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The recursion and moments methods are applied analytically to study the electronic structure of a neutral
C60 molecule. We employ a tight-binding Hamiltonian which considers both thes and pvalence electrons of
carbon. From the recursion method, we obtainexactresults for thep ands eigenvalues and eigenfunctions,
including the highest occupied molecular orbital and the lowest unoccupied molecular orbital states. We also
compute the Green’s function in analytic closed form and obtain the local density of states around severalring
clusters, which can be probed experimentally by using, for instance, a scanning tunneling microscope. From
the method of moments, identical results for the energy spectrum are also derived. In addition, the local density
of states ononecarbon atom is obtained; from this we can derive the degree of degeneracy of the energy levels.

I. INTRODUCTION AND SUMMARY OF RESULTS

Since the discovery of a simple technique for the produc-
tion in bulk quantities of fullerenes, undoped and doped
C60 molecules have generated enormous interest among
chemists, physicists, and materials scientists. In C60, carbon
atoms sit at the 60 vertices of the pentagons and hexagons of
a truncated icosahedron. The carbon-carbon bonds are of two
different lengths: 1.46 Å for the single bonds~bonds on the
pentagons! and 1.40 Å for the double bonds~bonds on the
hexagons not shared by a pentagon!. The single~double!
bonds are denoted by solid~dotted! lines throughout the fig-
ures in this paper. The literature on C60 is vast, and here we
do not attempt a review. The interested reader is referred to
Refs. 1–7 and papers listed therein.

In this work, we focus on ananalyticalstudy of the elec-
tronic structure of a single neutral C60 molecule. We model
this system through a tight-binding Hamiltonian@Eq. ~1!#
which considers both thes and p valence electrons of car-
bon. For decades, the recursion method and method of mo-
ments have been successfully applied to the electronic struc-
ture calculations in a variety of physical systems. However,
most of these applications have been purely numerical. Fur-
thermore, the relationship between these two methods has
rarely been investigated thoroughly. The goal of this paper is
to analytically apply these two methods to study the elec-
tronic structure of a C60 molecule. Relations between these
two approaches will be discussed.

This paper is organized as follows. In Sec. II, we discuss
the physical nature and types of the interaction between these
valence electrons, with a total number of 240. The couplings
can be separated into two main contributions: coming from
thep-bonded ands-bonded electrons.

We first focus on thep states. In Sec. III we use the
recursion method8 to analytically solve the Hamiltonian for
thep electrons. We deriveclosed-form expressionsfor their
energy eigenvalues and eigenfunctions—including the high-
est occupied molecular orbital~HOMO! and the lowest un-
occupied molecular orbital~LUMO!—for two cases: equal
and unequal hopping integrals for the single and double

bonds. The main results concerning thep-state eigenvalues
and eigenfunctions are summarized in Tables III, IV, and V.
The physical nature of the wave functions of the HOMO and
LUMO is discussed in Sec. III D. The beauty of the recur-
sion method for C60 lies in the fact that the recurrence is
simple and terminates very quickly~e.g., afterfour iterations
only!, providing exact and very concise expressions for the
parameters of the recursion. Thus, the dimensionality of the
problem is reduced by a factor of 15, namely from 60360 to
434.

The same results for the energy spectrum of thep states
are derived in Sec. IV by using the method of moments. The
main ingredient in this approach is the analytical computa-
tion of sums over contributions fromall paths starting and
ending at the same site, each one with its corresponding ki-
netic energy. The spirit of this approach follows Feynman’s
program: to compute physical quantities from sums over
paths. In addition, the local density of states~LDOS! on one
carbon atom is obtained; from this we can derive the degree
of degeneracy of the energy levels.

In the two sections mentioned above, we provide detailed
descriptions of the steps~e.g., the choice of appropriate start-
ing states incorporating the physical properties of the system,
and the iteration schemes! employed in the analytic applica-
tion of the recursion and moments methods to C60. Further-
more, every step of either approach is exact. All the calcula-
tions are done analytically, either by hand or with the
assistance of computer symbolic manipulation software. Di-
agonalizations are achieved by iteratively applying the
Hamiltonian on simple initial states.

The relations between the recursion and moments meth-
ods are discussed in Sec. V. There it will be seen that while
these two approaches are related to each other, each one has
its own advantages. These methods are significantly different
from the ones used so far. Furthermore, they areneithernu-
mericalnor require the use of group theory. For a lucid and
clear account of a very different approach, based on group
theory and focused only on thep states, the reader is re-
ferred to Ref. 3.

In Sec. VI, we present the precise algebraic expressions,
derived from the Green’s functions, as well as plots of the
LDOS around several ring clusters~i.e., a carbon atom, a
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pentagon ring, and a hexagon ring; also for two opposite
carbon atoms, pentagons, and hexagons!. We find that around
a pentagon ring the LDOS is large at low energies. This is
related to the fact that a pentagon has zero double bonds and
five single bonds. On the other hand, around a hexagon ring
the LDOS is large at high energies. This is because a hexa-
gon has three double bonds and three single bonds. The
LDOS is relevant to the several important experimental tech-
niques which probe thelocal spectroscopy of molecules; for
instance, by using a scanning tunneling microscope, as de-
scribed in the review in Ref. 9.

In Sec. VII we discuss the solutions of thes-states
Hamiltonian Eq.~3!. To describe thes states, the coupling
between orbitals on the same atom and that between orbitals
along the same bond are both taken into account. By follow-
ing a ‘‘one band—two band’’ transformation,10 the eigenval-
ues and eigenfunctions for thes states are then analytically
obtained.

II. ELECTRONIC STATES

To investigate the electronic properties of a single C60
molecule, we consider the four carbon valence electrons 2s,
2px , 2py , and 2pz in the tight-binding Hamiltonian

HT5(
i ,a

eacia
† cia1 (

^ i j &,a,b
tabcia

† cjb . ~1!

Here, i denotes the carbon site anda denotes the valence
orbitals 2s, 2px , 2py , and 2pz . Also, ea is the orbital en-
ergy andtab is the hopping matrix element between orbitals
on the nearest-neighboring sitesi and j . The 60 2pz orbitals,
each pointing along the outward radial direction, are hybrid-
ized to formp states. The other three orbitals 2s, 2px , and
2py , distributed on the plane tangential to the surface of the
molecule, are hybridized along the lattice bonds to forms
bonding and antibonding states.

Let us assume that the mixture of these three orbitals at
each site produces threesp2 hybrid orbitals:spa

2 along the
double bond andspb

2 and spc
2 along the two single bonds,

respectively. From a physical point of view, the 60 outerp
orbitals are relevant to the conducting properties of the mol-
ecules and the 180s orbitals are mainly responsible for the
elastic properties. The former are also responsible for the
bond dimerization. Also, onlyp states occur around the
Fermi energy.

As a result of its planar structure, thep electrons in
graphite contain only pure 2pz orbitals. Nevertheless, in the
curved structure of C60, an extra small component from 2s,
2px , and 2py is induced along the radial direction due to the
surface curvature. The interaction between thep orbitals in
C60 is then slightly increased in comparison to that in graph-
ite. However, since this component is very small, the overlap
integral betweenp ands orbitals is negligible. The nonzero
Hamiltonian parameters used here are the same ones as in
Ref. 2.

The original Hamiltonian Eq.~1! can thus be written in
terms ofHp andHs asHT5Hp %Hs , where

Hp52(̂
i j &

t i j ci
†cj ~2!

and

Hs52V1 (
i ,aÞb

cia
† cib2V2(̂

i j &
cia
† cja . ~3!

The electronicp-states Hamiltonian Eq.~2! describes the
kinetic energy of the 2pz electrons hopping on the 60 verti-
ces of a C60 fullerene andt i j is the hopping integral between
nearest-neighboring atomsi and j . The hopping integrals are
considered unequal for single and double bonds. Alsoci

† is
the electron operator creating a 2pz orbital on the atom lo-
cated at vertexi . A constant term corresponding to the on-
site 2pz orbital energy is omitted in Eq.~2!. In thes-states
Hamiltonian Eq.~3!, a5spa

2 , spb
2 , andspc

2 denotes the hy-
bridized orbitals. Also,V1 stands for the hopping integral
between orbitals on the same carbon atom andV2 stands for
that between orbitals on different atoms that are associated
with the same bond~the length difference between single and
double bonds is neglected here!. A more detailed discussion
on the origin ofV1 andV2 is presented in Appendix A.

Admittedly, this is a simplified model~like the ‘‘Ising
model’’! for the electronic structure of C60, the ‘‘hydrogen
atom’’ of the main fullerene family of C60n2 molecules.
However, its understanding is a convenient stepping stone to
the study of more complex models. The spectroscopy of, for
instance, the hydrogen atom can be analytically solved by
using several different approaches. These lead to the same
analytical expressions for the eigenvalues and eigenvectors.
In spite of the fact that modern computers can easily obtain
numerical expressions for them, it is useful to have analytic
results. In fact, analytical solutions have always been pur-
sued in the area of spectroscopy of atoms, molecules, and
clusters. In this paper, we pursue several approaches to the
analytical study of the spectroscopy of an important mol-
ecule. We would like to emphasize that the approaches de-
scribed here are not intended to substitute more traditional
methods, but to present alternative viewpoints and comple-
mentary results.

III. RECURSION METHOD APPROACH

A. Formulation

We first focus on thep-states Hamiltonian Eq.~2!. Let us
begin with a brief outline of the recursion method8 for ob-
taining the eigenvalues and eigenfunctions. First, one must
choose an appropriate normalized starting stateu f 0&. Further
states are iteratively generated by the three-term recurrence
relation

Hu f n&5anu f n&1bn11u f n11&1bnu f n21&, ~4!

with the conditionb0u f21&[0. Here, the real parameters
an andbn11 are determined by

an5^ f nuHu f n& ~5!

and

bn115^ f nuHu f n11&5^ f n11uHu f n&. ~6!

By convention, theb’s are chosen to be positive. The process
terminates atu f N21& with the last recurrenceHu f N21&
5aN21u f N21&1bN21u f N22&. The constructed orthonormal
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states $u f 0&,u f 1&, . . . ,u f N21&% along with the parameters
$a0 ,a1 , . . . ,aN21% and $b1 ,b2 , . . . ,bN21% thus constitute
the ‘‘chain model’’8 of a given Hamiltonian. The representa-
tion of H in the new basis$u f n&% is in a tridiagonal form.

The energy levels can be achieved by constructing the
following polynomials withP21(E)50 andP0(E)51:

Pn11~E!5
~E2an!Pn~E!2bnPn21~E!

bn11
. ~7!

The eigenvaluesEl are determined by theN zeros of the last
polynomialPN(E)50, with an arbitrary nonzerobN . It fol-
lows then that the eigenfunctions are

1

N l
(
n50

N21

Pn~El!u f n&, ~8!

where N l5@(n50
N-1 Pn

2(El)#
1/2 are the normalization con-

stants for the eigenfunctions, andP0(El) always equals 1.
So far, we have briefly outlined the recursion method. We

now come to the application of this approach to the elec-
tronic structure of a fullerene molecule. For convenience, we
work in units of the single-bond hopping integral. The hop-
ping amplitude is therefore 1 for every single bond andt for
each double bond. It has been pointed out1 that the value of
t is about 1.1. We will use two alternative sets~denoted by
A andB) of starting states. Each set consists of two initial
states from which the whole energy spectrum can be derived,
and the final results do not depend on the choice of initial
bases. Both sets lead to thesamesolutions for the eigenval-
ues and eigenfunctions. From the physical point of view, this
consistency ensures the equivalent interpretation of the re-
sults from these two sets of initial states. We denote byu j &
the 2pz orbital centered at thej th atom. For convenience of
visualization, in all our figures we flatten the truncated icosa-
hedral structure of C60 into a plane. Note that labelings vary
according to the different choices of initial states.

B. CaseA

The first set of initial states starts from a five-atom pen-
tagon ring@see Fig. 1~a!# and a six-atom hexagon ring@see
Fig. 1~b!#. Starting from a pentagon ring, we choose the ini-
tial stateuu0& as a linear combination of the five orbitals on
it,

uu0&5
1

A5(j51

5

u j &. ~9!

Here the labeling is as shown in Fig. 1~a!. From now on,
H will denoteHp unless specified otherwise~e.g.,Hs). As
an illustration, we present here the calculation of the first
recurrence,

Huu0&52
1

A5
@~ u2&1u5&1tu6&)1~ u1&1u3&1tu7&)1~ u2&

1u4&1tu8&)1~ u3&1u5&1tu9&)1~ u1&1u4&

1tu10&)]

522F 1

A5
~ u1&1u2&1u3&1u4&1u5&)G

1tF2
1

A5
~ u6&1u7&1u8&1u9&1u10&)G

522uu0&1tuu1&.

We then obtaina0522, b15t, and uu1&521/A5 ( j56
10 u j &.

Following the same procedure, we can construct further
states and obtain the parametersa’s andb’s at the same time.
The beauty of the recursion method for C60 lies in the fact
that the recurrence terminates very quickly, exactly atuu7&.
As a result, we have exact and very concise formulas for
a0 througha7 , andb1 throughb7 .

FIG. 1. Flattened C60 molecule obtained by stretching~a! a
pentagon and~b! a hexagon, with the site labels used in casesA

andB in the recursion method.
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Similarly, starting from a linear combination of the six
orbitals on a hexagon ring, we have the initial stateuv0& as

uv0&5
1

A6(j51

6

~21! j11u j &, ~10!

where the labeling is referred to Fig. 1~b!. The choice of
alternating signs, (21) j11, meets the threefold symmetry
requirement of a hexagon ring in C60, with alternating single
and double bonds. Again, the recurrence terminates atuv7&.
We then obtain another group of parametersa’s andb’s. All
theseuun& and uvn& states, as well as their respective param-
etersan andbn11 , are summarized in Table I.

Through these two groups ofa’s andb’s, we can, respec-
tively, construct two polynomialsP8

p(E) and P8
h(E) which

are of eighth degree inE. Here the superscriptp for penta-
gon (h for hexagon! refers to the polynomial constructed
from the group ofa’s andb’s generated byuu0& (uv0&). The
roots of these two polynomials can be analytically obtained
and correspond to the electronic energy levels. It follows
then that we have a total of 16 distinct eigenvalues. When
t51, a common root21 exists for both polynomialsP8

p and
P8
h . We thus have 15 distinct energy levels. It is also

straightforward to obtain the eigenvectors through Eq.~8!.

C. CaseB

In this approach, we exploit the symmetry property that
the inversion operator leaves the C60 molecule invariant. We
therefore take the first~second! starting stateuf0& (uw0&) as
a linear combination of the orbitals on two opposite~i.e.,
antipodes! pentagon~hexagon! rings

uf0&5
1

A10(j51

5

~ u j &1P u j 8&) ~11!

and

uw0&5
1

A12(j51

6

~21! j11~ u j &1P u j 8&), ~12!

where the site labels are presented in Fig. 1~a! @1~b!# for the
first ~second! starting state. HereP stands for parity, with the
value 11 or 21. Note that atomj and atomj 8 are anti-
podes. Following the same procedure, we find the very con-
venient and remarkable result thatthe recurrence terminates
even fasterat uf3& (uw3&) for the first ~second! initial state.
Due to the two possible values ofP , we have two different
results for a3 for each starting state. In Appendix B we
present the calculation of the last recurrence, namely those
for uf3& and uw3&. It can be clearly seen thatHuf3& gener-
ates two possible values fora3 and no further state; and so
doesHuw3&. As a consequence, we obtain four groups of
$a0 ,a1 ,a2 ,a3% and$b1 ,b2 ,b3%.

All the statesufn& and uwn&, as well as their respective
parametersan andbn11 , are listed in Table II. It follows that
we can construct four polynomialsP4

p1(E), P4
p2(E),

P4
h1(E), andP4

h2(E). Each one is of fourth degree inE.
The superscriptp1 stands for the polynomial constructed
from uf0& with P equal to11, and similarly for the others.
With the choice ofb451/b1b2b3 , these polynomials can be
explicitly written as

P4
p1~E!5E41~2 t13!E31~5 t21!E22~2 t32t218!E

2~ t12!~ t32t21t12!,

P4
p2~E!5E413E32~2 t22t11!E22~3 t224t18!E

1~ t42t31t214 t24!,

P4
h1~E!5E422 ~ t11!E31~3 t21!E22~2 t31t12!E

2~ t211!~ t21t21!,

and

TABLE I. States and parameters for caseA in the recursion method approach. It is interesting to notice thatan5a72n andbn5b82n for
n54,5,6,7.

Starting from a pentagon ring Starting from a hexagon ring
n uun& an bn uvn& an bn

0 1

A5
( j51
5 u j & 22 1

A6
( j51
6 (21) j11u j & 11t

1 2
1

A5
( j56
10 u j & 0 t 1

A6
( j57
12 (21) j u j & 0 1

2 1

A10
( j511
20 u j & 2t A2 1

A6
( j514
15 (21) j11@ u j &1u j13&1u j16&] 1 t

3 2
1

A10
( j521
30 u j & 21 1 1

A6
( j523
24 (21) j11@ u j &1u j13&1u j16&] 0 1

4 1

A10
( j521
30 u j 8& 21 t 1

A6
( j523
24 (21) j11@ u j 8&1u( j13)8&1u( j16)8&] 0 t

5 2
1

A10
( j511
20 u j 8& 2t 1 1

A6
( j514
15 (21) j11@ u j 8&1u( j13)8&1u( j16)8&] 1 1

6 1

A5
( j56
10 u j 8& 0 A2 1

A6
( j57
12 (21) j u j 8& 0 t

7 2
1

A5
( j51
5 u j 8& 22 t 1

A6
( j51
6 (21) j11u j 8& 11t 1
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P4
h2~E!5E422E32~2t21t11!E22~2t21t12!E

2~ t11!2~ t22t11!.

By analytically solving these four polynomials, we obtain the
same 16 eigenvalues obtained above~caseA). Similarly we
can obtain the eigenvectors, which are also equal to those
obtained from the alternative setA of initial states.

D. Results for thep-state eigenvalues
and eigenfunctions of C60

In Table III, we summarize the eigenvalues and the cor-
responding eigenvectors for the caset51. In Table IV, we
present the closed-form eigenvalues—including the HOMO
and LUMO energies—explicitly expressed in terms of the
single-bond hopping integralt1 and the double-bond hopping
integralt2 . Thus, eigenvalues for the limiting casest150 or
t250 can also be readily inferred.

It is interesting to note that the fivefold degenerate
HOMO state is obtained from the initial stateuw0& ~with
negative parity!, made of orbitals on two opposite hexagons
with a threefold symmetry axis passing through their centers.
On the other hand, the threefold degenerate LUMO state is
obtained from the initial stateuf0& ~with negative parity!,
consisting of orbitals on two opposite pentagons with a five-
fold symmetry axis passing through their centers.

As to the eigenfunctions, we present in Table V those for
the HOMO and LUMO in terms oft5t1 /t2 , the ratio of the

hopping matrix elements for single and double bonds. Since
the respective degree of degeneracy for each eigenvalue can
be acquired from the local density of states on a carbon atom
~discussed in a later section!, the other degenerate eigenvec-
tors can be generated by standard group theory analysis. This
is outside the scope of the present paper. We therefore only
present these eigenfunctions derived from the pure applica-
tion of the recursion method.

It is instructive to notice that the following points further
support the results for the degeneracy. They are~1! the sum
of the product of energy and its corresponding degeneracy
equals the trace of the Hamiltonian, which is zero;~2! the
number of states with even parity equals that with odd parity;
and~3! the behavior of the eigenvalues can be easily studied
in the limits when eithert150 or t250.

E. Relations between alternativesA and B

It is worthwhile to point out the following relations be-
tween the casesA and B presented before. First,
P8
p(E)5P4

p1(E)P4
p2(E) andP8

h(E)5P4
h1(E)P4

h2(E) up to
an overall constant factor. In other words, roots solved from
P8
p(E) †P8

h(E)‡ are identical to those solved fromP4
p1(E)

andP4
p2(E) @P4

h1(E) andP4
h2(E)#. Second, from Tables I

and II we can see that, forn50, 1, 2 and 3,

ufn&5
1

A2
~ uun&2P uu72n&)

and

TABLE II. States and parameters for caseB in the recursion method approach. The parityP can be11 or 21.

Starting from two opposite pentagon rings
n ufn& an bn

0 1

A10
( j51
5 @ u j &1P u j 8&] 22

1 2
1

A10
( j56
10 @ u j &1P u j 8&] 0 t

2 1

A20
( j511
20 @ u j &1P u j 8&] 2t A2

3 2
1

A20
( j521
30 @ u j &1P u j 8&] 2(11P t) 1

Starting from two opposite hexagon rings
n uwn& an bn

0 1

A12
( j51
6 (21) j11@ u j &1P u j 8&] 11t

1 1

A12
( j57
12 (21) j@ u j &1P u j 8&] 0 1

2 1

A12
( j514
15 (21) j11@ u j &1u j13&1u j16&1P (u j 8&1u( j13)8&1u( j16)8&)] 1 t

3 1

A12
( j523
24 (21) j11@ u j &1u j13&1u j16&1P (u j 8&1u( j13)8&1u( j16)8&)] P t 1
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uwn&5
1

A2
~ uvn&1P uv72n&).

Third, for those eigenvaluesEl which are common roots of
P8
p andP4

p1 , or common roots ofP8
h andP4

h2 ,

P72n~El!52Pn~El!.

Also for those eigenvaluesEl which are common roots of
P8
p andP4

p2 , or common roots ofP8
h andP4

h1 ,

P72n~El!5Pn~El!.

Here, all thePn(El)’s refer to the polynomials constructed
in the caseA and n50,1,2, and 3. Fourth,P1(El),
P2(El), and P3(El) calculated from the two alternatives
A andB are the same. Fifth, for the eigenvector with re-
spect to the same eigenvalue, the normalization constants
N A andN B, calculated inA andB, respectively, satisfy
N A5A2N B .

From the above five properties, the equivalence of results
from both alternatives becomes clear. As an example, for an
eigenvalueEl which is a common root ofP8

p andP4
p1 , we

can obtain the eigenvectoruCl& fromA as

uCl&5
1

N A
(
n50

7

Pn~El!uun&

5
A2
N A

FP0

1

A2
(uu0&2uu7&)1P1

1

A2
~ uu1&2uu6&)

1P2

1

A2
(uu2&2uu5&)1P3

1

A2
~ uu3&2uu4&)G

5
1

N B
(
n50

3

Pn~El!ufn&,

where the last equality is just the result obtained directly
from B. In fact, from the results of alternativeA, we can
understand the parity property associated with C60.

IV. METHOD OF MOMENTS APPROACH

A. Methodology and application

In this method, the first and central task is the computa-
tion of moments, defined by

M l[^ j uH l u j &, ~13!

where the orderl is a positive integer. Note thatM051
when l50. The physical meaning of the above quantum-
mechanical expectation value is as follows. The Hamiltonian

TABLE III. The eigenvaluesEl and the corresponding eigenvectors (1/N l) (n50
3 Pn(El)u f n& for C60 with t51. Recall thatP0(El) is

always equal to 1. Hereufn
6& (uwn

6&) denotesufn& (uwn&) with P561. Also a5A2(191A5) andb5A2(192A5). Notice that the
HOMO energy is (12A5)/2 and the LUMO energy is (232A51b)/4.

El P1(El) P2(El) P3(El) N l
2 u f n&

23 21 A2 2A2 6 ufn
1&

21 1 2A2 2A2 6 ufn
1&

(211A13)/2.1.303 (31A13)/2 A2(31A13)/4 A2/2 (3919A13)/4 ufn
1&

(212A13)/2.22.303 (32A13)/2 A2(32A13)/4 A2/2 (3929A13)/4 ufn
1&

(231A51a)/4.1.438 51A51a

4

A2@612A51(A511)a#

16

A2@2418A51(A521)a#

16

9515A5
8

1
(251A5)a

16

ufn
2&

(231A52a)/4.21.820 51A52a

4

A2@612A52(A511)a#

16

A2@2418A52(A521)a#

16

9515A5
8

2
(251A5)a

16

ufn
2&

(232A51b)/4.0.139 52A51b

4

A2@622A52(A521)b#

16

A2@2428A52(A511)b#

16

9525A5
8

1
(252A5)b

16

ufn
2&

(232A52b)/4.22.757 52A52b

4

A2@622A51(A521)b#

16

A2@2428A51(A511)b#

16

9525A5
8

2
(252A5)b

16

ufn
2&

2 0 21 21 3 uwn
1&

21 23 2 21 15 uwn
1&

(31A5)/2.2.618 (211A5)/2 (211A5)/2 (32A5)/2 (1525A5)/2 uwn
1&

(32A5)/2.0.382 (212A5)/2 (212A5)/2 (31A5)/2 (1515A5)/2 uwn
1&

(11A5)/2.1.618 (231A5)/2 (212A5)/2 (12A5)/2 (1523A5)/2 uwn
2&

(12A5)/2.20.618 (232A5)/2 (211A5)/2 (11A5)/2 (1513A5)/2 uwn
2&

(11A17)/2.2.562 (231A17)/2 (52A17)/2 241A17 51212A17 uwn
2&

(12A17)/2.21.562 (232A17)/2 (51A17)/2 242A17 51112A17 uwn
2&
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H is appliedl times to an initial 2pz electron stateu j &, lo-
calized at carbon sitej . Each timeH is applied, the electron
gains a certain amount of kinetic energy depending upon the
bond~single or double! it travels. This enables the electron to
hop throughl bonds, reaching the final stateH l u j &. The mo-
mentM l just equals the total kinetic energy gained by the
electron returning to the starting sitej after hoppingl steps.

It is obvious thatM l will be zero when thel -hops path
does not return to the starting site. In other words,M l50
when there is no path ofl hops for which the electron may
return to the initial site. For the caset51, the absolute value
of the momentM l is the total number of closed paths ofl
steps starting and ending at the same site. The spirit of this
approach follows Feynman’s program: to compute physical
quantities from sums over paths.

The moments can be calculated analytically by hand, as
well as by computer using a symbolic manipulation program.
Below we describe these two implementations starting from
the former. Let us first examine the action of the Hamiltonian
on an arbitrary stateu j &. This results in three nearest-
neighbor atom states with an additional factor accounting for
the respective bond hopping energy. For example,

Hu1&5(2t)u2&1(21)u3&1(21)u39& ~labels as shown in
Fig. 2!. For simplicity and without any loss of generality, we
choose orbitalu1& to be our starting state. Now, forl51,
starting from vertex 1 and following the connectivity of
C60 ~Fig. 2!, we write down the factors2t, 21, and21 on
the vertices 2, 3, and 3-, respectively. A similar procedure
holds forl52. Starting from the three resulting vertices with
respective factors, we then write down (2t)(21)5t on the
vertices 4, 48, 49, and 498; (21)(21)51 on the vertices 5
and 59; and (21)(21)1(21)(21)1(2t)(2t)521t2

on the vertex 1.
Our strategy here is as follows: each time the power of the

~kinetic-energy! Hamiltonian increases by one, we move to

FIG. 2. Site labels used in the moments method. Independent
vertices are those withj running from 1 to 24.

TABLE IV. The eigenvalues and the corresponding degree of
degeneracy for C60 with a single-bond hopping-integralt1 and a
double-bond hopping-integralt2 . Note thatt2.1.1t1 . The charac-
teristic polynomials from which those eigenvalues are solved are
indicated in the left-hand column. Heret5@16 t2

228(1
1A5)t2t1110(31A5)t12] and g5@16 t2

228(12A5)t2t1
110(32A5)t12]. Also h and j satisfy (16t2

3224 t2
2t1112 t2t1

2

125 t1
3)554(h323hj2) and @3 (64t2

42160t2
3t11288t2

2t1
2

2200t2t1
3 1125t1

4)]518 (3h2j2j3). Notice that the fivefold de-
generate HOMO~threefold degenerate LUMO! energy, as indi-
cated, is solved from the polynomial constructed from the starting
stateuw0& (uf0&)—with negative parity—which consists of orbitals
on two opposite hexagons~pentagons! with a threefold~fivefold!
symmetry axis passing through their centers.

Energy Degeneracy

2(2t11t2) 1
2(t11t2)/312h 5

P 4
p1

2(t11t2)/32h1A3j 5

2(t11t2)/32h2A3j 5

@~23k1A5!t11t#/4 3

[(231A5!t12t#/4 3

P 4
p2 @~232A5!t11g]/4 ~LUMO! 3

@~232A5!t12g#/4 3

(t11A5t1214t2
2)/2 4

(t12A5t1214t2
2)/2 4

P 4
h1 t21~11A5!t1/2 3

t21(12A5!t1/2 3

(t11A5t1224t1t214t2
2)/2 5

P4
h2 (t12A5t1224t1t214t2

2)/2 ~HOMO! 5

(t11A5t1218t1t214t2
2)/2 4

(t12A5t1218t1t214t2
2)/2 4

TABLE V. The HOMO wave functionN l
21(n50

3 Pn(El)uwn
2&

and LUMO wave functionN l
21(n50

3 Pn(El)ufn
2& for C60 in terms

of t.1.1. Recall thatP0(El)51. Hereuwn
2& stands foruwn& with

P521 and ufn
2& for ufn& with P521. Also

g5A16 t212 (4 t25)(A521).

HOMO

El (12A4 t224 t15)/ 2
P1(El) 2t2(11A4 t224 t15)/ 2
P2(El) t2(32A4 t224 t15)/ 2
P3(El) t2(12A4 t224 t15)/ 2
N l

2 6 t226 t2 15
21(3 t2 3

2)A4 t224 t15

LUMO

El (232A51g)/4
P1(El) (52A51g)/4t
P2(El) A2@ 4(A521)t11026A52(A521)g#/ 16t
P3(El) 2A2@ 4(A511)t14A51(A511)g#/ 16t
N l

2 80 t2140 (A521)t150 (32A5)1(4A5t12525A5)g
16 t2
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the adjacent nearest-neighboring vertices. Also the factor on
each vertex is the sum of the factors on the three nearest-
neighbor vertices times the bond hopping integral between
vertices. It is then straightforward, with the aid of ‘‘the flat-
tened C60 graph,’’ to obtain all the factors on the available
vertices for any power of the Hamiltonian. From its defini-
tion, it is evident that the moment of orderl is just the factor
on the vertex 1 forH l . For example,M150 ~i.e., the num-
ber of closed paths obtained by moving one step is zero! and
M2521t2. By following this strategy, we can generate,
one by one, all the moments to any order.

It is worthwhile to notice the mirror-symmetry between
the left and right halves of C60 for the atom vertices and
bonds. So we need only concern ourselves with the factors
on the vertices in the right part. Furthermore, because of the
geometrical equivalence, with respect to vertex 1, of eight
pairs of vertices (j and j 8 in Fig. 2!, the total number of
independent vertices can be reduced to 24. All calculations
up to this point can be done analytically by hand.

An alternative analogous procedure can be implemented
by using symbolic manipulation software on a computer.
First, we define an auxiliary quantity,11 Wl( j ), which is the
sum over all possible paths ofl steps on which an electron
may hop from the vertex 1 to the vertexj . From the connec-
tivity of C 60, we can then construct 24 independent recur-
rence relations. For instance,Wl11(1)52tWl(2)
22Wl(3), Wl11(2)52tWl(1)22Wl(4), and Wl11(3)
52tWl(4)2Wl(1)2Wl(5). The recurrence relations
state that the vertexj can be reached by taking the~l11!th
step from the three nearest-neighbor vertices.
The factors 2t and 21 account for the connecting
bond-hopping integral. With the initial conditions
W0(1)51 andW0( j )50 for the rest of j ’s, we can ob-
tain the moments to any order asM l5Wl(1). We
list M3 throughM9 here: 0, t418 t216,22, t6118 t4

14 t3148 t2120,214 t2214, t8132 t6116 t51184 t4

148 t31256 t2170, and 254 t4218 t32162 t2272,
for l53,4, . . . ,9. ThemomentsM10 throughM32 ~the
highest order moment needed to obtain the entire energy
spectrum! are not presented here.

The correctness of the calculated momentsM l is assured
by the consistency of the results from these two approaches.
It is evident that through these two implementations we can
also obtain the quantitieŝ1uH l u j & for jÞ1 which can be
appropriately interpreted as the ‘‘sum-over-paths’’ between
sites 1 andj . For instance,̂1uH l u j & just equalsWl( j ).

To obtain the energy spectrum, we again utilize Eq.~7!.
So the next step is to express the parametersan andbn11 in
terms of the moments. We employ the following formulas:12

define the auxiliary matrixM with the first row elements
defined asM0,l[M l . The other rows are evaluated by using
only one immediate predecessor row:

Mn,l5
Mn21,l122Mn21,1Mn21,l11

Mn21,22Mn21,1
2 2 (

k50

l21

Mn,kMn21,l2k ,

n>1;l50,1, . . . . ~14!

The an’s andbn11’s are obtained from the elements of the
second and third columns as

an5Mn,1 ~15!

and

bn11
2 5Mn,22Mn,1

2 , ~16!

heren50,1,2,. . . . Note that elements in the first column
Mn,0 are always equal to 1.

We find analytically thatb15
2 exactlyequals 0 fort51 and

b16
2 exactlyequals 0 for an arbitraryt. Below we discuss the
t51 case and similar results can be obtained fortÞ1. The
exact vanishing ofb15

2 , in the caset51, indicates the trun-
cation atb15. Thus, we expect 15 eigenvalues. It also turns
out that the highest order of moment we need isl530. The
moments M4 through M20 for t51 are 15,22,
91, 228, 607, 2306, 4274, 23080, 31 227,229 718,
234 559, 2279 100, 1 803 375,22 572 542, 14 149 891,
223 398 880, and 113 056 535. The momentsM21 through
M30 were computed but are not shown here. Through the
calculated parameters $a0 ,a1 , . . . ,a14% and
$b1 ,b2 , . . . ,b14% ~we only present $a0 , . . . ,a9% and
$b1 , . . . ,b9% in Table VI!, we can construct the polynomial
P15(E) by using Eq.~7!. By solving P15(E)50, we thus
obtain 15 energy levels. The results are exactly identical to
those obtained from the recursion method approach.

B. Alternative application of the moments method

In the above description of the moments approach, the
main ingredient is the computation of the moments for a
natural choice of stateu1& centered at the atom labeled by
1. However, it is worthwhile to incorporate the inversion
symmetry property. Therefore, instead of focusing on a
single localized state, we turn to the computation of the mo-
ments with respect to states

uI6&5
1

A2
~ u1&6u24&), ~17!

where atoms labeled by 1 and 24 in Fig. 2 are antipodes. It is
a simple exercise to construct the following identity for the
moments defined bŷI6uH l uI6&,

^I6uH l uI6&5^1uH l u1&6^1uH l u24&. ~18!

TABLE VI. Parametersan and bn for n50,1, . . . ,9 calculated
from the momentsM l with t51 in the moment method for C60.
Numbers in the denominator are relatively prime to those in nu-
merator and all numbers in square root are primes.

n an bn

0 0
1 0 A3
2 2

1
3 A2

3 11
69

1
3A23

4 2
6633
10 925

5
23A2319

5 2
1 109 069
2 724 600

6
475A23233239

6 2
52 107 413
684 218 760

5
5736A5319323857

7 2
66 333 080 317
113 465 204 135

12
119 285A233239341357

8 2
23 875 175 834 189
52 324 285 077 614

1
2 853 633A335311331380657323857

9 603 116 478 351 886 109
1 730 319 460 378 457 102

23
165 024 222A337317341357311492779
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These moments can then be readily obtained since the quan-
tities ^1uH l u1& and^1uH l u24& are already available. Note that
the lowest order for the appearance of a nonzero^1uH l u24& is
l59. This is because the shortest path for vertex 1 to reach
vertex 24 contains 9 steps. We thus obviously have
^I6uH l uI6&5M l for l<8.

For the caset51, the highest order we need for
^I1uH l uI1& (^I2uH l uI2&) is l514 (16), becauseb7

2 (b8
2) cal-

culated from the moment^I1uH l uI1& (^I2uH l uI2&) gives ex-
actly 0. Through the computed parameters$a0 , . . . ,a6% and
$b1 , . . . ,b6% ~$a0 , . . . ,a7% and $b1 , . . . ,b7%!, we analyti-
cally obtain 7 (8) eigenvalues which are identical to those
belonging to theP511 (P521) category from the recur-
sion method. The moments^I1uH l uI1&, for l59, . . .,14, are
2312, 4319,23278, 32 339,233 436, and 252 339. Also
the momentŝ I2uH l uI2& are2300, 4231,22882, 30 115,
226 000, 216 779,2225 080, and 1 571 823, respectively,
for l59, . . .,16. Their respective set of parametersan’s and
bn11’s are presented in Table VII. The result thatan and
bn11 for n50,1,2, and 3 in Table VII are identical to those
in Table VI comes from the fact̂I6uH l uI6&5M l for l<8.

For an arbitraryt, we need the moments^I6uH l uI6& up to
order 16. The momentŝI6uH9uI6& through^I6uH13uI6& are
listed in Table VIII, while ^I6uH14uI6&, ^I6uH15uI6&, and
^I6uH16uI6& were computed but are not presented here. We
analytically find thatb8

2 calculated from these two sets of
momentsexactlyequals 0 in both cases. Consequently, con-
sistent results for the eigenvalues are recovered.

In this section, we have presented an unconventional
choice of initial states and concentrated on the moments with
respect to these states. It is shown that this approach is even
more efficient in analytically obtaining the energy eigenval-
ues.

V. RELATIONSHIP BETWEEN THE RECURSION AND
MOMENTS METHODS

Generally speaking, the moments method is closely re-
lated to the recursion method, especially in the aspect that
both methods lead to the same results for the parametersan
andbn11

2 . In this section, we illustrate this point by showing
that the same expressions for the parameters in the recursion
method caseB can be obtained through the moments
method. As the initial states areuf0& and uw0& in this case

B, the moments we now need to compute are^f0uH l uf0&
and ^w0uH l uw0&. It is straightforward to find that

^f0uH l uf0&5^1uH l u1&12 ^1uH l u3&12 ^1uH l u5&

1P ~^1uH l u24&12 ^1uH l u22&12 ^1uH l u19&!

~19!

and

^w0uH l uw0&5^1uH l u1&2^1uH l u2&2^1uH l u3&2^1uH l u7&

12 ^1uH l u4&

1P ~^1uH l u24&2^1uH l u23&2^1uH l u22&

2^1uH l u21&12 ^1uH l u20&!. ~20!

Notice that the site labels on the right-hand sides of the
above two equations refer to Fig. 2. Through the techniques
for the calculation of these quantities previously discussed,
the momentŝf0uH l uf0& and^w0uH l uw0& can be readily ob-
tained.

Anticipating the termination atb4
2 , we only need these

moments up to order 8. In Table IX we give the moments
with respect touf0& and uw0&. By utilizing Eqs.~14!–~16!,
we thus obtainan’s and bn11

2 ’s which are consistent with
those ~in Table II! derived directly from the recursion
method. To illustrate this consistency, we explicitly present
here the results for thebn11

2 ’s. From ^f0uH l uf0&, we have

TABLE VII. Parametersan andbn computed from the moments
^I6uH l uI6& with t51.

From ^I1uH l uI1& From ^I2uH l uI2&

n an bn an bn

0 0 0
1 0 A3 0 A3
2 2

1
3 A2 2

1
3 A2

3 11
69

1
3A23

11
69

1
3A23

4 2
18 027
21 850

5
23A2319 2

1701
4370

5
23A2319

5 2
1 964 421
36 832 450

1
950A332331373283 2

11 563
44 650

1
190A335323347

6 40 798
38 771

855
38 771A233313319

342 588
22 258 025

19
1175A23997

7 2
3661
18 943

100
18 943A17347389

TABLE VIII. Moments ~sums over paths! ^I6uH l uI6&, with an
arbitrary t, for l59, . . .,13.

Order (l ) Moment (̂ I1uH l uI1&)

9 254 t4224 t32162t2272

10 t10150 t8140 t71500t61304t5

11490t41400t311280t21254

11 2154t62176t52990t42396t321232t22330

12 t12172 t10180 t911110t811104t715784t6

13648t5110560t412840t316192t21948

13 2364t82728t724212t624056t5

210920t423952t327774t221430

Order (l ) Moment (̂ I2uH l uI2&)

9 254 t4212 t32162t2272

10 t10150 t8140 t71500t61296t5

11450t41360t311280t21254

11 2154t6288 t52902t42176t321232t22330

12 t12172 t10180 t911110t811056t715596t6

13120t519840t412200t316192t21948

13 2364t82364t723484t621716t5

29256t421612t327774t221430
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b1
25t2, b2

252, b3
251, and b4

25(12P 2)t250. From

^w0uH l uw0&, we have b1
251, b2

25t2, b3
251, and

b4
25(12P 2)t250. We thus demonstrate the fact that the
same results for the parametersan andbn11

2 can be obtained
by using either the recursion or moments methods. The ad-
vantage of the recursion method lies in the fact that we can
simultaneously generate the states and the parameters. How-
ever, it is sometimes difficult to derive the states and param-
eters when the recursion method is applied to some starting
state, for example, a single carbon atom stateu j &, while the
moment method provides standard procedures to calculate
the parameters after the moments are obtained.

VI. LOCAL DENSITY OF STATES

In the recursion and moments methods, the diagonal ele-
ment of the Green function (E2H)21 can be expressed as a
continued fraction8,12

G0~E!5 K f 0u 1

E2H
u f 0L

5
1

E2a02
b1
2

E2a1 2
b2
2

E2a22•••2
bN21
2

E2aN21

.

~21!

The local density of statesr(E) for u f 0& is related to the
imaginary part ofG0(E) by

r~E!5 lim
«→0

2
1

p
ImG0~E1 i«!. ~22!

From the computational point of view,G0(E) can be ob-
tained by iteratively applying the following transformation:

Gn~E!5
1

E2an2bn11
2 Gn11~E!

,

starting fromGN21(E)51/(E2aN21). By substituting the
parametersan andbn11

2 from either one of the two methods
into Eq. ~21! and using Eq.~22!, we thus obtain the local
density of states on several initial states. In our two alterna-
tive applications of the recursion method, we have used four
different starting states:uu0&, uv0&, uf0&, and uw0&. Their
G0(E)’s can be written explicitly as

G0
215E122t2$E22 @E1t2~E111G p!

21#21%21

~23!

and

G0
215E2t212$E2t2@E212~E2G h!

21#21%21,
~24!

where

G p5HP t for the stateuf0&

2t2„E112{ E1t22 [E2t2~E12!21]21} 21
…

21 for the stateuu0&

and

G h5HP t for the stateuw0&

t2„E2{ E212t2[E2~E2t21!21]21} 21
…

21 for the stateuv0&.

TABLE IX. Moments ~sums over paths! ^f0uH l uf0& and
^w0uH l uw0& for l51, . . . ,8.

Order (l ) Moment ^f0uH l uf0&

1 22
2 t214
3 24 t228
4 t4114 t2116
5 26 t422 t3240 t2232
6 t6130 t418 t31110t2164
7 28 t626 t52112t42(3612P )t32282t22128

8 t8152 t6132 t51(39614P )t4

1(116112P )t31708t21256

Order (l ) Moment ^w0uH l uw0&

1 t11
2 t212 t12
3 t313 t215 t13
4 t414 t3110 t2110 t15
5 t515 t4116 t3125 t2120 t18
6 t616 t5124 t4148 t3160 t2138 t113

7 t717 t6133 t5184 t41(1331P )t3

1133t2171 t121

8 t818 t7144 t61132t51(26612P )t4

1(33614P )t31284t21130t134
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The LDOS around these ring-clusters are plotted in Fig. 3
and Fig. 4. Notice that around a pentagon~hexagon! ring the
LDOS is large at low~high! energies. This is related to the
fact that a pentagon~hexagon! has zero~three! double bonds
and five ~three! single bonds. Also from the moments ap-
proach, the local density of states on two antipode carbon
atoms are plotted in Fig. 5. In principle, they are experimen-
tally accessible by using a scanning tunneling microscope.9

In one of the moments method approaches, the initial state is
a 2pz orbital on a carbon atom. The local density of states in
the caset51 is plotted in Fig. 6. From Fig. 6, we can obtain
the degree of degeneracy for each energy level, which is the
respective LDOS value times 2. The common factor of 2
comes from the consideration that the total number ofp
electrons is 60. FortÞ1, conclusions for the degeneracy can
be similarly drawn.

VII. SOLUTION FOR THE ELECTRONIC s STATES

It is apparent that the HamiltonianHs is more complex
than Hp due to the two different couplings. However, an
analytic transformation of this Hamiltonian into a simpler
one with a single ‘‘renormalized’’ hopping parameter be-
tween sites can be established.10 The energy states can then
be readily solved. Below we first present the transformation
of the s-states Hamiltonian into ap-type one. As a conse-
quence, the resulting solutions of the eigenvalues for thes
states are obtained.

We first write thes states eigenfunctions as

uCs&5(
i
C i u i ,a&, ~25!

where C5a,b, and c represents, respectively, the corre-
sponding coefficient for the orbitala5spa

2 ,spb
2, andspc

2 at
each sitei . Let us now focus attention on a given atom
labeled i . Also let atomsj ,k, and l be the three adjacent
nearest neighbors of thei atom. The energy eigenvalue equa-
tion HsuCs&5euCs& then reads

eai52V2aj2V1~bi1ci !, ~26!

ebi52V2ck2V1~ai1ci !, ~27!

eci52V2bl2V1~ai1bi !, ~28!

and

eaj52V2ai2V1~bj1cj !, ~29!

eck52V2bi2V1~ak1bk!, ~30!

ebl52V2ci2V1~al1cl !, ~31!

and so on. We then define

Ai5ai1bi1ci ~32!

as the sum of the coefficients for orbitals at the sitei , and

Bi5aj1ck1bl ~33!

as the sum of the coefficients for orbitals on the bonds asso-
ciated with the sitei . Similar equations hold for the otherA’s
andB’s. In the first place, Eqs.~26! and~29! can be rewritten
as

~e2V1!ai1V2aj52V1Ai ~34!

and

V2ai1~e2V1!aj52V1Aj . ~35!

FIG. 3. The local density of states around ring clusters:~a! a
pentagon,~b! a hexagon. They are obtained by using the recursion
method. Notice that around a pentagon~hexagon! ring the LDOS is
large at low~high! energies. This is related to the fact that a penta-
gon ~hexagon! has zero~three! double bonds and five~three! single
bonds.
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When the situationAi5Aj50 occurs, the secular equation
immediately yields

e5V16V2 . ~36!

In all, there are 30 pairs of similar equation sets. We thus
have two energy levels:V12V2 belonging to the bonding
states, andV11V2 belonging to the antibonding states, each
having a degree of degeneracy equal to 30. Furthermore, by
respectively summing up Eqs.~26! through ~28! and Eqs.
~29! through~31!, we have

eAi52V2Bi22V1Ai ~37!

and

~e2V1!Bi52V2Ai2V1~Aj1Ak1Al !. ~38!

By substituting Eq.~37! into Eq. ~38!, we obtain

@~e12V1!~e2V1!2V2
2#Ai5V1V2~Aj1Ak1Al !. ~39!

It can be directly recognized that Eq.~39! is entirely equiva-
lent to the problem of a tight-binding Hamiltonian with one
state per atom and a single nearest-neighbor hopping inte-
gral, whose eigenvalue and eigenvector solutions are already
fully explored in previous sections. Let El

(l51,2, . . . ,15) stand for the eigenvalues listed in Table III.
It follows then that

~el12V1!~el2V1!2V2
25V1V2El . ~40!

FIG. 4. The local density of states around two opposite~i.e., antipodes! pentagons with~a! even parity,~b! odd parity, and two opposite
hexagons with~c! even parity,~d! odd parity. They are obtained by using the recursion method. Notice that around two antipode pentagon
~hexagon! rings the LDOS is large at low~high! energies.
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Thus, we obtain

el52
V1

2
6AV1

2

4
12V1

21V2
21V1V2El

52
V1

2
6V2A11

V1

V2
El1

9V1
2

4V2
2 . ~41!

The minus sign designates the bonding states, and the plus
sign designates the antibonding states.

Summarizing, in this section we obtain 90 bondings
states and 90 antibondings states. Among the bonding~an-
tibonding! states, 30 states are lumped together at the energy
level V12V2 (V11V2). The other 60s bonding and 60s
antibonding states are closely related to the energy spectrum
for thep states. Finally, in the limitV2@V1 , we have

el.2
V1

2
6V26

V1

2
El . ~42!

It is also straightforward to obtain the corresponding eigen-
vector for an eigenvalueel . Since all theAi ’s are already
known, the initial coefficientsai , bi , andci can be calcu-
lated.

VIII. CONCLUSION

In conclusion, we use several approaches based on the
recursion and moments methods in order to explore the elec-
tronic structure of a C60 molecule, obtaining exact closed-
form expressions for thep ands eigenvalues and eigenfunc-
tions, including the HOMO and LUMO states, as well as the
Green’s functions and LDOS through alternative methods.
These quantities are relevant to the several important experi-
mental techniques which probe the local spectroscopy of
molecules; for instance, by using a scanning tunneling mi-
croscope, as described in the review in Ref. 9. For compari-
son purposes, we have also done a direct numerical diago-
nalization of the full Hamiltonian and the results obtained are
consistent with those from the previous analytical methods.
However, the much more elegant and powerful recursion and
moments methods provide valuable insights and closed-form
expressions for various quantities characterizing the elec-

FIG. 5. The local density of states on two opposite carbon atoms
~antipodes! with ~a! even parity,~b! odd parity. They are obtained
by using the moments method. Notice that there are seven even-
parity solutions in~a! and eight different odd-parity solutions in~b!;
for a total of 15 different energy levels~for t51!.

FIG. 6. The local density of states for a carbon atom obtained
from the moments method with the respective degree of degeneracy
shown above each peak.
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tronic structure of C60. Finally, a generalized version of the
recursion method can be used to greatly simplify the calcu-
lation of the electronic properties of large C60n2 fullerenes
~i.e., C240, C540, C960, C1500, C2160, and C2940).
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APPENDIX A: ORIGIN OF V1 AND V2

In this appendix we examine more closely the physical
interpretation for the hopping integralsV1 and V2 . Let
u i ,a& be a hybrid orbital located at sitei . We have

u i ,spa
2&5as

i u2s&1ax
i u2px&1ay

i u2py&, ~A1!

u i ,spb
2&5bs

i u2s&1bx
i u2px&1by

i u2py&, ~A2!

and

u j ,spa
2&5as

j u2s&1ax
j u2px&1ay

j u2py&, ~A3!

where i and j are nearest neighbors. We also assume that
orbitals u i ,spa

2& and u j ,spa
2& lie along the bond connectingi

and j . It is straightforward to obtain

2V15^ i ,spa
2uHsu i ,spb

2&5as
i* bs

i es1~ax
i* bx

i 1ay
i* by

i !ep
~A4!

and

2V25^ i ,spa
2uHsu j ,spa

2&

5as
i* as

j tss1ax
i* ax

j tpxpx1ay
i* ay

j tpypy

1~as
i* ax

j 1ax
i* as

j !tspx1~as
i* ay

j 1ay
i* as

j !tspy

1~ax
i* ay

j 1ay
i* ax

j !tpxpy. ~A5!

Herees andep are the 2s-level and 2p-level energies and the
t ’s are hopping matrix elements between orbitals on nearest-
neighboring sites. It is evident that, with a suitable choice of
a local coordinate system, we can always have

^ i ,spa
2uHsu i ,spb

2&5^ i ,spa
2uHsu i ,spc

2&5^ i ,spb
2uHsu i ,spc

2&
~A6!

and

^ i ,spa
2uHsu j ,spa

2&5^ i ,spb
2uHsuk,spc

2&5^ i ,spc
2uHsu l ,spb

2&.
~A7!

In the above equation, we have assumed that orbitals
u i ,spb

2&, uk,spc
2& lie along the bond connectingi and k and

orbitals u i ,spc
2&, u l ,spb

2& along the bond connectingi and l .

APPENDIX B: CALCULATION OF H zf3‹ AND H zw3‹

In this appendix we present the calculation of the recur-
rence relations for statesuf3& and uw3& in the recursion
method caseB. It is shown that the recurrence terminates at
these states and two solutions fora3 are constructed from
each state. First,

Huf3&5
1

A20(j511

20

~ u j &1P u j 8&)1
1

A20F (
j521

30

(u j &1tu j 8&)1P (
j521

30

~ tu j &1u j 8&)G
5uf2&2F2

1

A20(j521

30

@~11P t !u j &1~ t1P !u j 8&#G
5uf2&2F2

1

A20(j521

30

@~11P t !u j &1~11P t !P u j 8&#G
5uf2&2~11P t !uf3&.

We thus obtaina352(11P t) andb351. Second,

Huw3&5uw2&1
1

A12
@ t~ u238&2u248&1u268&2u278&1u298&2u308&)1P t~ u23&2u24&1u26&2u27&1u29&2u30&)]

5uw2&1P t
1

A12
@~ u23&2u24&1u26&2u27&1u29&2u30&)1P ~ u238&2u248&1u268&2u278&1u298&2u308&)]

5uw2&1P tuw3&.

Therefore, we havea35P t andb351.
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