t and tuning the values of EJ and
Eint��1x ,�2x�, we can obtain any desired two-qubit opera-
tion.
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From Eq. �4�, it is known that six single-qubit measure-
ments ��1i ,�2j� with i, j=x, y, z and nine two-qubit measure-
ments ��1i � �2j� with i, j=x, y, z are enough to obtain 15
parameters ri,j of the two-qubit state �1
= �1/4�	i,j=0,x,y,zri,j�1i � �2j. The single-qubit measurements
��1�
1��l= �1/2���l0−�lz� �l=1, 2� on a given state �1can be
obtained as follows. Two single-qubit measurements �1z and
�2z can be implemented by the direct measurements ��1�
�
1��1 and ��1�
1��2 on the given state �1. Other four single-
qubit measurements �corresponding to �1x, �2x, �1y, �2y�
need single-qubit operations.

The single-qubit operations corresponding to measure-
ments �lx and �ly on two-qubit states are the same as mea-
suring �x and �y on single-qubit states. However, in the
single qubit operations, we need to switch off the interaction
of the two qubits. For example, in order to obtain the mea-
surement �1y, we need to switch off the interaction between
the two-qubit system by setting the applied external flux
�2x=� /2, and setting the first subsystem at the degeneracy
point and evolving a time t=
� /4EJ

0. Finally, we make a
measurement ��1�
1��1 on the rotated state, then the coeffi-
cient ry,0 can be obtained by this measured result. The other
three measurements can also be obtained by taking single-
qubit operations similar to �1y.

The single-qubit measurements have been obtained by the
measurements ��1�
1��l �l=1, 2� on given states by using ap-
propriate single-qubit operations as described above. In order
to find out how to obtain the two-qubit measurements via
��1�
1��l, let us consider the measurements ��1�
1��l on the
given state �1 performed by a sequence W of single-qubit
and two-qubit operations. The corresponding measured prob-
ability p can be expressed as

p = Tr�W�1W†��1�
1��l� =
1

2
−

1

2
Tr��1W†�lzW� , �8�

where we show that the measurement ��1�
1��l on the rotated
state W�1W† may be interpreted as an equivalent measure-
ment W†�lzW �l=1, 2� on the state �1. So our task now is to
find an appropriate two-qubit operation and apply this two-
qubit and single-qubit operations to the measured state �1,
such that we can equivalently obtain the desired two-qubit
measurement.

Here, the required two-qubit operation U��� can be ob-
tained by choosing the evolution time �, the Josephson cou-
pling energies EJ, and EL in Eq. �7� such that 
�= �2m
−1�� /4 and ��=n� where m, n are positive integers. The
above conditions can be satisfied if the ratio

EL

EJ
=�� 4n

2m − 1
�2

− 1,

and the evolution time � is chosen as

� =

�

4EJ

��4n�2 − �2m − 1�2.

If we choose the integers m and n to minimize the ratio
EL /EJ, then EL /EJ=�15�3.87 when ��=� and 
�=� /4; so
the two-qubit operation time � is chosen as �=
��15/4EJ.

Thus Eq. �7� is specified by the time evolution operator

U��� =
1

2�2
��1 − �2�I − �1 + �2��1x � �2x

+ i�1y � �2y + i�1z � �2z� . �9�

Combined with other single-qubit rotations, U��� can be used
to obtain all the desired coefficients ri,j corresponding to the
two-qubit measurements �1i � �2j, with i, j=x, y, z.

Let us further discuss how to obtain a desired coefficient,
for example, ry,y corresponding to the two-qubit measure-
ment �1y � �2y. We can take the following steps.

�i� We switch off the interaction between the first and
second qubits by applying an external flux �2x=� /2, which
means EJ��2x�=0. Now we only manipulate the first qubit
such that a rotation � /2 about the z axis, defined as Z1
=exp�i��1z /4�, is performed; this single-qubit operation is
described in Sec. II.

�ii� Following the single-qubit rotation Z1 of the first qu-
bit, the gate voltages are applied such that n1,g=n2,g=1/2,
which means that the two qubits work at the degeneracy
points. Simultaneously, we turn on and adjust the external
fluxes so that the external fluxes �lx, energies EL and EJ in
the two-qubit operation described by the Hamiltonian �6�
satisfy the conditions �1x=�2x���2q+1� /2 with positive
integer q and EL /EJ=�15�3.87. Afterwards, we let the sys-
tem evolve a time �=
��15/4EJ; which means that a two-
qubit rotation U��� has been performed.

The operation sequence W=U���Z1 described above
changes state �1 into

�̃ = U���Z1�1Z1
†U†��� .

�iii� Finally, when a single-qubit measurement ��1�
1��1 is
performed on the state �̃, a two-qubit measurement equiva-
lent to �1z � �2y is implemented,

Z1
†U†�����1�
1��1U���Z1 =

1

2
+

1

2�2
��1z + �1y � �2y� .

The corresponding measurement probability p̃ can be given
as

p̃ = Tr�U���Z1�1Z1
†U†�����1�
1��1�

=
1

2
+

1

2�2
Tr��1��1z + �1y � �2y��

=
1

2
+

1

2�2
�rz,0 + ry,y� . �10�

Because the coefficient rz,0=Tr��1�1z�, corresponding to the
operator �1z � �20, has been given by the single-qubit mea-
surement �1z, then the coefficient ry,y =Tr��1�1y � �2y� is
obtained via p̃ and rz,0.

In Table I, we have summarized nine equivalent two-qubit
measurements described by −�2W†�1zW on the original state
�1, which are obtained by the first qubit measurement
��1�
1��1 on the rotated state W�1W† for a sequence W of
operations with appropriately chosen single-qubit and two-
qubit operations. We can use the results corresponding to
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these nine equivalent two-qubit measurements together with
the other six single-qubit measurements to obtain all the co-
efficients corresponding to the two-qubit states, and then ob-
tain any two-qubit state.

We can also obtain coefficients rij �i, j�0� corresponding
to all two-qubit measurements by using the second qubit
measurement ��1�
1��2. For example, if we make a measure-
ment ��1�
1��2 on the rotated state �̃ considered above, we
obtain another equivalent two-qubit measurement, which is
expressed as

Z1
†U†�����1�
1��2U���Z1 =

1

2
+

1

2�2
��2z − �1x � �2x� .

Using this measurement, combined with the single-qubit
measurement �2z, we can obtain the coefficient rx,x corre-
sponding to the two-qubit measurement �1x � �2x. Nine
equivalent two-qubit measurements realized by the second
qubit ��1�
1��2 have also been summarized in Table II. Com-
paring Tables I and II shows that different operations and

steps are required in order to obtain the same coefficient for
different measurements. For example, in order to obtain rx,z,
two operation steps are needed for the first qubit measure-
ment ��1�
1��1, but it needs four steps for the second qubit
measurement ��1�
1��2.

C. An example

We can also give another schematic example for a recon-
structed two-qubit state. For instance, according to the op-
erations steps discussed above for the reconstruction of any
two-qubit state, if we obtain rx,x=1/8, rx,y =ry,x=�3/8, rz,z
=1/4 and ry,y =−1/8 from the 16 measured probabilities on
an ensemble of identically prepared copies of a two-qubit
system with unknown state ��, then we can reconstruct this
unknown state as

�� =
1

2
��00�
00� + �11�
11�� +

1

2
�1 − i�3��00�
11�

+
1

2
�1 + i�3��11�
00� ,

which is graphically shown in Fig. 4 with the real �ij,kl
��R� and

imaginary �ij,kl
��I� parts of the reconstructed state ��, where i, j,

k, l can take the values 0 or 1.

D. Operation time estimates

We can also estimate the operation time required to recon-
struct two-qubit states for the Josephson and charge
energies29 EJ

0=100 mK and EC=1 K. We assume that the
ratio EL /EJ=�15�3.87 is obtained by adjusting the external
flux �lx �l=1, 2� such that �lx=0, which means the ratio
between EL and EJ

0 should satisfy the condition EL /EJ
0

=2�15�7.74 when the circuits are fabricated. In such case,
the realization of the two-qubit operation in Eq. �9� requires
a time ��2.32�10−10 s. Our previous estimates for the
times to perform � /2 rotations about the x and z axes are
5.9�10−11 s and 3.0�10−12 s, respectively. Then, using
Tables I and II, we can estimate the total operation time
required for obtaining the coefficients of the two-qubit mea-
surements corresponding to the first or second qubit mea-
surements, respectively. We find that the required operation
times for the two-qubit measurements are less than 0.4 ns for

TABLE I. Equivalent two-qubit measurements −�2W†�1zW ob-
tained by measuring ��1�
1��1 on the state W�1W† with a sequence
of appropriately chosen quantum operations W.

Two-qubit
measurement

Quantum
operationa W

Equivalent two-qubit
measurement

�1x � �2y U��� �1z+�1x � �2y

�1x � �2z X1U��� −�1y +�1x � �2z

�1x � �2x U���Z2 �1z−�1x � �2x

�1y � �2y U���Z1 �1z+�1y � �2y

�1y � �2z X1U���Z1 �1x+�1y � �2z

�1y � �2x U���Z1Z2 �1z−�1y � �2x

�1z � �2y U���Z1X1 −�1y +�1z � �2y

�1z � �2z X1U���Z1X1 �1x+�1z � �2z

�1z � �2x U���Z1Z2X1 −�1y −�1z � �2x

aXl and Zl denote single qubit rotations � /2 of lth qubit about the x
and z axes, respectively, and �=
��15/4EJ.

TABLE II. Equivalent two-qubit measurements −�2W†�2zW ob-
tained by measuring ��1�
1��2 on the state W�1W† with a sequence
of appropriately-chosen quantum operations W.

Two-qubit
measurement

Quantum
operation W

Equivalent quantum
measurement

�1x � �2x U���Z1 �2z−�1x � �2x

�1y � �2x U��� �2z+�1y � �2x

�1z � �2x U���X1 −�2y +�1z � �2x

�1x � �2y U���Z1Z2 �2z−�1x � �2y

�1y � �2y U���Z2 �2z+�1y � �2y

�1z � �2y U���X1Z2 �2x+�1z � �2y

�1x � �2z U���Z1Z2X2 −�2y −�1x � �2z

�1y � �2z U���Z2X2 −�2y +�1y � �2z

�1z � �2z U���X1Z2X2 �2x+�1z � �2z

FIG. 4. �Color online� Graphical representation of the density
matrix �� for the two-qubit state described in the example given in
Sec. III. The real �ij,kl

��R� and imaginary �ij,kl
��I� parts of the density

matrix elements for the two-qubit state �� in the basis �00�, �01�,
�10�, �11� are plotted in �a� and �b�, respectively.
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the two-qubit measurements. The decoherence time T2 �e.g.,
the decoherence time of charge qubit is about 5 ns in Ref. 2�
experimentally obtained shows that it is possible to recon-
struct two-qubit states within the current measurement tech-
nology.

At present, completely controllable multiqubit supercon-
ducting circuits are not experimentally achievable. Here, let
us consider the operation time estimates based on another
controllable model.35 In this model, N charge qubits are
coupled to a common superconducting inductance L. The
Hamiltonian of any pair of qubits, say i and j, is

H� = 	
k=i,j

��k�z
�k� + �k�x

�k�� + ��x
�i�

� �x
�j�, �11�

where the coupling constant � can be tuned to zero by chang-
ing the flux either through the common inductance L, or
through the qubit i �or j�. Moreover, the parameters �k and �k
are, respectively, controlled by the voltage applied to the kth
qubit and the magnetic flux through the kth qubit. The con-
ditional logic gates, e.g., controlled-NOT and controlled-
phase-shift gates, can be performed by virtue of only one
two-bit operation and also single-qubit operations in this cir-
cuit. This approach is more accessible to experiments, facili-
tating tomographic measurements. According to
calculations27 of tomographic measurements for a class of
representative quantum computing models of solid state sys-
tems, the two-qubit operation required for the realization of
the multiqubit measurements in this circuit can be easily ob-
tained. That is, if the ratio between the Josephson energy EJ

0

and the two-qubit coupling energy � is EJ
0=2�, when the

circuit is fabricated, then a two-qubit operation Ũ����=
−i�1x � �2x can be obtained with the evolution time ��
�1.2�10−10 s when the Josephson energy is taken as EJ

0

=100 mK. Here, we assume that the two charge qubits are
identical and the Josephson energies are maximum when the
two-qubit operation is performed. If the charging energy is
taken as EC=1 K, then � /2 rotations around the z and x axes
need times 3.0�10−12 s and 5.9�10−11 s, respectively. The
operations to get each of the 16 �single- and two-qubit� mea-
surements can also be obtained for this model by using an
approach similar to the one described above, the estimated
operation times to obtain all coefficients of the two-qubit
measurements are less than 0.3 ns, which is also within the
experimentally obtained decoherence time T2=5 ns.

IV. RECONSTRUCTION OF MULTIPLE-QUBIT STATES

In the preceding two sections, we focused on the recon-
struction of the single- and two-qubits states. In this section,
we discuss the reconstruction of any n-qubit state. In the
multiple-qubit charge circuit, the dynamical evolution is gov-
erned by the Hamiltonian6

H = −
1

2	
l=1

n

��Ech�nl,g��lz + EJ��lx��lx�

− 	
l�k

Eint��lx,�kx��ly � �ky , �12�

where �Ech�nl,g�=4EC�1−2nl,g� ,EJ��lx�=2EJ
0 cos���lx /�0�,

and Eint��lx ,�kx� take the same form as in Eq. �5�. We also
assume EL /2EJ

0=�15�3.87 and the single qubits are nomi-
nally identical. By virtue of the controllable Hamiltonian
�12�, in principle we can use �n−1� two-qubit operations
together with some single-qubit operations to reconstruct any
n-qubit state, which can also be described by the density
matrix operator

�2 =
1

2n 	
l1,l2,…,ln=0,x,y,z

rl1,l2,…,ln
�l1

� �l2
¯ � �ln

with 2n real parameters rl1,l2,…,ln
corresponding to the mea-

surements �l1
� �l2

¯ � �ln
. But, here, we only show how to

obtain a coefficient corresponding to a three-qubit measure-
ment. The generalization to obtain coefficients of multiple-
qubit measurements is straightforward.

In order to determine a three-qubit state, we need to make,
single-qubit, two-qubit, and three-qubit measurements. It is
known that all coefficients corresponding to single-qubit and
two-qubit measurements can be obtained by using the same
operations and measurements ��1�
1��l=1,2 3 as in Secs. I and
II. When we make two-qubit operations on, for example, the
first and second qubits, the interaction of the third qubit with
these two qubits is switched off by the applied flux �3x
=� /2. Now let us show how to obtain the coefficients cor-
responding to the three-qubit measurements. For example,
for the coefficient rx,z,y of the measurement �1x � �2z � �3y,
we should make the following sequence of quantum opera-
tions.

�i� Switch off the interaction of the third qubit with the
first and second qubits by applying the flux �3x=� /2. Then
make a two-qubit operation U12���, with the same form as
Eq. �9�. We use the subscript “12” to denote two-qubit op-
erations on the first and second qubits.

�ii� Switch off the interaction between the first and sec-
ond qubits by setting �2x=� /2, and making a � /2 rotation
about the z axis for the first qubit.

�iii� Make another two-qubit rotation U13��� on the first
and third qubits by adjusting the external fluxes such that
�1x=�3x=0. The two-qubit operation U13��� takes the same
form as Eq. �9�, but the subscript “2” of the Pauli operators
in Eq. �9� is replaced by the subscript “3.” This process can
be described as

�2 →
U12���

U12����2U12
† ���→

Z1

Z1U12����2U12
† ���Z1

†

→
U13

U13Z1U12����2U12
† ���Z1

†U13
† . �13�

�iv� Finally, make a measurement ��1�
1��1 on the above
rotated state, and obtain the equivalent measurement

U12
† ���Z1

†U13
† ��1�
1��1U13Z1U12 =

1

2
−

1

4
�1z +

1

4
��1x � �2y

+ �1y � �3y − �1x � �2z � �3y� , �14�

and corresponding measurement result p� is

p� =
1

2
−

rz,0,0 + rx,y,0 + ry,0,y − rx,z,y

4
. �15�
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Finally, we can obtain the coefficient rx,y,z based on p� and
the single- and two-qubit measurement results rz,0,0, rx,y,0,
and ry,0,y, which can be obtained by using the same way
described in Secs. II and III. Other coefficients correspond-
ing to three-qubit measurements can also be obtained by us-
ing a similar procedure. According to the estimated time for
reconstructing the two-qubit states, we believe that it is also
possible to reconstruct the three-qubit states using current
technology. Any multiple qubit can also be reconstructed by
sequentially designing the single-qubit and two-qubit opera-
tions. The generalization to multiple qubit is an extension of
the procedure that we outlined above.

V. QUANTUM PROCESS TOMOGRAPHY

It is worth briefly reviewing that, based on qubit state
tomography, the noisy channel �usually denoted as the “black
box”� of the controllable charge qubits can also be deter-
mined. This experimental determination of the dynamics of
the “black box” is called quantum process tomography,24

which can be described as follows:
�i� Many known quantum states of the system under in-

vestigation are input into the “black box,” which is an un-
known quantum channel, for example, an arbitrary environ-
ment.

�ii� After a certain time, the output states evolve into un-
known states.

�iii� By using the state tomography, we can ascertain
these unknown states.

�iv� Finally, an unknown quantum channel is determined
by the data obtained for the tomographic measurements on
these states.

Experimentally, in order to determine the noisy channel of
the studied N qubits,24 N2 known states need to be prepared,
and these states must have density matrices which span the
space of any allowed input state density matrices.

We have shown that single-qubit state tomography is ex-
perimentally accessible. In order to perform quantum process
tomography for a single charge qubit. Four kinds of different
charge states �0�, �1�, ��0�+ �1�� /�2, and ��0�+ i�1�� /�2 need
to be experimentally prepared. These states can be generated
in a SQUID-based charge qubit with current
experiments.2,3,30 Thus, the process tomography of a single
charge qubit is achievable using current technology. With
further developments of this technique, the process tomogra-
phy of multiple-charge qubits could also be realized, when
data from multiqubit state tomography is obtainable.

VI. CONCLUSIONS

In conclusion, we discuss how to reconstruct charge qubit
states via one-qubit measurements using controllable super-
conducting quantum devices. Detailed operations for recon-
structing single- and two-qubit states are presented. Any
n-qubit state can also be reconstructed by using n−1 two-
qubit operations similar to Eq. �9� for different qubit pairs
and combining these with required single-qubit operations.
Thus the nonlocal two-qubit operation Eq. �9� plays a key
role in the reconstruction of the multiple-qubit states. How-

ever, this two-qubit operation is not unique for achieving our
purpose. We should note that operations to obtain a fixed
coefficient corresponding to multiple-qubit measurements
are not unique. The measurements ��1�
1��l�l=1,2 ,… ,n� on
the given state with fixed operations W are different for each
qubit l, because W is not symmetric when exchanging l. Our
proposal can also be generalized to other superconducting
charge qubit circuits with the coupling mediated by photons
or a tunable oscillator, e.g., Refs. 36,37, or other types of
superconducting qubits, e.g., Refs. 38–42.

We find that the longest operation times to obtain the
coefficient of single-qubit and two-qubit states are of the
order of 0.01 ns and 0.4 ns, respectively, which is less than
the decoherence time2 T2=5 ns. Moreover, the � and � /2
pulses for single-qubit operations can be performed very
well, e.g., in the experiments of the charge echo,43 and
NMR-like experiments.44 Another experimental estimate
shows us that the manipulation accuracy can reach 80%–
90% �e.g., as in the second reference of Ref. 2�. Thus the
single-qubit states could be reconstructed and the process
tomography should also be accessible in single-qubit charge
systems with current experimental capabilities. In principle,
the two-qubit states can also be reconstructed by virtue of
well-controlled time for the two-qubit operation. We should
also note that larger values of the charge energy Ech, the
Josephson energy EJ

0, and coupling energy Eint��lx ,�kx� can
make the operation times shorter. Thus these larger values
should be realized in order to facilitate the tomographic re-
construction.

Quantum oscillations and conditional gate operations
have been demonstrated in two coupled charge qubits with
the interactions3 always turned on. Completely controllable
two-qubit charge systems have not been realized yet. How-
ever, the coupled two charge qubits, allowing on and off
switching of the interaction, might be realizable in the
future.45 Then our proposal will become realizable. Because
the unswitchable two-qubit interaction makes single-qubit
operations impossible, our proposed scheme cannot be
readily used to the experimental reconstruction of multiple-
qubit charge states when the two-qubit interactions are al-
ways turned on. However, for the two-qubit circuit with
“always-on” interaction, most of the single-qubit
parameters38–42 can be tuned. We can adjust these parameters
to obtain 15 different two-qubit operations, and then derive
15 different measurement equations with these operations on
input states. Afterwards, the two-qubit states can finally be
determined. The details on how to reconstruct the supercon-
ducting two-qubit states with the “always-on” couplings will
be presented elsewhere. However, how to reconstruct qubit
states in multiple-qubit �more than two qubits� circuits with
“always-on” interactions is an open problem.

VII. DISCUSSIONS

In our paper, to simplify the algebra, we focus on one
particular family of measurements which are constructed by
the direct product of the Pauli operators. However, one can
conceive that other complete sets of measurements can also
be used to do tomography. These different complete sets of
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measurements can be transformed to each other by unitary
operators. In practice, within the duration of the controllable
manipulation, the smaller Bloch rotation might be advanta-
geous to speed up the measurements, but it might also de-
crease the accuracies of the measurements due to a longer
measuring time. How to choose suitable sets of operations
during the measurement process is an important technical
question for experiments.

It should also be pointed out that here we discuss an ideal
case. In practice, the environmental effect is unavoidable,
which result in the relaxation �characterized by T1� and de-
coherence �characterized by T2� of the qubits. For example,
in the single-qubit state tomography, non-negligible T1 de-
creases all three probabilities of the measurements, however
non-negligible T2 reduces the probabilities of the measure-
ments with rotations about x and y directions.28 So the envi-
ronmental effect on the reconstructed states is required to be
considered in practice for more specific model. Further, the
required quantum operations, especially two-qubit nonlocal
operation, are difficult to accurately implement during the
process of experiments. For example, the probabilities of
theoretical calculations with qubit operations for the first-
and second-qubit measurements ��1�
1��1 and ��1�
1��2 are re-
lated to parameters ri,j of the equivalent measurements
shown in Tables I and II, however, the measuring results of
inaccurately experimental two-qubit operations will actually
relate to not only these results shown in Tables I and II, but
also other extra terms. If these extra terms are not negligible,
the reconstructed states might violate the properties of the
positive semidefiniteness of the physical state �. A third error
source is the imperfect readout of the charge qubit �for ex-
periments, e.g., using single charge qubit,43 the fidelity of the
readout can reach 99%�. The limited statistical data also af-

fect the reconstruction of the states. All these imperfections
can make the reconstructed states violate the important basic
properties of the physical states, normalization, Hermiticity,
and positivity. In order to reconstruct a physical qubit state,
in principle the maximum likelihood estimation of density
matrices can be employed to minimize experimental errors.
This method can be applied to numerically optimize the ex-
perimental data, which has been used in the optical systems46

and more detailed discussions on this method can be found
in. Ref. 47.

When the tomography is processed, the external flux ap-
plied to the SQUID needs to be very quickly changed. For
instance, the duration for changing �0 /2 within a SQUID
loop should at least be less than the decoherence time. Thus
a pulse field magnetometer with a rapid sweep rate may be
required in this experiment. If the sweep rate48 of the pulse
field magnetometer reaches, e.g., 108 Oe/s, then the time to
change �0 /2 in the loop needs about 0.25 ns for a SQUID
area of 400 ��m�2.

We also notice that the number of rotations for the mea-
sured density matrix elements to a preferable direction �e.g.,
y instead of z� grows exponentially with the number of qu-
bits. How to solve this problem is still an open question.
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