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Using the rigid magnetic vortex model, we develop a substantially modified Landau theory approach for
analytically studying phase transitions between different spin arrangements in circular submicron magnetic
dots subject to an in-plane externally-applied magnetic field. We introduce a novel order parameter: the inverse
distance between the center of the circular dot and the vortex core. This order parameter is suitable for
describing closed spin configurations such as curved or bent-spin structures and magnetic vortices. Depending
on the radius and thickness of the dot as well as the exchange coupling, there are five different regimes for the
magnetization reversal process when decreasing the in-plane magnetic field. The magnetization-reversal re-
gimes obtained here cover practically all possible magnetization reversal processes. Moreover, we have derived
the change of the dynamical response of the spins near the phase transitions and obtained a “critical slowing
down” at the second order phase transition from the high-field parallel-spin state to the @Dysiedpegspin
phase. We predict a transition between the vortex and the parallel-spin state by quickly changing the magnetic
field—providing the possibility to control the magnetic state of dots by changing either the value of the
external magnetic field and/or its sweep rate. We study an illuminating mechanical @mad&ting instability
of the transition between the parallel-spin state and the curved spinistata magnetic buckling transitipn
In analogy to the magnetic-disk case, we also develop a modified Landau theory for studying mechanical
buckling instabilities of a compressed elastic rod embedded in an elastic medium. We show that the transition
to a buckled state can be either first or second order depending on the ratio of the elasticity of the rod and the
elasticity of the external medium. We derive the critical slowing down for the second-order mechanical
buckling transition.
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[. INTRODUCTION aspect ratio, interdot distance, and the exchange length, ob-
served spin configurations include out-of-plaffe?? and
in-plane324 vortices, the onion stat&;?*the C and S bent

Recent achievements in nanotechnology now allow theitates'6.21-24etc. However, there is still no general and clear
fabrication of different arrays of small magnetic dots of vari- understanding of how each one of these magnetic phases
ous shapes and different interdot spacihig8.The size of transforms into another one when the magnetic field
these small magnetic dots range from several tens to severghanges. For instance, recent simulatfdrié pose the ques-
hundred nanometers in length and from a few to several tengon of why, in some region of parameters, the vortex state
of nanometers in thickness. Such dot arrays are potentialljoes not contribute to the reversal magnetization process
useful for memory elemenﬂsmagnetic field sensoﬂ§,and even though it provides the minimum energy at zero mag-
logic devices; among other applications. By using different netic field. Another related unclear issuénisv one magnetic
experimental techniques, including magneto-optical Kerrspin configuration loses its stability and transforms into an-
effect!-2811-13 | orentz transmission electron other oneand what happens with thdynamical response of
microscopy?”'% and magnetic force microscopy;®*>it  magnetic dots when the spin configuration changes near the
has already been observed, that the magnetic véR€x,"  phase boundaries
parallel-spin statég and different realizations of curved spin = The detailed investigation of how different spin arrange-
stategalso known as bent spin states, including the so-calle¢nents evolve when changing the in-plane magnetic field for
C-phase(e.g. Refs. 6 and )0 and the S-phasge.g., Ref. different sets of parameters is very time consuming compu-
10)] compete for the magnetization reversal process and thgtionally (e.g., Ref. 22 and can sometimes provide contra-
remanent state. For instance, different sequences of the%tory resultssee, e.g., Ref. J@&lepending on the computer
magnetic states can contribute to the magnetization reversgbdes used. Thus, it is very desirable to explore alternative
process depending on the shape of the B6S,dot sizes,  ways to study this problem without the use of micromagnetic
interdot distancé$~'* and dot arrangement$!? Also, the  computer codes.
detailed spin configuration depends on small structural de-
fects, surface roughne¥sand small variation of the shape B. Novel order parameters to describe magnetic and
of the dot<® mechanical phase transitions

Recent micromagnetic simulations also suggest different Instead of the usual microscopic description of spin ar-
types of spin arrangements. Depending on the dot shape, itangements, we use a modified Landau-typeeory, study-

A. Overview of magnetic microdots
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ing the general properties of the magnetic phase evolution ir

micromagnetic dots. Indeed, the most significant modern ad- y H
vance in our general understanding of equilibrium critical (a)

phenomen®?” was preceded by the gradual realization that

apparently dissimilar and unrelated phenome@ng., chemi-
cal, mechanical, optical, magnetic, superconducting and su
perfluid transitionsshared some commonalities near critical
points. More recently, the focus has shifted to systems driver
away from equilibrium(e.g., Refs. 28—31or in metastable
states, and to the search for common behaviors and trend
near their phase transitions. For example, the mechanice
stick-slip plastic effect, known as the Portevin-Le Chételier
effect (PLC), was studied in Ref. 28 by compressing Al-
Mg alloys in a very large deformation range, and the re-
sults interpreted from the viewpoint of phase transitions H
and critical phenomena. The experiments in Refs. 28 anc

29 applied a generalized force, the externally imposed
stress, on metallic samples that responded by generatin (b)
intermittent bursts. This is the mechanical analog of ap-
plying an external magnetic field, another generalized
force, to a spin configuration, and monitor its continuous
and discontinuous response. The mechanical response w
guantified by the rate of burst generation,m s Which

can be seen as the order parameter for the mechanic:
stick-slip plastic effect observed the#&This is the analog

of the magnetizatiorM in a magnet, or the density of
paired electrons in superconductors.

In order to develop our modified Landau-type theory for
studying the phase transitions among different spin arrange-
ments in micromagnetic dots, we restrict ourselves to circu-
lar flat dots with no interdot interactions, which is vaHdf

FIG. 1. (a) Schematic diagram of a magnetic vortex sitting in-

. . . side the dot and shifted from the dot center because of an applied
the interdot distance is larger than the dot radfusviore- in-plane external magnetic field. The coordinate system is cen-

over, we will utilize the commonly used ,“”g'd" V(_)rtex tered at the vortex core. Tleeaxis is perpendicular to the surface of
mOdel(See’_ e.g., Refs. 11, 20, 21, and),:%\?/hlch describes  he dot and towards the readé) The so-called C-phase or bent
different spin arrangements in terms of the displacement odpin configuration is modeled as a magnetic vortex sitting outside
the vortex core from the disk center. Namely, based on eathe dot. For this cases> 1), the origin of the coordinate system is
lier works3334several group$-2°2--32have assumed that the [ocated at the dot center. The angielescribes the possible rotation
magnetic vortex corgFig. 1(a)] moves away from the center of the vortex around the dot center. The angle and the
of the disk, keeping the spin arrangement unchanged, wheg-dependent distancgg($) and p,($) are used in Appendix A in
the magnetic field increases from zero to an “annihilationorder to derive the exchange and Zeeman energies.
field” corresponding to the disappearance of the vortex.
When the externally applied in-plane magnetic field de-
creases from some very high value, the center of the magarray of micromagnetic dots. Of course this model is phe-
netic vortex can move from infinityparallel-spin state nomenological, but has been verified via micromagnetic
[(sometimes called single-domain s&jgtowards the center simulations and experiments. In addition, this model pro-
of the disk with the vortex core still sitting outside the dot vides a great advantage: the spin system can be described by
[Fig. 1(b)]—this describes the so-called C-ph&sé since only one degree of freedom—the distansebetween the
the spin arrangement inside the disk has a C-shape configmagnetic vortex and the dot center. This makes the problem
ration. Therefore, we will consider how these three magneti@nalytically tractable.
phasegthe vortex phase, the C-phase and the parallel-spin Here, we introduce a novel order parameter, whichds
stat§ evolve when the in-plane magnetic field is varied.  the usual average magnetization used for description the
Note that the rigid vortex model has been successfullynagnetic phase transiti&hin bulk materials, but the inverse
used to obtain values of the applied magnetic fields for thelistanceyy=1/s between the center of the disk and the vortex
annihilation and nucleation of a vorféx%2tin small micro-  center. Expanding the energy of the rigid vortex with respect
magnetic disks. These results are consistent with both experie this new order parameter, we derive a modified Landau-
ments and numerical simulations. Also, the rigid vortextype theory describing magnetic states for micromagnetic
model has been useful to study some dynamical properties afisks. Interestingly, the order parameter introduced here ex-
magnetic vortice$® These workge.g., Refs. 11, 20, 21, 32, hibits some analogies with other systems, including elastic
and 3§ almost prove the applicability of the rigid vortex and plastic deformation transitioAFor the micromagnetic
model for describing the evolution of spin structures in andisk case, the order parameter
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1 spin arrangementthe C phasgmediates the transition be-
b= s D tween the parallel-spin state and the vortex state. Moreover,
the transition from the parallel-spin state to the C-phasel
describes transitions among metastable states, while for plagice versais a continuous second-order transition, while the

tic stick-slip deformatior®® C-phase transforms to the vortex state via a discontinuous
1 transition.

Wy = (2) (3) For smaller disk radius: the vortex state does not par-

Tbursts ticipate in the magnetization reversal process while the

is used to describe a temporal order parameter. Near the dparallel-spin state first transforms to the C-phase, which sur-
namic critical points, the order parametgy=1/m,,s0f the ~ Vives up to zero magnetic field. When the magnetic field
PLC effect exhibits large fluctuations, and “critical slowing changes its polarity, the C-phase rotates first and then trans-
down,” in analogy with the critical slowing down predicted forms to a parallel-spin state at a high negative external field.
here for micromagnetic disks. Note that critical slowing This rotation of the C-phase when the polarity changes cor-
down is a quite general dynamical property near second ofesponds to a Goldstone mode moving along the minima of a
der phase transitions, and can manifest itself in condensdtt-shaped potential. This rotation, like all Goldstone modes,
matter, cosmology, and other aréés. costs either zero or little energy.

We have found a much closer mechanical analogdoy- (4) For even smaller disk radius: the parallel-spin state
paring the transition between the parallel-spin state androtates as a whole at zero magnetic field. Nevertheless, the
curved spin state (magnetic buckling) with the known mevortex phase is stable or metastable at low magnetic fields in
chanical buckling instabilitiegsee, e.g., Chap. Il of Ref. 38  the third and fourth reversal magnetization regimes described
This analogy is schematically shown in Fig. 2. Using theabove; this results in the initighirgin) magnetization pro-
approach we develop for the micromagnetic disk case, w€€ss.
study the second and first order buckling transitions for a (5) For even smaller radius: the parallel-spin phase is the
compressed rod placed in an elastic medf®ur approach only state having an energy minimum for any value of the
is more general than other approaches used for studying tixternal magnetic field. The vortex and C phase are not
second-order buckling transitigf° accessible.

Note that recently there is a growing interest in the buck- The dynamical response of the spin configurations
ling of small rods in the context of, e.g., mechanical properchanges drastically at the phase transitions, produciri
ties and stability of carbon nanotub®s* multilayers?®  cal slowing down” at the second-order phase transition be-
biopolymers!’48 DNA,*%%0 and fractur€l52 A nice modern tween the parallel-spin and the C phas¥e want to stress
introduction to the application of buckling to pattern forma- that the obtained physical scenarios are related tcs|poa-
tion in physical and biological systems can be found in Reftaneous symmetry breakingt the transitions between the
53. Also, the mechanical bending and buckling of microrodsparallel-spin state and the bent or vortex states and, there-
is currently explored for novel applications in nano- fore, these results are more general than the rigid vortex

mechanicge.g., Ref. 54 as well as for quantum detection model itself. Moreover, our predicted “critical slowing
and information processiriy->8 down” has already been verified in micromagnetic

simulations®® this confirms the second order phase transition
derived here between the parallel-spin phase and the
C-phase. Hence, this physical picture could be generalized to
Although the simple rigid vortex model cannot describesome extent to much more complicated spin configurations
very complicated spin arrangements in magnetic detg., in the circular thin dotd%2223and certainly can be used as a
“S”-shaped spin arrangemejtshe magnetization-reversal guide to look for novel ways to control spin configuration in
regimes obtained here cover practically all possible magnemagnetic dots. It can also be generalized to micromagnetic
tization reversal processes. Depending on the radius amdisks exposed &ransverseor out-of-plane applied magnetic
thickness of the dot, as well as the exchange coupling, therield.
are five different regimeésee Fig. 3 for the magnetization Using the very physical analog¥igs. 2a)—2(d)] between
reversal process when decreasing the externally applied inkhe “straight-to-bent rod” Euler buckling instability and the
plane magnetic field. “parallel-to-curved” spin configuration phase transition in
(1) For large radius of the microdisk: when lowering the micro-magnetic disks, we have extended our modified
magnetic field from an initial high value, the parallel-spin Landau-type theory approa¢kigs. 2e)—-2(h)] for an elastic
magnetic state of the microdisk becomes metastable and thead embedded in an elastic medium. We found that the buck-
unstable for a certain value of tifeucleation external mag- ling transition can be either first or second order depending
netic fieldH, and transforms to the vortex phagéa a first  on the ratio of the rod and external-medium elasticity. For
order phase transitignWhen the magnetic field changes po- the case of the second order buckling, we predict that the
larity and increases in absolute value, the vortex phase firgstynamical response exhibits a “critical slowing down.”

C. Summary of results

becomes metastable and afterwards it transfo¢amother It is important to stress that thresults obtained for both
discontinuous transitionto a parallel-spin state at a certain magnetic and mechanical buckling do not seem to be model-
negative value, Hg,, of the magnetic field. dependent since they are based on the general symmetry-

(2) For intermediate disk radius: the bent or C-shapecbreaking mechanism of phase transitions.
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FIG. 2. (Color onling (a—d When increasing an ex-
ternally applied forcd on a compressed bar, it eventu-
ally changes from a staight configuratioa) to a bent
one(b) via a(first or second ordéemuckling transition.
This Euler Buckling instability Ref. 38 is an example of
spontaneous symmetry breakifige., the bar can bend
either facing left or right We study this here as a phase
transition. Here we also consider a magnetic analog of
this mechanical spontaneous symmetry breaking transi-
tion. When decreasing the value of an externally applied
magnetic fieldH, the spin arrangement inside a micro-
magnetic disk changes from a “straight” or “perfectly
aligned” parallel-spin configuratiofc) to a “bent” or
C-shaped magnetizatiqu) with the spin configuration
following a curved or bent shape. H/plays the role of
a generalized force. This is an example of a magnetic
spontaneous symmetry breaking transitiomg., the
C-phase can face either to the left or to the righhis is
studied here as a phase transition by expanding the mag-
netic energy of the dot. The order paramet@vs and
) versus “generalized forces” are schematically shown
in (e,0. The effective response function, or susceptibil-
ity, for the standard ferromagnetic-paramagnetic phase
transition and the buckling phase transition are com-
pared in(f, h). (e) For zero externally applied magnetic
field H, the magnetizatioM is zero in the paramagnetic
phase and starts to continuously increase in the ferro-
magnetic phase when lowering the temperature below
T.. As schematically shown ite), an applied magnetic
field H+ 0 smears out th#(T) phase transition, result-
ing in a nonzero magnetization in the paramagnetic
phase(f) The magnetic susceptibility=0M/JH has a
peak atT.. (g) The transverse buckling amplitudg(f)
increases continuously when the compression fdrce
exceeds a critical valug,, for small values of the elas-
ticity « of the external medium. However, the continu-
ous y,(f) transition becomes a discontinuo(@st or-
den transition for higher values of the elasticityr
> ay). (h) The buckling of the rod becomes very sensi-
tive to changes in the parameters when it is nt{ar
exhibiting critical slowing down and a peaked effective
susceptibility y,=di,/ dae. A closer analog of the exter-
nal magnetic fieldH is an external forcé, perpendicu-
lar to the rod and applied near its center. Note that
buckles the rod whilex suppresses its buckling. More
precisely, sufficiently large values of eithér, or f
buckle the rod, when is sufficiently weak. Ifa— oo,
thenf and/orf, will not be able to buckle the rod.

II. ENERGY OF SPINS IN A DOT IN A MAGNETIC FIELD energyW,, is determinede.g., Ref. 21 by
The energy of a spin system in a dot subject to an external
magnetic field contains three contributioiig:the exchange
energy, describing nearest-neighboring spin interactigis;
the magnetostatic energy, attributed to the magnetic interac-
tion of spins; andiii) the Zeeman energy, which takes into wherem=M/Mjs is the dimensionless magnetization normal-
consideration the interaction of spins with the external magized to the saturation magnetizatidh,, C is the exchange
netic field. In the continuous approximation, the exchangeconstant, while the integration is over the dot volume. The

ex=%CJd3f [(Vmo?+(Vm)?+(Ym)?],  (3)
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FIG. 3. (Color onling (a) Phase diagram showing the domains of parameters for the different sequences of transitions among three stable
and metastable spin configurations inside a micromagnetic disk. The parameters are the square of the redueéldi’ﬁalﬁums the aspect
ratio B=L/R. Above the dotted top curve, the parallel spin state, which exists for high applied in-plane magnetic fields, discontinuously
transforms to a magnetic vortex sitting inside the disk. This is because the large radius of the microdisk can easily accommodate a vortex
inside. For parameter values between the dotted and continuous ¢argesfor smaller disk radius at a fixe8), a second-order phase
transition from the parallel spin configuration to the C-phase occurs first. Upon further lowering the in-plane field, the C phase abruptly
transforms to a vortex sitting inside the disk. Between the dashed and continuous curves, the C-phase survivek=dawd o0, and
rotates as a whole when the magnetic field changes its polarity. This rotation costs little or no energy and it is a GoldstgRefiode
61-66. Below the dashed curve, the magnetization reversal process proceeds via a rotation of the parallel-spin state asres@hBheeat
though the vortex state does not contribute to the magnetization reversal process below the continuous curve, the magnetic vortex is stable
or metastable at low magnetic fields above the continuous curve located at the bottom of the diagram. In practice, the stable or metastable
vortex states below the continuous curve cannot be reached besides at high temperaturesochvemgies suddenly. Below this continuous
bottom curve, the magnetic vortex does not correspond to an energy minimum and it is unstable for anyhvgh)eRbfase diagram plotted
on the plangmagnetic field%generalized forgg*=h=H/M,, reduced radiusR/Ry]. This shows magnetization reversal processes for a
fixed aspect ratigd=L/R=1 when lowering the applied magnetic fiehdfrom a high valueh>h.. Dashed(solid) lines correspond to
first-(secondy order phase transitions. The short black segment at the top left corner corresponds to Goldstone modes, where the magneti-
zation can be rotated with zero or little energy cost. For the case of increagiog a high negative value<-h., the diagram is inverted
with respect to thén=0 axis. In order to construct this diagram, we use E§8) and(B4) and the criteriony=1 for penetrating a magnetic
vortex (transition from the C-phase to the vortex sjate
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TABLE |. Comparison between the usual Landau approach to study magnetic phase transitions and the
modified version studied here.

Standard approach

Our approach used here

Order parameter Magnetizatidv Y=1/s=
(disk-vortex distance?

High T or M=0 =0 (parallel-spin phage

high H phase (high T) (high H)

Low T or M=+#0 ¢+ 0 (C or vortex phase

low H phase (low T) (low H)

T=0 or M=Mgq For certain parameter values

H=0 phase (T=0) =0 (vortex centered

in the dot center aiti=0)

Energy[order parametér

FL[M]:FL0+aM2+ bM4_HM

Flyl=Fo+Ay?+By*+O(4)

Energy expansion
coefficients

T-dependent,
phenomenological

H-dependent,
analytically derived

Stability of the phases
determined by

Truncated series expansion of
FM]

Full expression of
wl ] (at all orders iny)

Odd powers are
zero because of

symmetry
FLUM]=F[-M]

Analytically derived; this already satisfies
the symmetry restrictiof[ ] =F[ -]

Coefficient of 2 or M?

acx(T-Ty)

Acx(h=h)

Coefficient ofy* or M*

b=const>0

B(h,C,R,L)=0

1st order transition

requires cubic teram?

A changes sign wheB<0

2nd order transition

a changes sign and>0

A changes sign wheB>0

Order parameter
nearT, or h,

M (Te—T)Y2 (nearT,)

< (he—h)Y2 (nearh,)

Susceptibility
nearT, or h,

IM(T)H = [ T-T™*
(nearT.)

dy(h)aTec|h=hg|P
(nearh,)

Critical slowing down
nearT. or h.

SM= deviation from equilibrium
SM(t) cexp(—t/ 7y)
Tn=(Te-D™, T<T,
Tn=(T-To™, T>T,

dy= deviation from equilibrium

SuAt) < exp(—t/ 7)

r=-7B2/A3=51278? / (h.~h)?}, h<h,

-1/4

y=(2At/ n+y4t=0)""*, h>n,

magnetic energyV,, is determined by the surface magnetic

charge®?1%2as

Wm:%JdSJ as 20

r=r]

WH:—J d® M(r) -H (5)
\%

with integration over the volume of a dot.

(4)

Ill. RIGID VORTEX MODEL

In order to obtain the energy of the vortex sitting either
wheres=M -n is the magnetic charge density with unit vec- inside or outside the circular dot we need to know the mag-
tor n directed outside of the dot surface, whilandr’ are  Nhetization as a function of the vortex position. In the rigid
the positions of the elements of the surface. Here, the inte0rtéx model, the magnetization inside the dot is defined by
gration has to be performed over the dot surface. The Zedhe solution:3¢m,=0, my=£sin 9(p), andm,= +cos ¥(p),
man energyW, has the usual form, where tafd(p)/2]=p/b, with vortex core radius. Herem,,
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FIG. 4. (Color online The evolution of the dependence of the total enexgy) when lowering the applied in-plane magnetic fiéld
=H/M,, for the parameters chosen at point A of the diagram in Hig). For highh (e.g.,h=5) there is only one minimum of the energy
w corresponding to the parallel spin stgtee bottom dashed lineFor lower values of the applied field, a metastable energy minimum
associated with a vortex inside the disk appears and then deepens when further ldwghi@agontinuous ling Finally, for even lower
values ofh, the minimum energy corresponding to the parallel spin state disappbardop dotted ling and the spin arrangement
discontinuously changes to a vortex state. The corresponding magnetization loop is shown in the right bottom corner.

m,, andm, are the magnetization components using a cylin- R(Z) 4h cos ¢
drical coordinate systeltp, ¢,2) with its origin at the center ~ W(Ss) = ﬁln(l -7 - 3, °
of the rigid vortex[Fig. 1(@)]. Also ¥ denotes the angle be- m
tween the local magnetization and th@xis. Thez-axis in (6)
Fig. 1 is perpendicular to the page and directed upward
(towards the readgr

As was done in Refs. 21 and 60, hereafter we will neglect S (™ K ,
the vortex core region. Note that as soon as the radius of the Win = ZJ d¢f do
dot is larger than the vortex core, the contribution of the core i o

GshH+w, 1-s>b,

With magnetostatic energy

region to the total energy gives a physically irrelevant energy K(¢p=-¢',B)sin ¢ sin ¢’

offset when the magnetic vortex is inside the dot. Of course, X V1+$-25cosg1+s2—-25cos e’ ()
this assumption becomes invalid and we, strictly speaking,

should take the core into account when the vortex apand

proaches the dot side surface from both inside and outside of J ; >

the dot. However, the applicability of the “rigid” vortex K(d)_¢,,ﬁ):|nv/2[l—00$¢—¢ NtE+5
model itself becomes problematic in this case due to the V2[1-cod¢p— )]+ B - B
elliptical deformation of the vortex spin arrangemésée, >

for instance, Ref. 22 Thus, we can neglect the vortex core - —[V2[1-cog¢ - ¢")]+ B°

in the whole region of the applicability of the rigid vortex B

model. In such a case the magnetization can be approximated - \2[1 - coge - ¢)]]. (8)

by m=te, with the ¢-unit vectore,,. .
In this case the total dimensionless enevgynormalized ~ The functionG(s) can be expressed as
by M_ﬁwRZL)_depends on the exchange lengti= \s"C/Mi,_ G(9) =[(&+ DE(S™Y) - (£ DK(s ] 9)
the disk radiusR, the dimensionless in-plane magnetic field
h=H/M,, and the aspect ratie=L/R with the dot thickness using the complete elliptic integrals of the first and second
L. Considering contributions from the exchangg, magne-  kindsK andE, respectively. The constant

tostaticw,,, and Zeemanv;, energiegsee, Appendix Awe b2(4 - b?)
derive A= In[—z} (10
2 4h cos (b+D)
w(s) = - %[In(l ~52) - Al - L G(s) + Wy, has been chosen to keep the continuity of the energy at
. =1. Here, the dimensionless displacemsiwof the magnetic
s>1+b, vortex from the center of the digkiormalized byR) and the
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FIG. 5. (Color online Total magnetic energwy versus order parametérwhen lowering the in-plane magnetic figidor the parameters
chosen at point B on the diagram in FigaB For relatively high magnetic fields, the observed change(gh is similar to the one shown
in Fig. 4 (the dashed curve at the bottomm=2, and the middle continuous curves=1). However, the minimum inv(¢), originally
corresponding to the parallel spin staies 0, starts to shift to the right resulting in a second-order phase transition to the C-phase. In this
case, the vortex begins to “continuously penetrate” the disk from infisésg the left portion of the top dotted curve which is inside the left
inse). The metastable C-phaég+ 0) shown there continuously evolves from the parallel staig=ed. The minimum inwv(i) correspond-
ing to the C-phase survives eventat0. For very low negative fields, the C-phase rotates as a wksm&lstone mode corresponding to a
zero-energy rotation of1) and the vortex state does not contribute to the reversal magnetization process even though it has a minimum
energy at low fields. The corresponding magnetization loop with the virgin magnetization curve related to the vortex state is shown in the
right bottom corner. The dashed arrow shows how one could access the vortex state by a suddenjanmgp of the external magnetic
field.

dimensionless vortex core sibeb/R have been introduced. tive in-plane magnetic fields. From the total enevgjn Eq.
The position of the magnetic vortex is also determined by thé6), it is clear that the minimum of the total energys)
angle ¢ in the polar coordinate system with its origin at the corresponds t@=0, s=. In other words, when the distance
center of the dofsee Fig. 1b)]. between the center of the disk and the center of the vortex is

Expression(6) allows us(i) to analytically obtain the ex- infinite then the energy is minimum for high magnetic fields.
pansion of the total energy with respect toy=1/s (used  This is consistent with physical intuition. If we introduce the
below as an order parametén order to study phase transi- inverse vortex distance as
tion (Fig. 3) when changing the applied magnetic field and 1
(i) to numerically calculaten(1/s) for any value of 1% v==, (11)
(shown in Figs. 4-%

theny is equal to zero for this parallel-spin phase. When the

IV. MAGNETIC ENERGY IN TERMS OF THE INVERSE external in-plane magnetic field decreases, this configura-
VORTEX DISTANCE tion can become unstable and a vortex can appear either

The usual Landau theory uses the magnetization as tHQhS'de OL 0‘,“5'0'6 the dot. g_or the'C phase and the \_/ortex
order parameter to describe phase transitions in bulk mad2"ase. the inverse vortex distangds nonzero, suggesting

netic materials(see Table )l However, an unusual type of hat ¢ could _be chosen as an order parameter. .
spin arrangement—magnetic vortex—can be realized in L€t Us write the expansion of the total energyin Eg.
small magnetic dots. This motivates us to introduce a novel®: with respect to,
order parameter for describing the evolution of magnetic W) =w(p=0) + A(h) 2+ Byt + OWF).  (12)
phases when the external magnetic field changes.

In order to investigate the magnetization reversal procesdf « is small enough, the expansion can be truncated, keeping
we begin our considerations by first studying very high posithe first two ¢~dependent terms. Here we introduce two co-
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FIG. 6. (Color online Main panel: dependence of the total enevgy’) when lowering the in-plane magnetic fididfor the parameters
chosen at point C on the diagram in FigaB For high and positivé (e.g.,h=2, 0.8, the behavior ofv(¢) is similar to the one seen in Figs.
4 and 5(the bottom dashed and the continuous curt#owever, the parallel spin state is metastable even at zero magnetigHieldotted
line). For negative values of the external field, the parallel-spin state rotates as a(®hbddstone mode If the magnetic field suddenly
drops to the negative valude=-0.6, then a gradient of the energy towards the vortex state apflear®p dotted-dashed cupyvés shown
in the top right inset, there is no energy minimum corresponding to the vortex state for the parameters corresponding to point @)in Fig. 3

efficients,A(h) and B(h) which resemble the ones used for w_ 1 ™ o ) _ o
standard Landau-type energy expansions. In the frame of the Wm = er dd’f do'K(¢—¢',B)sin ¢ sin ¢
standard Landau approach these coefficients are chosen phe- o o
nomenologically such as to obtain a second order phase tran- 11 35 3 ,
sition (e.g., see Table & has to change its sign amd>0 at X\ gyt cos %+ 32508 4 + Zcos¢> cos ¢
a critical poiny and satisfy the symmetry restrictioris.con-

trast to the phenomenological dependence of a and b on the
system parameters, we have obtained a well-defined depen-
dence of A and B on the dot radius, aspect ratio and mag-

5 9
+ ZCOS 3p cos¢’ + 1—6003 2p cos 246’). (14

netic field(see Appendix A for detaijs Note that here the coefficienfsandB are driven by the
magnetic fielch, notthe temperature, as in the usual Landau
h Ré theory. Thus, changing the in-plane magnetic fieldan in-
A(h) :wﬁﬁ)(ﬁ) + 3 + pr=ct duce phase transitions. Several very substantial differences

between the modified Landau-type approach derived here
and the usual Landau theory for bulk magnets are summa-

h Ré rized in Table I. The next section will consider phase transi-
B(h) =w'¥(B) + — + preet (13)  tions in the framework of the Landau energy obtained via a
64 4 power-series expansion of( ).

where
V. PHASE TRANSITIONS WHEN CHANGING THE

1 w o )
wﬁﬁ) - ZTf d(ﬁf do' K (- &', B)sin & MAGNETIC FIELD
o o A. A and B are positive in the Landau energy for anyh=0

<sin ¢,<} +3c0s 2+ COS b COS ¢,>’ For highh, bothA(h) andB(h) are positive for any values
2 2 of the aspect ratigB=L/R and reduced radiuR/R,. This
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corresponds to the minimum @#(y) at #=1/s=0, i.e., the  B. Second-order phase transition from parallel-spin to curved
parallel-spin state: the vortex is infinitely away from the cen- spin state: A(hg)=0, B(hy)>0

ter, and all spins are parallel to the external field. There is a
region of parameters in the parameter spéaspect ratio,
[reduced radiu]§):(,8,R2/R§) [see Fig. 8a), below the Next consider the region of parameters whéign=0)
dashed linpwhereA is positive even ah=0. For such pa- <0, i.e., above the dashed line in FigaB In this case, the
rameters, the parallel spin state remains stable or meta-stakpi@rallel spin configuratiorfor parallel spin stajebecomes
with respect to the vortex penetration even at zero field. Theinstable at

condition A(h=0)=0 determines the boundafgashed line

1. Order parameter near critical points

in Fig. 3a)] of this parameter domain, corresponding to oo [2Ro)?
h.=— 8w, R | (18
R? 1 _ _ _
E(z) =- W (15 In this subsection we consider the case wiBgh,) > 0.
m This inequality can be rewritten as
When the magnetic field changes sign, the system be- 5
comes unstablésee Appendix A with respect to a rotation R - 3 (19)
(around the dot centgof a vortex located far away from the R 2W§§) - 16\/‘/5:11) '

center(essentially at infinity. In other words, the minimum

at =0 becomes maximum as soonteshanges sign and the corresponding to the parameter domain below the top dotted
angle ¢ starts to increaséor decreasewith time until the line in Fig. 3a). If B(h,) >0, then our energy isormally
system settles in its minimum whesr £+ 7. Thus,the mag-  similar to the usual Landau functional for second-order
netization reversal process proceeds via a rotation of thegphase transitions. Namely, when lowerihga second order
parallel spin state as a wholéig. 3b)). Interestingly, the phase transition occurs from the parallel spin configuration
vortex in the center of the disk is stabler metastablgin  to a curved spin configuratiofi.e., the magnetic vortex sit-

h=0 for the parameter domain ting outside the disk, also known as the C-phasteh=h,
5 [Fig. 3b)]. This happens in the parameter region between the
R - 1 (16) top dotted and dashed lines in FigaB In such a case, the
R(Z) 2 wﬁg) magnetic vortex starts to continuously move from infinity

_ _ . towards the dot center when the external magnetic field de-
[above the continuous curve at the bottom of Fi@Bwith  creases. In other words, the order parameéteontinuously
increases fromy=0 to

wg:iﬂrdq&fldcﬁ’ K(¢=¢',p) sin ¢ sin ¢’ =oAL \/E (20)
a7 V= Yeq= Seq_ 2B 16B

Of course, this stabléor metastablestate is not necessarily
occupied, in the sense that the system might be trapped in
some others local energy minimum. The last result (#6), Interestingly, the dynamical properties also change
can be easily verifiesee Appendix Bby expandingv with  abruptly at the phase transition between the C-phase and the
respect tos arounds=0 as done in Refs. 11 and 21. There- parallel-spin phase. For instance, small deviatiégsfrom

fore, in the region of parameters between the continuous artthe equilibrium statef,, can be described by the following
dashed curves in Fig(8), the magnetic vortex can be either equation »ds/dt=-dw/ds, according to the overdamped
stable or metastable at low magnetic fields but the vortexnagnetic vortex dynamics with viscosity. This equation
state doesiot contribute to the magnetization reversal pro-for s can be rewritten as

cess. However, if the magnetic vortex is created in the center

2. Critical slowing down near the critical points

(for instance, via a thermal activation process at high enough dioy) _ (64) tor h<h
temperaturesthe initial magnetizatiorjvirgin) curve has to dt 7’ or c

be observed. This virgin curve isot accessible any more

during the steady magnetization reversal process. This is

consistent with and elucidates several numerical re€uifs dy__ %1//5, for h>h,, (21)

obtained earlier. Thus, the vortex statannotbe obtained dt

during the magnetization reversal process because the system ) o o
always follows the metastable minimum if the system isWhere¥=y-yeqis the deviation from the equilibrium so-
slowly driven. However, the system can be excited enough tdution = A/ (-2B), and

reach the stable vortex state when the system is driven suf-

ficiently fast. Only for a sufficiently small radiuR of the __7mB*_512B° (22)
disk, no vortex can be nucleated inside the diglgion be- = A3 (he—h)3

low the bottom continuous curve, which is far below the

dashed curve in Fig.(3)]. for h<h.. As a consequence, the deviatigg— iy With
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1 1 use the criteriony(h,)~1 (condition when vortex crosses
Yt=0) = o= 5_0 7 Yeq= g (23 the dot surfaces= 1) to estimate the nucleation fielt},. Us-
q ing this criterion we obtain the region of stability of the
from the equilibrium decays exponentially in the C phase: C-phase[Fig. 3b)]; a quantitative comparison of these ana-
lytical calculations with micromagnetic simulations should
t t be straightforward and could elucidate the limitations of the
oY= (o= l//eq)eXP<— —>; S— Seq= (So—Seq)eXl<— ‘)- approach developed here. When the external magnetic field
T T decreases furthen,< h,, the vortex centejf-ig. 1(a)] evolves
(24 following the energy minimum of Eq(6) for s<1 and
) o reaches zero ai=0. When the magnetic field changes sign
Equation (22) shows that when the magnetic field ap- anq increases in modulus the vortex is first displaced from

proached, from below (h<h) the relaxation timer(h) di-  the dot centefFig. 3b)] and then a phase transition to either
verges showing the so-called “critical slowing down” when the C or the parallel-spin phase occyf&g. 3b)] when
approaching the critical point S(—heg) = 1 (see, e.g., Refs. 20 and 2Because of the sur-

In contrast to the exponential decay for<h, the mag-  face barrier, this transition has to be abrupt, namely first-
netic vortex approaches the parallel-spin state wherh,  gqer.

following the power law

2 At —1/4 8 At 14 C. Transition between the parallel-spin and the vortex phase:
PO =| —+yg*| ; s=|—+s5| . (25 A(h)=0, B(h)<0
n K Now consider the case whdth,) <0, i.e., the parameter

Note that the relaxation also becomes slower theap- region above the dotted line in Fig(eB. Interestingly,the
proachesh, from above, h>h,, becauseAx(h-h,)— 0. usual argument, that the stability of the system requires B
Therefore, thelynamicsof the spin system has to drastically = 0: iS not applicable to our analytically-derived energy ex-
change at this second-order phase transition. pansionin (12). Indeed, it is important to stress that the

Interestingly, the spin dynamics remains the same befor&t@bility is determined by the nonexpanded enai@y and
and after the discontinuous transitigthe rotation of the NOtthe truncated one i(12). In other words, the coefficients
parallel-spin stateath=0 for the case discussed above when@t higher powers of (i.e., Y, yf,...) are responsible for the
A(h)>0 andB(h)>0 for anyh=0: the dynamics can only System stabilitysee Table)l

change ah=0 due to the switching between the two rotated _ O Nigh magnetic fielda>h; [i.e., A(h)>0, B(h) <0 in
parallel-spin states. Eqg. (4)], there is a maximum of the energy(¢) at ¥iayx

=yA/(-2B) and minimum aty=0 corresponding to the
3. Evolution of spin configurations at low fields: Transition parallel-spin state. This maximuiat 5,0 approaches the
between C and vortex phases minimum (at ¢=0) when decreasing the magnetic field. At

h=h. the maximum reacheg=0, while the minimum disap-

Wh_en the magnetic field decreases further, the C'phasﬁears. As soon as the applied magnetic firelilecomes lower
can either survive untih=0 or transform to the vortex state than h,, there is no minimum nearby=0 and the system

[Fig. 3b)]. In order to estimate the stability of the C-phase atabruptly (discontinuously goes to the vortex statgFig.

h—.O We can use the criteriofi(h=0) <1, which can be re- 3(b)]. Thus, instead of a second-order phase transition, a first
written in the form, order phase transition occurs in the parameter regidn)
h <0 above the top dotted line in Fig(a8 (see also Table)l
B(0) > —. (26) This corresponds to a microdisk with large radRsIntu-
16 itively, large-radius disks can abruptly accommodate a vortex
inside it from the largdy straight parallel-spin phase. Me-
This approximately gives the boundary of stability of the chanically, it corresponds @ sudden “curling” transition of
C-phase ah;O, within the frame of the “rigid” vortex model 4 compressed rogsee Sec. VI A beloyw Furthermore, this
for R<Rc with sharp transition between tlizand vortex phases agrees well
with the sharp magnetization drop obtained earlier by micro-
Ré _ 1 magnetic simulationgsee, e.g., Ref. 16
R T @ (27)
RO 2 Wm + Wm
VI. EVOLUTION OF THE TOTAL ENERGY WITH
This is shown in Fig. @) between the dashed and continu-  MAGNETIC FIELD: NUMERICAL CALCULATIONS
ous lines. Therefore, wheR< R, the C phase exists down ) _ _
to h=0 and then ah<0 the system becomes unstable with A. Controlling the magnet.lc state of a dgt by slowly changing
respect to rotations of the vortex center around the dot cen- the applied magnetic field
ter: the minimum atp=0 becomes maximum and the system  To finalize our analysis in the frame of the “rigid vortex”
rotates to the new minimum at=+ . model, we performed numerical calculations of the total en-
If R>R: the C-phase becomes unstable with respect tergy w in Eq. (6) when changing the magnetic field We
the nucleation of a magnetic vortex inside the dot. One carhose the parameters, the reduced raRitiR, and the aspect
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ratio 8=L/R, from domains with different stable and meta- even ath=0 (the local minimum in the dotted line in Fig).6
stable statefat the points A, B, C, D indicated in Fig(8].  Whenh changes its sign, the parallel-spin stedtatesas a
Figure 4 shows the evolution of the energy wherle-  whole [Fig. 3b)] around the dot centganother Goldstone
creases, for the parameteR§R, and B corresponding to mode even though the vortex configuration has a minimum
point A in Fig. 3a). At high h there is only one minimum of energy. The situation corresponding to point D is shown in
w(y) corresponding to the parallel-spin stgthe parallel the inset of Fig. 6. For this case the magnetic vortex is un-
spin configuration has a minimum in the dashed line at thestable for any value of the magnetic field.
bottom). At lower fields, a metastable energy minimum ap-
pears which is associated with the vortex state inside the disk
(continuous ling This energy minimum deepens while the
minimum at«=0 for the parallel spin configuration flattens.

FinaIIyZ the minimum of the parallel spin configurati_on at Now, let us again consider the region of parameters cor-
=0 disappears and the vortex abruptly enters the digk responding to points B and C in Fig(s. The question

dotted curve in Fig. # The corresponding schematic mag- yrises: |s it possible or not to reach the vortex spin configu-
netization loop is shown in the inset of ',:'g' 4. ) . _. rations having the minimum energy at low fields? One of the

For the set of parameters corresponding to point B in Figysgipijities is via thermal activation at high enough tem-
3(@), the evolution ofw(y), when h decreases from high eraryres. Another possibility is to reach the minimum en-

values to zero, is shown in Fig. 5. The behaviorve)),  ergy state via fast jumps of the external figkh example is
with changingh, is similar to the previous case when  shown by the dotted arrow in the right-bottom inset in Fig.
>hc. When loweringh further, the energy minimum previ- 5y |n such a case the system is brought far from both the
ously located aty=0 starts to continuously move towards staple and metastable minima. Thus, the spin configuration is
higher values ofys (see the left-top inset in Fig. 5 which eyposed to an attraction of these two energy minima: the
magnifies a segment of the dotted curve on)tdihis corre-  pasin of attraction in the energy landscape towards the vortex
sponds to a second-order phase transition from the parallgfate and the separate basin corresponding to a rotation as a
spin configuratior(the vortex is located at infinityy=0) o \hole. These two basins of attraction compete. This can be
the C-phaséwhere the vortex is at a finite distance outsidegeen in the energy profile having a gradient towards a
the disky# 0) [Fig. Ib)]. For the case of parameters corre- minima for the vortex state in Fig. 6, the dotted-dashed line.
sponding to point B in Fig. @), the minimum ofw(¢) as-  pepending on which minima is closemnamely, which
sociated with the C-state exists even at Zer@ee the left-  minima the system can approach quicker: the vortex state or

top inset in Fig. 3. When the magnetic field changes polarity the rotated stajethe system can evolve towards the parallel-
this C-phase rotates around the center of the disk R@. 3 Spin state or towards a vortex state.

This rotationcosts zero additional energy and corresponds to  For instance, if the applied magnetic field suddenly

a Goldstone modenoving at the bottom of a “mexican-hat” changegduring a time scale which is much shorter than
shaped potential. Note that such potentials appear in differemifom a high positive fieldsay, h,=2) to a certain negative
fields of physics, including: quantum field theory andvalue(say,h,=-0.6) for the dot parameters used to plot the
cosmology*~® critical phenomena, equilibrium and non- total energyw in Fig. 6, then the magnetic vortex begins to
equilibrium thermodynamic®, superconductivity, superflu- move towards the dot center from infinity and simulta-
idity, vortex dynamic® in superconductors, and even the neously to rotate around the disk. In order to reach the

theory of polyatomic moleculé®.However, in the case con- poundary of the disk, the magnetic vortex needs a time
sidered here, the hat has an additional minimum at the center

of the hat, like in many real hats. Therefore, for these param- "
eters, the magnetic vortex state does not contribute to the te ik~ 7 f L _ (28)
magnetization reversal process, while it has a minimum en- 1 W _
ergy at low magnetic fields in agreement to the recent micro- E(s’ ¢=0hy)
magnetic simulation&-2*The corresponding magnetization
loop is shown in the right-bottom inset of Fig. 5.

The discussed Goldstone mode does not depend on t
shortcomings of the considered model. Indeed, at zero mag-

B. Controlling the magnetic state of a dot via fast,
nonequilibrium change in the applied magnetic field

%this time t.._ gisk iS shorter than the time

netic fields, the magnetization of small dots is not necessarily g do
zero and the Goldstone mode describes the rotation of the Lrotation™ 77 W ' (29
magnetization vector. In a real system, with magnetic aniso- 0 ﬁ(s: 1,¢,h,)

tropy or an anisotropy related to an unperfect dot shape, this
rotation can cost some energy. However, when the asymme-
try is weak, one can treat this rotationf(h=0) as a Gold- which the vortex needs to rotate around the disk, than the
stone mode. vortex state is settled in. Otherwise, the system is set in the
The evolution of the total energw(), when changing parallel-spin state. Thushanging the timing and the ampli-

the magnetic fieldh for the parameters corresponding to thetude of the external magnetic field jumps we can better con-
point C in Fig. 3a), is shown in Fig. 6. The minimum in trol the spin configurations in magnetic dotShis will be
w(4)), corresponding to the parallel spin state;0, survives  further explored elsewhere.
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TABLE Il. Comparison between our Landau theory approach to study mechanical buckling instabilities
with the order parameter of another mechanical instability, known as the Portevin-Le Ch&k®reffect
or stick-slip plastic deformatioriRef. 28. The energy versus order parameter for the buckling case is
considered here, but the analog for the PLC effect is not known yet. Thus, the five cells at the bottom right
of the table, for the PLC effect, remain an open problem.

Euler buckling instability

Stick—slip plastic effect

Order parameter

Iy, (a spatial

order parameter, the amplitude of

the destabilizing mode

Yo=11Thursis (@ temporal
order parameter, the number of
bursts per unit time

Driving parameter

corresponding ta
in the usual approach

T=1/f,
f is the applied force

|?—?C|ITFC acts as a reduced temp.

the relative deformatios,

le- €| acts as
the reduced temperature

Low force f<f,
(highT>T,)
Low relative deformation

lﬂb: Ov
straight bar

‘/fp:]-/Tbursts:O
compression with no plastic jump

deformatiorsLaminar” flow phase

High forcef>f,
(low ?<TC)
High relative deformation

70,
curved(beny bar

’ffpz 1/ Tyursis* 0
intermittent plastic compression

with sudden jumg$urbulent-like”)

Energy[order parametér

Fol ] =Fpo+Ay ¢
+Bp, s+ O(yp)

Odd powers are

(1) symmetry

zero because of Fol o] =Fp[ =]

(2) it can also be derived
from theory of elasticity

Energy expansion
coefficients

Coefficient of y2 Ay (fo— ) or Ay (T-T,)

B,(fo) >0, second-order
(continuou$ transition;
B,(fo) <O, first-order

(discontinuougs transition

Coefficient of gy, at f=f

VIl. BUCKLING INSTABILITIES Imax IE(y”)2 - o
. . g Fb:f dy =5 +f(V1=(y)?= 1)+ -y?[.
A. First versus second order buckling phase transition 0 2(1-(y")9) 2
Our approach to describe phase transitions in micro- (30)

magnetic dots, including “magnetic buckling,” has several
deep physical analogies with both the elastic and plastic sysdere we introduce the elastic modulEsand the moment of
tems discussed in the introduction. Some of these are coninertial of the rod, the mechanical fordeacting on the end
pared in Tables | and . This section is devoted to present af the rod in the longitudinal direction, and the elastic con-
modified Landau-type theory approach to describe bucklingtanta of the external elastic medium. Hereafter, we use the
transitions in an inextensible rod embedded in an elastic meyotationd/dl=".
dium. This system was studied using a conventional mechan- As an example, we consider a rod with hinged ends, i.e.,

ics approach, as in Chap. Il of Ref. 38. The problem dis—(0)=y(l,.,0=y"(0)=y"(Ina) =0. In such a case the possible
cussed here could be applicable to the buckling of very Sma%uckling modes af8

rods which strongly interact with their environment, as, for
instance, for charged carbon nanotBesr carbon nano-
tubes embedded in an elastic medium.

For arbitrary strong deflectiongl) (see Fig. J param-
etrized by the arclength(0<I=<l,,,,), the energy functional
F, of a rod having circular cross section can be writteee
Appendix § as

y(l) = g sin("—”'), (31)

Imax

where we introduce the buckling order paramefgand the
undulation numbem. Interestingly, the magnetic buckling
shape(C, S, W, etcl® and the vorticity in mesoscopic
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FIG. 7. (Color onling Phase diagram for the mechanical buckling instability. The parameters shown are the normalizeti#6te8élE)
versus the ratio of the medium/rod elasticitidé/ (#*IE). Solid segments correspond to second-order phase transitions from the straight rod
state to the buckled state, while the first-order phase transitions are indicated by the dashed lines. The different buckling modes, with
different undulation numbers”, are sketched in the corresponding phase domains. The black vertical dotted segmentudtturftE)
~4 corresponds to a first-order transition betweenrttel (C-phase-likg and then” =2 (S-phase-likg The transition from the straight rod
phase to the" =1 buckled phase is the mechanical analog of the magnetic phase transition between the straight and bent spin-configuration
phases: this diagram corresponds to the one shown in fiy. The transition to th@” =2 buckled rod state is the mechanical analog of the

magnetic transition to the S phase in microdisks.

superconductofé 73 could be mapped to the undulation

Our approach goebeyondthe usual purely mechanical

numbern. Also charged rod$ as well as the elastic block- treatment and can predict the regime of parameters where the
ade and Coulomb blockade of charged disks can be studiggansition is either first or second order. Our approach also

with this approach.

Substituting these buckling modegl) into the energy
functional, Eq.(30), and expandindrp,(#,) up to ¢, we get
the Landau-type energy expansion

Fo=An()h + Bu(H g + O(4) (32
with
77,2 2
Ao= o (T(m) =), (33)
"Tead\ 12, : (34)
and
_IE7T2 5 alﬁwax>
fo(n) = 2 (n + Ex're) (35)

max

provides quantitative predictions for the bucklidgnamics
near critical points. As was discussed in previous sections,
this buckling transition is of second ordef(f=f.) is posi-
tive. Otherwise, wheer(fsz) <0, there is no energy mini-
mum nearbyy,=0, atf:f::+0, and the system discontinu-
ously(via a first-order phase transitipohanges to a strongly
bent state. This is an analog of the magnetic vortex state in
microdisks. The sign oB,(f;) can be derived from the equa-
tion

6(n*\4 4
(N )5IE((n*)2_3 czl -

64 IE7*(n")

After minimizing f.(n) with respect tan, we can obtain the
value of Bb(f’;). From these results, we can construct the
buckling phase diagram shown in Fig. 7. Note that this dia-
gram corresponds to the one shown in Fign)3or magnetic
microdisks.

More detailed analysis, including the transition between
different metastable configurations as well as possible tran-

By(fo) = >. (36)

Obviously, the transition from the straight rod to a buck-sijtion between buckling modes with different undulation
led state occurs as soon as the external force exceeds th@mber, will be presented elsewhere.

minimum value of the critical forcé,(n) [f.(n) is consistent
with Chap. Il of Ref. 38, whileA, and By, are new. At this

force, fZ:fC(n*):min(fc(n)), the rod becomes unstable with
respect to the buckling mode with=n" and a mechanical

buckling phase transition occurs.

B. Critical slowing down for a second-order buckling phase
transition

Now we consider the region of parametg¢see Fig. 7
where the second order phase transition occurs. This covers
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the important case when there is no external elastic mediumelated to the rigid vortex model for an array of interacting
(a=0). When the externally applied force exceeds a criticalmicromagnetic dots.

threshold valuef,=f(n"), the buckling order paramet¢or (2) Detailed micromagnetic simulations and experiments

curvature of the ropbegins to increase continuously and could be useful for further confirmation of the effects pre-
follows the equation dicted here and for extending the models and ideas presented

X . in this work.
F) = Y= - f-1f, (3) The generalization of our approach to the case when
Ylf) = iy 2 2l asB(r) (37) quantum effects are important, including a quantum treat-
. ¢ ment of the Goldstone modes studied here.
near the critical forcd.. (4) When the applied magnetic field is perpendicular to

_ Next, we consider of how small deviations, from the equi-the micromagnetic dot, there is a phase transition between
librium value ¢ of the order parameter decay. The dynami-the parallel-spin(for larger H,) and a vortex phaséfor

cal equation for the rod can be written as smallerH ). This transition can be easily described with a
) _ dE modified version of our approach.

Met o+ Mo = — —— = = 2Authy + 4Byl (38) (5) How to best study driven nonequilibrium phase tran-

dy, sitions like the Portevin-Le Chételier effect, and complete

wherem,q=m/2 is the effective mass of the order parameterth€ five cells at bottom of Table [e.g., what is the analog of
with the rod massn, while d/dt=". The damping coefficient the free energy for the Portevin-Le Chateli@L.C) effect?
nis determined by the energy dissipation during rod motionCan we consider the PLC effect as a generalized cascade of

For small deviationsys,/ €% with Syi, =~ 429, we obtain  buckling transitionsf
(6) Table Il and Fig. 2 suggest a plethora of open prob-
() lems involving the development of a generalized thermody-
T namics of the buckling instability. For instance, the analog of
the free energfr=U-TSwould become

F = (Elastic energy- (1/f)Syan

%(5’%) +(Sip) = - (39)

with relaxation time

. mA(n)? . .
Ty' = T(f —f(n)) for f<fg, whereS,,, would be the “effective entropy” of the bar, and
7 Imax f is the externally applied longitudinal force actias an
272 inverse temperatujeon the elastic bar.
Tﬂl: (n) (f(n)-f) for f> fz_ (40) (7 I_:urther investigations of _iI.Iumir!ating and insig.htful
7 lmax analogies between phase transitions in micromagnetic dots,

Therefore, the relaxation time,(f) diverges at the phase compressed rods, and nanosupercondu€fofs.

transitionfz and takes different values for different undula- B. Summary
tion numbersn” that minimizef(n).

According to the dynamical equatiqi39), the buckling
order paramete, (or curvature of the rodapproaches the
equilibrium showing several oscillations if

In conclusion, using the rigid magnetic vortex model, we
studied phase transitions in the spin configuration of a mi-
crodisk when changing the external magnetic field. We ana-
lytically showed that five different sequences of phase tran-

AMgg sitions can be realized among three different spin-
(A — (41)  configuration phases: parallel-spin phase, curved spin phase,
K and vortex phase. Which sequence is realized depends on the
However, the oscillations vanish when the mechanical forcelot radius,R, aspect ratig=L/R, and the exchange length
f becomes closer to its critical valu‘é. Very near to the R, The numberg1), (2), (3), (4), (5) below refer to five
critical point, the buckling order parameter decays exponendifferent parameter regions in Fig(e3.

tially (1) The parallel-spin state transforms into the vortex state
and vice versa via a first order phase transition.
Y < eXp=U7). (42) (2) The C-phase mediates the transformation from the
Therefore, we predict that the compressed rod exhibits critiparallel-spin to the vortex state: a second-order phase transi-
cal slowing down near the critical fordg. tion occurs between the parallel-spin and the C-phase, while

a discontinuous first-order transition occurs between the C
phase and the vortex phase.
VIIl. CONCLUSIONS (3) The parallel-spin state can transform into a C-phase
which rotates when the magnetic field changes sign. Even
though the vortex phase has a minimum energy at low mag-
Answering several important issues and presenting sewaetic fields, it does not contribute to the magnetization rever-
eral physical analogies, this work can pose some questions &al process and appears only during the initial magnetization.
guide several future studies in both micromagnetic and nafhis rotation costs zero additional energy and corresponds to
nomechanics: a Goldstone mode moving at the bottom of a “hat-shaped”
(1) How to develop a more general theoretical frameworkpotential.

A. Open problems
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(4) The parallel-spin state rotates when the magnetic fiel&entered at the vortex cofsee Fig. {a)]. The dimensionless
changes sign. Neither the C-phase nor the vortex phase coaxchangew,, and Zeemanv, energies can then be rewritten
tribute to the magnetization reversal process here, althoughs

the vortex state has a minimum energy at low magnetic fields RS 1
resulting in the initial magnetization curve. Note that(8) Wiy = 5 J ~dpd¢
the C-phase rotates whérchanges sign, while itd) it is the 27R°) p
straight parallel-spin phase that rotates. R(Z) bm
(5) Only the parallel-spin state has an energy minimum. = ZJ dep{In[p1(p)] = In[px(P) 1},
The C phase and the vortex phase cannot appear because 27R° )y,
they are completely unstable in this region.
The dynamical response of the order parameter can dras- Wz ded
tically change at the phase transitions, producing “critical " IR2 pcosp dedp
slowing down” at the second order phase transition between h 4
the parallel-spin and the C phase. We want to stress that the —_ f 2N 2
physical scenarios obtained here are related tspomtane- 27R? b {pi(@) = pr(Picos gdd, (A1)

ous symmetry breakirngf the transition between the parallel- R — ) )

spin state and the bending or vortex states and, thereforlé’,here_Pl,zzR{Si\““1‘52 sin? ¢} [see Fig. )] and sin¢y,
these results are more general than the rigid vortex modeF1/S, if the center of the vortex is outside the dot; while
itself Hence, this physical picture could be generalized to?1=R{\V1-S"si* ¢—scos¢} and ¢y,=, if the magnetic
much more complicated spin configurations in circular thinvortex is inside the dot. Although,=0 when the magnetic
dots1622233nd can be used as a guide to look for novel waysvortex is inside the dot, the integration for the exchange en-
to control the spin configuration in magnetic dots. We predictergy Wex has to be cut off at a distance of about the vortex

a “critical slowing down” at the second-order phase transi-core sizeb. After an additional simple integration oveirwe

tion between the parallel-spin and the C phase. Recent mpbtain the expression for the exchange and Zeeman energies
cromagnetic simulatiof$ support our predicted “critical Presented in Eq6).

slowing down”, thus, partly verifying the whole physical pic-  In order to derive the magnetostatic energy, we can
ture proposed here. Other predictions of our work are contise the equation
sistent with earlier micromagnetic computatigfg324 M.ssing

We have found thathe buckling instability is a good me- o= > (A2)

= T
chanical analog of the magnetic buckling transition from the V1+s’-2scos¢

parallel-spin to a bent spin configuration (either C-phase orfor the magnetic charge density accumulated at the side
vortex phase)Using a substantially modified Landau theory syrface of the dot. Heré is now the angle in the cylindrical

for studying mechanical buckling instabilities of a com- coordinate system with its origin in the dot centgig. 1(b)).
pressed elastic rod embedded in an elastic medium, we proygext, the distance between two elements on the side surface
that the transition to a buckled state can be either first otan pe written as|r—r'|=2R{1-cosp—¢')]+(z-7)2
second order, depending on the ratio of the elasticity of thg,nere é, &',z andz are the coordinates of these surface

rod and the elasticity of the external medium. Also, critical gjements. Therefore. the magnetostatic enasgycan be
slowing down was predicted for the second-order mechanicaitten as

buckling transition.

W= £ (" sin ¢ sin ¢’ d¢p dg’
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spect toe occur at
APPENDIX A: TOTAL ENERGY OF THE RIGID

MAGNETIC VORTEX AND ASYMPTOTICAL EXPANSION _1-h/h|

OF THE ENERGY Pmin= " TH2M, Prax= T+ @min  (A4)

Here we outline how to obtain the expressi@y for the  with integern.
total energyw of a magnetic dot and how to derive the  Now let us expand the total energy of a magnetic dot
asymptotic expansion shown in Ed.2). for large vortex displacements>1 and¢=0; i.e., we con-
In order to obtain the expressions for the exchamgge  struct the asymptotic expansion with respect tes up to
and magnetostatia/,, energies, we use a coordinate systeml1/s*. For the exchange energy., we obtain
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no minimum corresponding to the vortex stateR/ (2R?)

— Ro 2 2, 4 -6
Wex_<_ [257+s7+ OS] (AS) >w$), as mentioned in the text.

2R

Expanding the complete elliptic integrafsandE in Eq. (9)

we derive an expression for the Zeeman energy as APPENDIX C: POTENTIAL ENERGY OF A

LONGITUDINALLY COMPRESSED ROD

h h _ . -
wp=—-h+ <—3>s‘2+ <—6>s‘4+ O(s7®). (AB) Here we derive the expression for a longitudinally com-
2 2 pressed inextensible rod embedded in an elastic medium. We
After simple, but long, calculations one can derive anstart from the well known expressigsee, e.g., Ref. 3gor

asymptotic expansion for the magnetostatic eneavgy Eq the elastic energy of a rod haVing circular cross section with
(7), as no torsion,

_ _ _ Imax 2
szwﬁg) +WE,%)S 2+WE;‘)S 44 O(s 6). (A7) Folasic= EJ dl{t X g} , (Cy
Combining the asymptotic expansions f@g,, W, andw,,, 2 Jo d
and using the notationy=1/s, we derive the modified wheret is a unit vector tangential to the rof, is the elastic

Landau-type energy shown in EQ.2). modulus, andl is the moment of inertia of the rod. The
mechanical forcd acting on the rod in the longitudinal di-
APPENDIX B: ENERGY EXPANSION FOR SMALL rection provides an additional contributiéf} to the energy
VORTEX DISPLACEMENTS FROM THE DOT CENTER of the curved rod,
The aim of this appendix is to derive an expansion of the Imax [ gx
total energyw(h) in Eq. (6) for small values of and ¢=0. Fr=- ffo (a - 1)d|- (C2)

Note that a similar expression was obtained ea(iee Refs.
20 and 2] and we just summarize a brief derivation of it Hereafter we will use the coordinates of the bent red)

only for the reader’s convenience and for completeness. Thgnd y(1). These coordinates obey the equatiah?+dy?
exchange energw,, for small s has the form: =dI2. This can be rewritten as

Woi - L824 (s, (B1) RN —(d—y)z (c3)
2R dl di/ -

Hereafter, we omit ais-independent constant. The ZeemanThe unit tangential vector and its derivative can be expressed

energyw, up to second order with respectgpis via deflection as
Wy =~ hs+ O(s), (B2) t_(d_xgl)_{md_y}
while the magnetostatic energy, can be expanded as dl’ dl di/ "dl |’
W =W2 &2+ 0(sY. (B3)

dt o dy/d
- y(—y— 1). (C4)

Next, minimizing the total energw we obtain the equation d a2 \m
for the equilibrium vortex positions, as follows Zwiﬁ) ) _
Using Eqgs.(C4), we obtain

—Ré/(ZRZ)]sU:h. This equation can be used to calculate the

susceptibility and to estimate the annihilation fiélg,2 Imax E(V")2 N
- L / 12
> Felastict Fr = 21 = (v')2 +f(V1-(y)" =D .
exitl m 2R2 . (C5)

Note that the total energy=Wwe,+w,+Wwpy, has a minimum at - This equation was independently obtained in, e.g., Ref. 40.
s=s,, if #’w/3s’(s=s,)>0. This condition becomes invalid Finally, assuming an ideal elastic response of the external
when W(rg)—RS/(ZRZ) becomes negative. Therefore, there ismedium, with no anharmonic terms, we derive E)).
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