
Quantum information processing with superconducting qubits in a microwave field

J. Q. You1, 2, 3 and Franco Nori1, 2
1Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi 351-0198, Japan

2Center for Theoretical Physics, Physics Department, Center for the Study of Complex Systems,
The University of Michigan, Ann Arbor, MI 48109-1120, USA

3National Laboratory for Superlattices and Microstructures,
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

(Dated: July 18, 2002)

We investigate the quantum dynamics of a Cooper-pair box with a superconducting loop in
the presence of a nonclassical microwave field. We demonstrate the existence of Rabi oscillations
for both single- and multi-photon processes and, moreover, we propose a new quantum computing
scheme (including one-bit and conditional two-bit gates) based on Josephson qubits coupled through
microwaves.
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Quantum computing deals with the processing of in-
formation according to the laws of quantum mechanics.
Within the last few years, it has attracted considerable
attention because quantum computers are expected to
be capable of performing certain tasks which no clas-
sical computers can do in practical time scales. Early
proposals for quantum computers were mainly based on
quantum optical systems, such as those utilizing laser-
cooled trapped ions [1, 2], photon or atoms in quantum
elctrodynamical (QED) cavities [3, 4], and nuclear mag-
netic resonance [5]. These systems are well isolated from
their environment and satisfy the low-decoherence cri-
terion for implementing quantum computing. Moreover,
due to quantum error correction algorithms [5], now deco-
herence [6] is not regarded as an insurmountable barrier
to quantum computing. Because scalability of quantum
computer architectures to many qubits is of central im-
portance for realizing quantum computers of practical
use, considerable efforts have recently been devoted to
solid state qubits. Proposed solid state architectures in-
clude those using electron spins in quantum dots [7–9],
electrons on Helium [10], and Josephson-junction (JJ)
charge [11, 12, 14] and JJ phase [13, 14] devices. These
qubit systems have the advantage of relatively long coher-
ent times and are expected to be scalable to large-scale
networks using modern microfabrication techniques.

The Josephson charge qubit is achieved in a Cooper-
pair box [11], which is a small superconducting island
weakly coupled to a bulk superconductor, while the
Josephson phase qubit is based on two different flux
states in a small superconducting-quantum-interference-
device (SQUID) loop [13, 14]. Cooper-pair tunneling and
energy-level splitting associated with the superpositions
of charge states were experimentally demonstrated in a
Cooper-pair box [15, 16], and recently the eigenenergies
and the related properties of the superpositions of differ-
ent flux states were observed in SQUID loops by spec-
troscopic measurements [17]. In particular, Nakamura et
al. [18] demonstrated the quantum coherent oscillations

of a Josephson charge qubit prepared in a superposition
of two charge states.

In this letter, we show that the coupled system of a
Cooper-pair box and a cavity photon mode undergoes
Rabi oscillations and propose a new quantum comput-
ing scheme based on Josephson charge qubits [19]. The
microwave-controlled approach proposed in our paper
has the significant advantage that any two qubits (not
necessarily neighbors) can be effectively coupled through
photons in the cavity. In addition to the advantages of
a superconducting device exhibiting quantum coherent
effects in a macroscopic scale as well as the controllable
feature of the Josephson charge qubit by both gate volt-
age and external flux, the motivation for this scheme is
fourfold: (1) the experimental measurements [15] showed
that the energy difference between the two eigenstates
in a Cooper-pair box lies in the microwave region and
the eigenstates can be effectively interacted by the mi-
crowave field; (2) a single photon can be readily prepared
in a high-Q QED cavity using the Rabi precession in the
microwave domain [20]. Moreover, using a QED cavity,
[21] produced a reliable source of photon number states
on demand. In addition, the cavity in [21] was tuned
to ∼ 21 GHz, which is close to the 20 GHz microwave
frequency used in a very recent experiment [22] on the
Josephson charge qubit. Furthermore, the Q value of the
cavity is 4× 1010 (giving a very large photon lifetime of
0.3 sec); (3) our quantum computer proposal should be
scalable to 106 to 108 charge qubits in a microwave cavity,
since the dimension of a Cooper-pair box is ∼ 10µm to
1µm; (4) the QED cavity has the advantage that any two
qubits (not necessarily neighbors) can be effectively cou-
pled through photons in the cavity. Also, we study multi-
photon processes in the Josephson charge qubit since,
in contrast to the usual Jaynes-Cummings model (see,
e.g., Chap. 10 in [23]), the Hamiltonian includes higher-
order interactions between the two-level system and the
nonclassical microwave field. As shown by the very re-
cent experiment on Rabi oscillations in a Cooper-pair
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box [22], these higher-order interactions may be impor-
tant in the Josephson charge-qubit system. The dynam-
ics of a Josephson charge qubit coupled to a quantum res-
onator was studied in [24]. In contrast to our study here,
the model in [24] involves: (a) only one qubit, (b) only
the Rabi oscillation with a single excitation quantum of
the resonator (as opposed to one or more photons), and
(c) no quantum computing scheme.

We study the Cooper-pair box with a SQUID loop. In
this structure, the superconducting island with Cooper-
pair charge Q = 2ne is coupled to a segment of a su-
perconducting ring via two Josephson junctions (each
with capacitance CJ and Josephson coupling energy E0

J).
Also, a voltage VX is coupled to the superconducting is-
land through a gate capacitor C; the gate voltage VX is
externally controlled and used to induce offset charges on
the island. A schematic illustration of this single-qubit
structure is given in [11, 14, 18]. The Hamiltonian of
the system is H = 4Ec(n − CVX/2e)2 − EJ(Φ) cos ϕ,
where Ec = e2/2(C + 2CJ) is the single-particle charg-
ing energy of the island and EJ(Φ) = 2E0

J cos(πΦ/Φ0)
is the effective Josephson coupling. The number n of
the extra Cooper pairs on the island and average phase
drop ϕ = (ϕ1 + ϕ2)/2 are canonically conjugate vari-
ables. The gauge-invariant phase drops ϕ1 and ϕ2 across
the junctions are related to the total flux Φ through the
SQUID loop by the constraint ϕ2−ϕ1 = 2πΦ/Φ0, where
Φ0 = h/2e is the flux quantum. This structure is charac-
terized by two energy scales, i.e., the charging energy Ec

and the coupling energy E0
J of the Josephson junction. In

the charging regime Ec À E0
J and at low temperatures

kBT ¿ Ec, the charge states |n〉 and |n + 1〉 become
dominant as the controllable gate voltage is adjusted to
VX ∼ (2n + 1)e/C. Here, the superconducting gap is
assumed to be larger than Ec, so that quasiparticle tun-
neling is prohibited in the system.

Here we ignore self-inductance effects on the single-
qubit structure [25]. Now Φ reduces to the classical vari-
able ΦX , where ΦX is the flux generated by the applied
static magnetic field. In the spin- 1

2 representation with
charge states | ↑〉 = |n〉 and | ↓〉 = |n + 1〉, the reduced
two-state Hamiltonian is given by [11, 14] H = ε(VX)σz−
1
2EJ(ΦX)σx, where ε(VX) = 2Ec[CVX/e − (2n + 1)].
This single-qubit Hamiltonian has two eigenvalues E± =
± 1

2E, with E = [4ε2(VX) + E2
J (ΦX)]1/2, and eigenstates

|e〉 = cos ξ|↑〉−sin ξ|↓〉, and |g〉 = sin ξ|↑〉+cos ξ|↓〉, with
ξ = 1

2 tan−1(EJ/2ε). Using these eigenstates as new ba-
sis, the Hamiltonian takes the diagonal form H = 1

2Eρz,
where ρz = |e〉〈e| − |g〉〈g|. Here we employ {|e〉, |g〉} to
represent the qubit.

When a nonclassical microwave field is applied, the to-
tal flux Φ is a quantum variable, Φ = ΦX +Φf , where Φf

is the microwave-field-induced flux through the SQUID
loop. Here we assume that a single-qubit structure is
embedded in a QED microwave cavity with only a sin-
gle photon mode λ. Generally, the vector potential of

the nonclassical microwave field is written as A(r) =
uλ(r)a+u∗λ(r)a† = |uλ(r)|(e−iθa+ eiθa†)Â, where a†(a)
is the creation (annihilation) operator of the cavity mode.
Thus, the flux Φf is given by Φf = |Φλ|(e−iθa + eiθa†),
with Φλ =

∮
uλ ·dl, where the contour integration is over

the SQUID loop. Here, θ is the phase of the mode func-
tion uλ(r) and its value depends on the chosen microwave
field (see, e.g., Chap. 2 in [23]). For instance, if a planar
cavity is used and the SQUID loop of the charge qubit is
perpendicular to the cavity mirrors, one has θ = 0.

We shift the gate voltage VX (and/or vary ΦX) to bring
the single-qubit system into resonance with k photons:
E ≈ kh̄ωλ, k = 1, 2, 3, . . .. Expanding the functions
cos(πΦf/Φ0) and sin(πΦf/Φ0) into series of operators
and employing the standard rotating wave approxima-
tion, we derive the total Hamiltonian of the system in
this situation (with the photon Hamiltonian included)

H =
1
2
Eρz + h̄ωλ(a†a +

1
2
) + HIk, (1)

HIk = ρzf(a†a) +
[
e−ikθ|e〉〈g|akg(k)(a†a) + H.c.

]
.

Here f(a†a) = −E0
J sin(2ξ) cos(πΦX/Φ0)F (a†a), with

F (a†a) =
1
2!

φ2(2a†a + 1)− 3
4!

φ4[2(a†a)2 + 2a†a + 1]

+
5
6!

φ6[4(a†a)3 + 6(a†a)2 + 8a†a + 3]− . . . ,

where φ = π|Φλ|/Φ0, and

g(2m−1)(a†a) = E0
J cos(2ξ) sin(πΦX/Φ0)G(2m−1)(a†a),

g(2m)(a†a) = E0
J cos(2ξ) cos(πΦX/Φ0)G(2m)(a†a),

with m = 1, 2, 3, . . ., and

G(1)(a†a) = φ− 1
2!

φ3a†a +
1
4!

φ5[2(a†a)2 + 1]− . . . ,

G(2)(a†a) =
1
2!

φ2 − 2
4!

φ4(2a†a− 1)

+
15
6!

φ6[(a†a)2 − a†a + 1]− . . . ,

G(3)(a†a) = − 1
3!

φ3 +
5
5!

φ5(a†a− 1)− . . . ,

G(4)(a†a) = − 1
4!

φ4 +
3
6!

φ6(2a†a− 3)− . . . ,

. . . . . . . . . ,

where g(k)(a†a) is the k-photon-mediated coupling be-
tween the charge qubit and the microwave field. This
Hamiltonian (1) is a generalization of the Jaynes-
Cummings model to a solid state system. Here multi-
photon processes [26] are involved for k > 1, in contrast
with the usual Jaynes-Cummings model for an atomic
two-level system interacting with a single photon mode,
where only one photon is exchanged between the two-
level system and the external field [23].
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Rabi oscillations in multi-photon process. — The eigen-
values of the total Hamiltonian (1) are E±(l, k) = h̄ωλ[l+
1
2 (k + 1)] + 1

2 [f(l) − f(l + k)] ± h̄
2

√
δ2
l,k + Ω2

l,k, and the
corresponding eigenstates, namely, the dressed states are
given by |+, l〉 = e−ikθ cos η|e, l〉 + sin η|g, l + k〉, and
|−, l〉 = − sin η|e, l〉+ eikθ cos η|g, l + k〉, where

Ωl,k = 2g(k)(l + k)[(l + 1)(l + 2) · · · (l + k)]1/2/h̄

is the Rabi frequency, δl,k = (E/h̄− kωλ) + [f(l) + f(l +
k)]/h̄, and η = 1

2 tan−1(Ωl,k/δl,k). Here, k is the number
of photons emitted or absorbed by the charge qubit when
the qubit transits between the excited state |e〉 and the
ground state |g〉, and l is the number of photons in the
cavity when the qubit state is |e〉.

When the system is initially at the state |e, l〉, after a
period of time t, the probabilities for the system to be at
states |g, l + k〉 and |e, l〉 are

|〈g, l + k|ψ(t)〉|2 =
Ω2

l,k

δ2
l,k + Ω2

l,k

sin2

(
1
2

√
δ2
l,k + Ω2

l,kt

)
,

and |〈e, l|ψ(t)〉|2 = 1− |〈g, l + k|ψ(t)〉|2. Obviously, they
are oscillating with frequency [δ2

l,k + Ω2
l,k]1/2. This is the

Rabi oscillation with k photons involved in the state tran-
sition; when k = 1, it reduces to the usual single-photon
Rabi oscillation [27]. Very recently, Nakamura et al. [22]
investigated the temporal behavior of a Cooper-pair box
driven by a strong microwave field and observed the
Rabi oscillations with multi-photon exchanges between
the two-level system and the microwave field. Different
to the case studied here, the microwave field was em-
ployed there to drive the gate voltage to oscillate. Here,
in order to implement quantum computing, we consider
the Cooper-pair box with a SQUID loop and use the mi-
crowave field to change the flux through the loop.

Quantum computing. — Let us consider more than one
single charge qubit in the QED cavity, and the cavity ini-
tially prepared at the zero-photon state |0〉. We first show
the implementation of a controlled-phase-shift operation.
Here a single photon process, k = 1, is used to implement
quantum computing.

(i) For all Josephson charge qubits, let ΦX = 1
2Φ0,

then cos(πΦX/Φ0) = 0, which yields f(a†a) = 0. Fur-
thermore, the gate voltage for a control qubit, say A, is
adjusted to have the qubit on resonance with the cav-
ity mode (E = h̄ωλ) for a period of time (where sin-
gle photon is involved in the state transition), while
all other qubits are kept off-resonant. The interaction
Hamiltonian (in the interaction picture with H0 = 1

2Eρz)
is given by Hint = e−iθ|e〉A〈g|ag(1)(a†a) + H.c., and
the evolution of qubit A is described by UA(θ, t) =
exp(−iHintt/h̄). This unitary operation does not af-
fect state |g〉A|0〉, but transforms |g〉A|1〉 and |e〉A|0〉
as |g〉A|1〉 −→ cos(αt)|g〉A|1〉 − ie−iθ sin(αt)|e〉A|0〉, and
|e〉A|0〉 −→ cos(αt)|e〉A|0〉 − ieiθ sin(αt)|g〉A|1〉, where

α = g(1)(1)/h̄. To obtain the controlled-phase-shift gate,
we need the unitary operation with θ = 0 and interac-
tion time t = π/2α, which transforms |g〉A|1〉 (|e〉A|0〉)
to −i|e〉A|0〉 (−i|g〉A|1〉). This operation swaps the qubit
state and the state of the QED cavity. A similar swap-
ping transformation was previously used for the quantum
computing with laser-cooled trapped ions [1].

(ii) While all qubits are kept off-resonant with the cav-
ity mode and the flux ΦX is originally set to ΦX = 1

2Φ0

for each qubit, we change ΦX to zero for only the tar-
get qubit, say B. In this case, the evolution of the
target qubit B is described in the interaction picture
by UB(t) = exp(−iHintt/h̄), where the Hamiltonian is
Hint = (|e〉B〈e| − |g〉B〈g|)f(a†a). This Hamiltonian can
be used to produce conditional phase shifts in terms of
the photon state of the QED cavity [3]. Applying this
unitary operation to qubit B for a period of time t =
πh̄/2|f(1) − f(0)|, we have [28] |g〉B |0〉 −→ eiβ |g〉B |0〉,
|e〉B |0〉 −→ e−iβ |e〉B |0〉, |g〉B |1〉 −→ ieiβ |g〉B |1〉, and
|e〉B |1〉 −→ −ie−iβ |e〉B |1〉, where β = πf(0)/2|f(1) −
f(0)|.

(iii) Qubit A is again brought into resonance for t =
π/2α with θ = 0, as in step (i). Afterwards, a con-
trolled two-bit gate is derived as a controlled-phase-shift
gate combined with two one-bit phase gates. In order to
obtain the controlled-phase-shift gate UAB (which keeps
two-bit states |g〉A|g〉B , |g〉A|e〉B , and |e〉A|g〉B unaltered,
but transforms |e〉A|e〉B to −|e〉A|e〉B), one needs to fur-
ther apply successively the unitary operation given in
step (ii) to the control and target qubits with interaction
times t = 3πh̄/4|f(0)| and (2π − |β|)h̄/|f(0)|, respec-
tively.

In analogy with atomic two-level systems [1, 3], one
can use an appropriate classical microwave field [29]
to produce one-bit rotations for the Josephson charge
qubits. When the classical microwave field is on reso-
nance with the target qubit B, the interaction Hamil-
tonian becomes Hint = h̄Ω

2 [e−iν |e〉B〈g| + H.c.], with
h̄Ω = 2E0

J cos(2ξ) sin(πΦX/Φ0)(π|Φf |/Φ0), where the
value of the phase ν depends on the chosen microwave
field (see, e.g., Chap. 2 in [23]) and Φf is the flux
through the SQUID loop produced by the classical mi-
crowave field. For the interaction time t = π/2Ω, the
unitary operation VB(ν, t) = exp(−iHintt/h̄) transforms
|g〉B and |e〉B as |g〉B −→ 1√

2

(|g〉B − ieiν |e〉B
)
, and

|e〉B −→ 1√
2

(|e〉B − ie−iν |g〉B
)
. In terms of this one-

bit rotation, the controlled-phase-shift gate UAB can
be converted to the controlled-NOT gate [1], CAB =
VB(−π/2, π/2Ω)UABVB(π/2, π/2Ω). A sequence of such
gates supplemented by one-bit rotations can serve as a
universal element for quantum computing [30]. For mi-
crowaves of wavelength λ ∼ 1 cm, the volume of a planar
cavity is ∼ 1cm3. For SQUID loop dimension ∼ 10µm to
1µm, then 103 to 104 charge qubits may be constructed
along the cavity direction. Furthermore, for a 2D array
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of qubits, 106 to 108 charge qubits could be placed within
the cavity [31]. This number of qubits is large enough for
a quantum computer.

In conclusion, we have studied the dynamics of the
Cooper-pair box with a SQUID loop in the presence
of a nonclassical microwave field. Rabi oscillations in
the multi-photon process are demonstrated, which in-
volve multiple photons in the transition between the two-
level system and the microwave field. Also, we propose
a scheme for quantum computing, which is realized by
Josephson charge qubits coupled through a single pho-
ton mode in the QED cavity.
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