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The recursion and moments methods are applied analytically to study the electronic structure of a neutral
Cgo molecule. We employ a tight-binding Hamiltonian which considers bothsthad pvalence electrons of
carbon. From the recursion method, we obtakactresults for ther and o eigenvalues and eigenfunctions,
including the highest occupied molecular orbital and the lowest unoccupied molecular orbital states. We also
compute the Green'’s function in analytic closed form and obtain the local density of states aroundrseyeral
clusters which can be probed experimentally by using, for instance, a scanning tunneling microscope. From
the method of moments, identical results for the energy spectrum are also derived. In addition, the local density
of states oronecarbon atom is obtained; from this we can derive the degree of degeneracy of the energy levels.

I. INTRODUCTION AND SUMMARY OF RESULTS bonds. The main results concerning thestate eigenvalues
and eigenfunctions are summarized in Tables lll, IV, and V.
Since the discovery of a simple technique for the produc-The physical nature of the wave functions of the HOMO and
tion in bulk quantities of fullerenes, undoped and doped-UMO is discussed in Sec. Il D. The beauty of the recur-
Ceo Molecules have generated enormous interest amor§On method for G lies in the fact that the recurrence is
chemists, physicists, and materials scientists. §g, Carbon mple and terminates very quicklg.g., afterfour iterations

atoms sit at the 60 vertices of the pentagons and hexagons anly), providing exact and very concise expressions for the

. 8 rameters of the recursion. Thus, the dimensionality of the
a truncated icosahedron. The carbon-carbon bonds are of tvfﬂoblem is reduced by a factor of 15, namely fromxeaD to

different lengths: 1.46 A for the single bon@sonds on the 44

pentagonsand 1.40 A for the double bondsonds on the The same results for the energy spectrum of thstates

hexagons not shared by a pentagofhe single(double  are derived in Sec. IV by using the method of moments. The

bonds are denoted by solidotted lines throughout the fig- main ingredient in this approach is the analytical computa-

ures in this paper. The literature onygds vast, and here we tion of sums over contributions frorall paths starting and

do not attempt a review. The interested reader is referred tending at the same site, each one with its corresponding ki-

Refs. 1-7 and papers listed therein. netic energy. The spirit of this approach follows Feynman'’s
In this work, we focus on aanalyticalstudy of the elec- Program: to compute physical quantities from sums over

tronic structure of a single neutralggmolecule. We model paths. In add|_t|on, th_e Io_cal dens[ty of sta(eEO_S) on one

this system through a tight-binding Hamiltonigg. (1)] carbon atom is obtained; from this we can derive the degree

hich i both th d | | ; of degeneracy of the energy levels.
which considers both the and p valence electrons of car- In the two sections mentioned above, we provide detailed

bon. For decades, the recursion method and method of M@jescriptions of the steffe.g., the choice of appropriate start-
ments have been successfully applied to the electronic stru%g states incorporating the physical properties of the system,
ture calculations in a variety of physical systems. Howevergnd the iteration schemesmployed in the analytic applica-
most of these applications have been purely numerical. Fulﬁ'on of the recursion and moments methods t&la:urther_
thermore, the relationship between these two methods hafiore, every step of either approach is exact. All the calcula-
rarely been investigated thoroughly. The goal of this paper isions are done analytically, either by hand or with the
to analytically apply these two methods to study the elec-assistance of computer symbolic manipulation software. Di-
tronic structure of a g, molecule. Relations between these agonalizations are achieved by iteratively applying the
two approaches will be discussed. Hamiltonian on simple initial states.

This paper is organized as follows. In Sec. Il, we discuss The relations between the recursion and moments meth-
the physical nature and types of the interaction between thesgls are discussed in Sec. V. There it will be seen that while
valence electrons, with a total number of 240. The couplingshese two approaches are related to each other, each one has
can be separated into two main contributions: coming fromits own advantages. These methods are significantly different
the 7r-bonded andr-bonded electrons. from the ones used so far. Furthermore, theyraihernu-

We first focus on ther states. In Sec. lll we use the mericalnor require the use of group theory. For a lucid and
recursion methdtto analytically solve the Hamiltonian for clear account of a very different approach, based on group
the 7 electrons. We derivelosed-form expressiorier their ~ theory and focused only on the states, the reader is re-
energy eigenvalues and eigenfunctions—including the highferred to Ref. 3.
est occupied molecular orbitdHOMO) and the lowest un- In Sec. VI, we present the precise algebraic expressions,
occupied molecular orbitaLUMO)—for two cases: equal derived from the Green’s functions, as well as plots of the
and unequal hopping integrals for the single and doublé.DOS around several ring clustefse., a carbon atom, a
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pentagon ring, and a hexagon ring; also for two oppositeand
carbon atoms, pentagons, and hexagoie find that around
a pentagon ring the LDOS is large at low energies. This is
related to the fact that a pentagon has zero double bonds and
five single bonds. On the other hand, around a hexagon rin _ o ]
the LDOS is large at high energies. This is because a hex _-he -electrommr-states Hamiltonian Eq(Z) describes the_
gon has three double bonds and three single bonds. TH@netic energy of the @, electrons hopping on the 60 verti-
LDOS is relevant to the several important experimental tech¢€S 0f & G fullerene and;; is the hopping integral between
niques which probe thiecal spectroscopy of molecules; for nearest-neighboring atomsndj. The hopping integrals are
instance, by using a scanning tunneling microscope, as déonsidered unequal for single and double bonds. Afsés
scribed in the review in Ref. 9. the electron operator creating g@2orbital on the atom lo-
In Sec. VIl we discuss the solutions of the-states cated at vertex. A constant term corresponding to the on-

Hamiltonian Eq.(3). To describe ther states, the coupling Site 2p, orbital energy is omitted in Eq2). In the o-states
between orbitals on the same atom and that between orbitakéamiltonian Eq.(3), a=sp3, spf, andsp? denotes the hy-
along the same bond are both taken into account. By followbridized orbitals. Also,V; stands for the hopping integral
ing a “one band—two band” transformatidfithe eigenval- between orbitals on the same carbon atom ¥pdtands for
ues and eigenfunctions for the states are then analytically that between orbitals on different atoms that are associated
obtained. with the same bon(the length difference between single and
double bonds is neglected hgr& more detailed discussion
Il. ELECTRONIC STATES on the origin ofV; andV, is presented in Appendix A.
Admittedly, this is a simplified modellike the “Ising
To investigate the electronic properties of a singlg, C model”) for the electronic structure of &, the “hydrogen
molecule, we consider the four carbon valence electr@ys 2 atom” of the main fullerene family of G2 molecules.

HU.:_V]__ E CiTaCiﬁ_VZZ CiTaCja' (3)
i,a# B (ij)

2py, 2py, and 2, in the tight-binding Hamiltonian However, its understanding is a convenient stepping stone to
the study of more complex models. The spectroscopy of, for

Ho— e + t ofe. 1 |n§tance, the hydrogen atom can be analytically solved by

T % €aialia m%,g apriaip @ using several different approaches. These lead to the same

) _ analytical expressions for the eigenvalues and eigenvectors.
Here, i denotes the carbon site amddenotes the valence |, gpjte of the fact that modern computers can easily obtain
orbitals 25, 2p,, 2py, and 2,. Also, €, is the orbital en-  nymerical expressions for them, it is useful to have analytic
ergy andt, is the hopping matrix element between orbitalsyesylts, In fact, analytical solutions have always been pur-
on the nearest-neighboring siteandj. The 60 2, orbitals,  syed in the area of spectroscopy of atoms, molecules, and
each pointing along the outward radial direction, are hybrid|ysters. In this paper, we pursue several approaches to the
ized to form states. The other three Orbitals,sz, and ana|ytica| Study of the Spectroscopy Of an important mo|_
2py, distributed on the plane tangential to the surface of th%cu|e_ We would like to emphasize that the approaches de-
molecule, are hybridized along the lattice bonds to farm scribed here are not intended to substitute more traditional

bonding and antibonding states. . methods, but to present alternative viewpoints and comple-
Let us assume that the mixture of these three orbitals ghentary results.

each site produces threg? hybrid orbitals:spﬁ along the

double bond andp? and sp? along the two single bonds, Ill. RECURSION METHOD APPROACH
respectively. From a physical point of view, the 60 outer )
orbitals are relevant to the conducting properties of the mol- A. Formulation

ecules and the 186 orbitals are mainly responsible for the We first focus on ther-states Hamiltonian Ed2). Let us
elastic properties. The former are also responsible for theegin with a brief outline of the recursion metfiddr ob-
bond dimerization. Also, onlyr states occur around the taining the eigenvalues and eigenfunctions. First, one must
Fermi energy. choose an appropriate normalized starting stife Further
As a result of its planar structure, the electrons in states are iteratively generated by the three-term recurrence
graphite contain only puref® orbitals. Nevertheless, in the relation
curved structure of g, an extra small component frons2
2px, and 2, is induced along the radial direction due to the HIfn)=anlfo) +bnsalfri) +bolfroa), (4)
surface curvature. The interaction between therbitals in i the condition bo|f_1)=0. Here, the real parameters
Cgois then slightly increased in comparison to that in graph—a andb.. . . are determined b
; R ; ; n n+1 y
ite. However, since this component is very small, the overlap
integral betweenr and o orbitals is negligible. The nonzero an={(f,|H|f,) (5)
Hamiltonian parameters used here are the same ones as in
Ref. 2. and
The original Hamiltonian Eq(1) can thus be written in
terms ofH, andH, asH;=H_®H,, where bas 1= (falHlfne ) =(FrralHI fr). 6)
By convention, thé'’s are chosen to be positive. The process
H, = _E tijCiTCj ) terminates at|fy_,) with the last recurrenceH|fy_;)
(D) =an_1/fn_1)+bn_1lfn_2). The constructed orthonormal
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states {|fo),|f1), ... |fn_1)} along with the parameters
{ag,a1, ....ay_1} and{by,b,, ... by_1} thus constitute
the “chain model® of a given Hamiltonian. The representa-
tion of H in the new basig|f,)} is in a tridiagonal form.

The energy levels can be achieved by constructing the
following polynomials withP_;(E)=0 andPy(E)=1:

(E_an)Pn(E)_annfl(E)

Bn+1

Pni1(E)= ()

The eigenvaluek, are determined by thid zeros of the last
polynomial Py(E) =0, with an arbitrary nonzerby . It fol-
lows then that the eigenfunctions are

N—-1

1
—— 2 Po(EDIfo), ®
<7 An=0

where ./, =[=N-1P2(E,)]"? are the normalization con-
stants for the eigenfunctions, ag(E,) always equals 1.

So far, we have briefly outlined the recursion method. We
now come to the application of this approach to the elec-
tronic structure of a fullerene molecule. For convenience, we
work in units of the single-bond hopping integral. The hop-
ping amplitude is therefore 1 for every single bond aridr
each double bond. It has been pointed*dhat the value of
t is about 1.1. We will use two alternative sétienoted by

— . . . e 3, M
# and.%) of starting states. Each set consists of two initial , / [
. . : 9 22

states from which the whole energy spectrum can be derived, : G 7
and the final results do not depend on the choice of initial 15._24-,"’ 2? ,7 "13\
bases. Both sets lead to thkamesolutions for the eigenval- : \ 2, 1 8. _23

. . . . . . : / e Ny 4 \
ues and eigenfunctions. From the physical point of view, this : 2819 | 2 | 26ty
consistency ensures the equivalent interpretation of the re- / \n, 5., L3 RLNGY
sults from these two sets of initial states. We denotgjby P —2s 4\ /9' 24
the 2p, orbital centered at thgth atom. For convenience of : TN 1016, :
visualization, in all our figures we flatten the truncated icosa- : : 7 v "

. : : : \ I 25——29
hedral structure of g into a plane. Note that labelings vary : e So—26.. \ .2
according to the different choices of initial states. w \ 3d 207 N\
13’

B. Case. 72

The first set of initial states starts from a five-atom pen-

tagon ring[see Fig. {a)] and a six-atom hexagon rirfgee FIG. 1. Flattened @ molecule obtained by stretchin@ a

Fig. 1(b)]. Starting from a pentagon ring, we choose the ini-
tial state|ug) as a linear combination of the five orbitals on
it,
1 5
Ug)=—= i). 9

Here the labeling is as shown in Fig(al. From now on,
H will denote H . unless specified otherwide.g.,H,). As

an illustration, we present here the calculation of the first

recurrence,

_

J5
+[4)+1[8)) +([3)+5)+1]9)) +([1) +[4)
+1|10))]

Hlug)= [(12)+]5) +t[6)) + (| 1) +[3) +t[7)) +(]2)

pentagon andb) a hexagon, with the site labels used in casés
and.? in the recursion method.
1
V5
1
5

—2|ug) +tluy).

=—2| = (|1)+]2)+|3)+]4)+|5))

+t (16)+17)+[8)+]9)+|10))

We then obtaira,= —2, b;=t, and|u;)=—1/{55j).

Following the same procedure, we can construct further
states and obtain the parametaisandb’s at the same time.
The beauty of the recursion method fogddies in the fact
that the recurrence terminates very quickly, exactlyuaj.

As a result, we have exact and very concise formulas for
ag througha,, andb, throughb-.
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TABLE I. States and parameters for casgin the recursion method approach. It is interesting to noticeahata, _, andb,=bg_,, for
n=4,5,6,7.

Starting from a pentagon ring Starting from a hexagon ring
n |un> an by |Un> a bn
0 fzf A1) 2 f P2 (1)) 1t
1
! gl 0 t 72,127( 1)) 0 !
2 s i) o V2 SIS (1) )+ +3) ] +6)] ! t
\/E) j=11 \/— j=14'
1
s - \/—0 = 21|J> -1 1 \/—212423( 1)J+1[|J>+|J+3>+|J+6>] 0 1
1
4 TSl -1 t [2,2“23( 1Y)+ +3))+1G+6)")] 0 t
1
> —=2{2)j") -t ! SIS (- 1)) £ 3))+IG + 6)) ! !
6 @10 0 2 % 12 0 t
Zieli —=32(-1)[i’
\/— 6| > \/— =7 >
’ —esliy 2 EIC D) e
Similarly, starting from a linear combination of the six
orbitals on a hexagon ring, we have the initial statg) as |@o) = E (=Y pH+2 i), (12
N
+1 where the site labels are presented in Fig) {1(b)] for the
lv)= E (=1)I* ), (10 : ! o)} ol
J6i=1 first (second starting state. Here” stands for parity, with the

value +1 or —1. Note that atomj and atomj’ are anti-
where the labeling is referred to Fig(ld. The choice of podes. Following the same procedure, we find the very con-
alternating signs, €1)'*1, meets the threefold symmetry venient and remarkable result tithae recurrence terminates
requirement of a hexagon ring ingg, with alternating single even fastemt |¢3) (| ¢3)) for the first(second initial state.
and double bonds. Again, the recurrence terminatésat  Due to the two possible values of, we have two different

We then obtain another group of paramet@esandb’s. All results foras for each starting state. In Appendix B we
these|u,) and|v,) states, as well as their respective param-present the calculation of the last recurrence, namely those
etersa, andb,,, are summarized in Table I. for |¢3) and|es3). It can be clearly seen th&t| ¢3) gener-

Through these two groups afs andb’s, we can, respec- ates two possible values fag and no further state; and so
tively, construct two polynomial®§(E) and PQ(E) which  doesH|¢3). As a consequence, we obtain four groups of
are of eighth degree i&. Here the superscrig for penta-  {ay,a;,a,,as} and{b,,b,,bs}.
gon (h for hexagon refers to the polynomial constructed  All the states|¢,) and|¢,), as well as their respective
from the group ofa’s andb’s generated byug) (Jvg)). The  parameters, andb, ., are listed in Table Il. It follows that
roots of these two polynomials can be analytically obtainedve can construct four polynomial®}*(E), P4 (E),
and correspond to the electronic energy levels. It folIowsPh+(E) and p4 (E). Each one is of fourth degree 8.
then that we have a total of 16 distinct elgenvalues WhelThe Superscr|pp+ stands for the po|yn0m|a| constructed
t=1, a common root-1 exists for both polynomialB§ and  from | ¢,) with 2 equal to+ 1, and similarly for the others.
PS. We thus have 15 distinct energy levels. It is alsowith the choice ot,=1/b,b,bs, these polynomials can be

straightforward to obtain the eigenvectors through @ explicitly written as
C. Case.” PR (E)=E*+(2t+3)E3+(5t—1)E?— (23~ t*+8)E
In this approach, we exploit the symmetry property that —(t+2)(t3—t2+t+2),

the inversion operator leaves thgdInolecule invariant. We

therefore take the firdsecond starting state ¢q) (|¢o)) as PP (E)=E*+3E3—(2t2—t+1)E2—(3t2—4t+8)E
a linear combination of the orbitals on two opposiie.,

antipode} pentagonhexagon rings +(t -3+ t2+ 41— 4),
1 i | | PR (E)=E*-2(t+1)E3+(3t—1)E2— (2t3+t+2)E
do)= =2 (|N+71j")) (11)
40 o W > — (24 1)(2+t-1),

and and
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TABLE Il. States and parameters for caggin the recu
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rsion method approach. The pa#itycan be+1 or — 1.

Starting from two opposite pentagon rings
n |¢n> an bn
0 Sl + )] -2
1o
1 _ ,
1 _\/?)21126[|J>+?7)|J )] 0 t
1 _ . _
2 EzfgnﬂlHi’flJ )] t V2
1 o (149
3 —Ezfgzih)*‘/)ﬂ )] 1+ 1
Starting from two opposite hexagon rings
n |‘Pn> an b,
0 S0 -1+ ) L+t
1 _— )
! DDA 0 !
1 ’ . . . . - ' : '
2 \/ngjlim(—l)'ﬂ[mﬂl+3>+|J+6>+-ﬂ|1 Y+1(1+3))+(1+6)")] 1 t
1 i . . - s ) . ’ . ’ A
3 TS D I8+ 6+ AL )+ +3) )+ +6) ) a 1

PY(E)=E*-2E%— (2t2+t+1)E?— (2t?+t+2)E
—(t+1)2(t°—t+1).

By analytically solving these four polynomials, we obtain the
same 16 eigenvalues obtained absase 7). Similarly we

hopping matrix elements for single and double bonds. Since
the respective degree of degeneracy for each eigenvalue can
be acquired from the local density of states on a carbon atom
(discussed in a later sectiprihe other degenerate eigenvec-
tors can be generated by standard group theory analysis. This
is outside the scope of the present paper. We therefore only

can obtain the eigenvectors, which are also equal to thosgresent these eigenfunctions derived from the pure applica-

obtained from the alternative set of initial states.

D. Results for the 7r-state eigenvalues
and eigenfunctions of G

tion of the recursion method.

It is instructive to notice that the following points further
support the results for the degeneracy. They(dyghe sum
of the product of energy and its corresponding degeneracy
equals the trace of the Hamiltonian, which is ze{®) the
number of states with even parity equals that with odd parity;
and(3) the behavior of the eigenvalues can be easily studied

In Table Ill, we summarize the eigenvalues and the corin the limits when eithet;=0 ort,=0.

responding eigenvectors for the cdasel. In Table 1V, we

present the closed-form eigenvalues—including the HOMO

and LUMO energies—explicitly expressed in terms of the
single-bond hopping integré) and the double-bond hopping
integralt,. Thus, eigenvalues for the limiting casdgs=0 or
t,=0 can also be readily inferred.

It is interesting to note that the fivefold degenerate
HOMO state is obtained from the initial statey) (with
negative parity, made of orbitals on two opposite hexagons

E. Relations between alternativesZ and .

It is worthwhile to point out the following relations be-
tween the casesZ and .# presented before. First,
PB(E)=P§"(E)P}™ (E) andPg(E) =P} (E)P; (E) up to
an overall constant factor. In other words, roots solved from
PE(E) [PL(E)] are identical to those solved frof" (E)

with a threefold symmetry axis passing through their centersang pp=(g) [Ph*(E) and P}~ (E)]. Second, from Tables |
On the other hand, the threefold degenerate LUMO state ignq |1 we can see that. far=0 1. 2 and 3

obtained from the initial statésy) (with negative parity,

consisting of orbitals on two opposite pentagons with a five- 1

fold symmetry axis passing through their centers.

As to the eigenfunctions, we present in Table V those for

the HOMO and LUMO in terms of=t, /t,, the ratio of the

|¢n>: \/§(|un>_4/7)|u7—n>)

and
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1 1<
[en)= 5 (o) + Av7-0). W)= 2 Pa(E)lun)
_ . _ V2| o1 1
Third, for those eigenvaluds, which are common roots of =——| Po—=(Jug)—|u7)) + P1—=(|u1) —|ug))
// A \/E \/E

PP andP?*, or common roots oP§ andP!}~,

1 1

P, (E,)=—P.(E,). + Pzﬁ(|uz>_|us>)+ PSE(|US>_|U4>)

Also for those eigenvalueB, which are common roots of

1 3
=2 Pu(EVI ),
PS andP}~, or common roots oP} and P}, = "

where the last equality is just the result obtained directly
P,_n(Ey)=P,(Ey). from %, In fact, from the results of alternativeZ, we can
understand the parity property associated witly.C
Here, all theP,(E,)’s refer to the polynomials constructed
in the case.# and n=0,1,2, and 3. FourthP4(E,),
P,(E,), and P3(E,) calculated from the two alternatives
# and.7 are the same. Fifth, for the eigenvector with re-
spect to the same eigenvalue, the normalization constan{
" ,and. ), calculated inZ and.%, respectively, satisfy
N =2y,

From the above five properties, the equivalence of results

from both alternatives becomes clear. As an example, for awhere the ordet is a positive integer. Note thatZ,=1
eigenvalueE, which is a common root oP andP}", we  when|=0. The physical meaning of the above quantum-
can obtain the eigenvectW,) from .7 as mechanical expectation value is as follows. The Hamiltonian

IV. METHOD OF MOMENTS APPROACH
A. Methodology and application

In this method, the first and central task is the computa-
fon of moments, defined by

2 =(jHj), (13

TABLE Ill. The eigenvalueE, and the corresponding eigenvectors.{1y) EﬁzoPn(EA)Hn) for Cgo with t=1. Recall thatPy(E,) is

always equal to 1. Herep>) (|@=)) denotes|¢,) (|en)) with 77=+1. Also a=2(19+\5) and 8= 2(19- y5). Notice that the
HOMO energy is (+ \/5)/2 and the LUMO energy is<3— 5+ 8)/4.

Ex P1(Ey) P2(E)) P3(E,) A3 |f0)
-3 -1 V2 -2 6 | B0 )
-1 1 -2 -2 6 [bn)
(—1+13)/2=1.303 (3+13)/2 J2(3+\13)/4 V212 (39+9/13)/4 [br)
(—1—13)/2~—-2.303 (3-13)/2 J2(3-13)/4 V212 (39-9/13)/4 [b7)
(—3+ 5+ a)/4~1.438 5+V5+a  2[6+2\5+(V5+1)a] 2[-4+8y5+(V5-1)a] 95+5£L (25+\B)a |¢y)

4 16 16 8 16
(-3+\5—a)/4=—1.820 5+\5-a 2[6+25—(V5+1)a] 2[-4+85—(Y5-1)a] 95+5J§7 (25+\B)a |¢n)
4 16 16 8 16
(—3-\5+p)/4=0139  5-\5+p  2[6-2\5-(VB-1)8] V2[-4-8V5-(\5+1)p] 95-5\5 (25-\5)8 [4y)
4 16 16 8 16
(-3-\5-p)/4=-2757 5-\5-p  2[6-2\5+(\5-1)8] 2[-4-8\5+(\5+1)B] 95-5\5 (25-\5)8 |¢,)
4 16 16 8 16
2 0 -1 -1 3 len)
-1 -3 2 -1 15 lor)
(3+5)/2=2.618 C1+45)/2 (—1+5)/2 (3-\5)/2 (15-5\5)/2 lon)
(3—/5)/2=0.382 1-45)/2 (—1-5)2 (3+5)12 (15+54/5)/2 lon)
(1+5)/2~1.618 3+5)/2 (-1-5)/2 (1-5)/2 (15-3/5)/2 lon)
(1—/5)/2=—-0.618 ~3-5)/2 (-1+5)/2 (1+5)/2 (15+34/5)/2 lon)
(1+/17)/2=2.562 3+17)/2 (5—-V17)/2 —4+\17 51-12\17 len)
(1—/17)/2=—1.562 ~3-V17)/2 (5+17)/2 —4-\17 51+12\17 len)
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TABLE IV. The eigenvalues and the corresponding degree of TABLE V. The HOMO wave function/l/;12ﬁ:0Pn(Ex)|<p;)
degeneracy for g, with a single-bond hopping-integral and a  and LUMO wave functiom/fliﬁ:OPn(Em¢>n‘) for Cggin terms
double-bond hopping-integray. Note thatt,=1.1t;. The charac- of t=1.1. Recall thaPy(E,)=1. Here|¢, ) stands for ¢,) with
teristic polynomials from which those eigenvalues are solved are”=—1 and |¢,) for |¢,) with Z=-1. Also
indicated in the left-hand column. Herer=[16 t3—8(1 y=16t2+2 (4t—5)(\5-1).
+B)t,t, +10(3+ 5)t] and  y=[16t2—8(1—\5)t,t;

+10(3—V5)t?]. Also 7 and ¢ satisfy (16t3—24t2t;+12t,t? HOMO
+25t§):354(7,3—fn§2) aznd 3[3 (64_t‘2‘— 160t§t14_r288t§t§ E, (1-JAT—4155)/ 2
—200t,t] +125t7)] =18 (3p°¢—£°). Notice that the flvefolq d(_a- PL(E,) Ct—(1+ m)/ 5
generate HOMO(threefold degenerate LUMOenergy, as indi- S
cated, is solved from the polynomial constructed from the starting”2(Ex) t—(3—\4t°—4t+5)/2
state| o) (| o)) —with negative parity—which consists of orbitals P3(E\) t—(1-\4t*—4t+5)/ 2
on two opposite hexagori@entagonswith a threefold(fivefold) .72 6t2—6t— 2+ (3t— 3 J4t2—4t+5
symmetry axis passing through their centers.
Energy Degeneracy LUMO
(2t 1) 1 Ex (—3-\5+y)/4
()3 427 5 P1(E)) (5—B+y)/at
Pg* —(ty+tp)/3— nt \Be 5 Po(E,) V2L 4(V5-1)t+10-6 V5 (y5-1)y)/ 16
—(ty+t)/3— B¢ 5 P3(Ey) — 2L 4(J5+1)t+4\5+(5+1)y]/ 16t
A2 80t2+40 (\5—1)t+50 (3— \5)+ (4 /5t +25-5 5)y
[(=3k+\/B)t, +71/4 3 1612
[(—3+\B)t,—7/4 3
' [(=3—\B)t;+ y]/4 (LUMO) 3 H|1)=(—1t)|2)+(—1)|3)+(—1)|3") (labels as shown in
[(—3—\5)t,— )4 3 Fig. 2). For simplicity and without any loss of generality, we
choose orbital1) to be our starting state. Now, fdr=1,
starting from vertex 1 and following the connectivity of
(t1+\/5tz+ 4t§)/2 4 Cgo (Fig. 2), we write down the factors-t, —1, and—1 on
L (ty—+/5t{+4t5)/2 4 the vertices 2, 3, and”3 respectively. A similar procedure
Pa to+(L+5)ty/2 3 holds forl =2. Starting from the three resulting vertices with
to+(1—5)ty/2 3 respective factors, we then write dowr{)(—1)=t on the
vertices 4, 4, 4", and 4"; (—1)(—1)=1 on the vertices 5
(t,+ \/5t2— 4t t,+4t5)/2 5 and 5; and (—1)(—1)+(—1)(—1)+(—t)(—t)=2+1t?
Ph- (t,— /52— 4t t,+4t2)/2 (HOMO) 5 on the vertex 1. _ _
(t,+ 52+ 8ty + 412)/2 4 _Ou_r strategy here_ls as fol_lows: each time the power of the
(ty— W)/Z 4 (kinetic-energy Hamiltonian increases by one, we move to

H is appliedl times to an initial , electron statéj), lo-
calized at carbon site Each timeH is applied, the electron
gains a certain amount of kinetic energy depending upon the
bond(single or doublgit travels. This enables the electron to
hop throughl bonds, reaching the final sta#|j). The mo-
ment. 7, just equals the total kinetic energy gained by the
electron returning to the starting siteafter hopping steps.

It is obvious that 7, will be zero when thd-hops path
does not return to the starting site. In other wordg;=0
when there is no path df hops for which the electron may
return to the initial site. For the case 1, the absolute value
of the moment 7, is the total number of closed paths lof
steps starting and ending at the same site. The spirit of this
approach follows Feynman’s program: to compute physical
guantities from sums over paths.

The moments can be calculated analytically by hand, as
well as by computer using a symbolic manipulation program.
Below we describe these two implementations starting from
the former. Let us first examine the action of the Hamiltonian
on an arbitrary statdj). This results in three nearest-
neighbor atom states with an additional factor accounting for FIG. 2. Site labels used in the moments method. Independent
the respective bond hopping energy. For exampleyertices are those with running from 1 to 24.
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the adjacent nearest-neighboring vertices. Also the factor on TABLE VI. Parametersa, andb,, for n=0,1,. .. ,9 calculated
each vertex is the sum of the factors on the three nearesfom the moments/#; with t=1 in the moment method for .
neighbor vertices times the bond hopping integral betweefumbers in the denominator are relatively prime to those in nu-
vertices. It is then straightforward, with the aid of “the flat- merator and all numbers in square root are primes.
tene_d Go graph,” to obtain all the facto_rs on the _availablg a, by,
vertices for any power of the Hamiltonian. From its defini-
tion, it is evident that the moment of ordeers just the factor 0
on the vertex 1 foH'. For example,#;=0 (i.e., the num- 1 0 J3
ber of closed paths obtained by moving one step is)zand 2 -1 J2
_/,=2+12. By following this strategy, we can generate, 3 u 123

4

5

6

one by one, all the moments to any order. _ 933 5 /2% 19
It is worthwhile to notice the mirror-symmetry between 1109068 N 23><23>< 39
the left and right halves of g for the atom vertices and S 01 a0 475

_ 52107413 5[5 19 23857
bonds. So we need only concern ourselves with the factors7 o e Sre 5x19x 23857
on the vertices in the right part. Furthermore, because of the’ ~ ~ 13485201135 | e 23X 239X 41357
geometrical equivalence, with respect to vertex 1, of eight8 ~ 5232428507614 7853 5333 X 5X 11X 31X 80657x 23857

603 116 478 351 886 109
9 1730319460 378 457 102 TEE 02437 02234 222\/3 XTX17x41357<11492779

pairs of vertices [ and ' in Fig. 2), the total number of
independent vertices can be reduced to 24. All calculations
up to this point can be done analytically by hand.

An alternative analogous procedure can be implemented ah=Mn1 (15
by using symbolic manipulation software on a computer.gnd
First, we define an auxiliary quantity,W,(j), which is the
sum over all possible paths bfsteps on which an electron b2, .= Mnpo— Mﬁyl, (16)
may hop from the vertex 1 to the vertgxFrom the connec- . . )
tivity of C g, We can then construct 24 independent recur-heren_o'l’z" ... Note that elements in the first column

. : M, o are always equal to 1.
rence relations. For instance, W, ;(1)=—tW,(2) no <> . 5 _
—2W|(3), Wi, (2)=—tW,(1)—2W,(4), and W,,4(3) We find analytically thabjs exactlyequals O fot=1 and

2 . .
= —tW,(4)—W,(1)—W,(5). The recurrence relations bis exactlyequals O for an arbitrary. Below we discuss the

state that the vertek can be reached by taking tiie+ 1)th t=1 case and simi;ar results can be obtainedtféi. The

step from the three nearest-neighbor  vertices€Xact vanishing obis, in the casa=1, indicates the trun-
The factors —t and —1 account for the Connecting cation atb15. Thus, we eXpeCt 15 eigenvalues. It also turns
bond-hopping integral. With the initial conditions out that the highest order of moment we neeti=s30. The
Wo(1)=1 and Wy(j)=0 for the rest ofj’s, we can ob- Mmoments .7, through .7, for t=1 are 15,-2,
tain the moments to any order asz=W(1). We 91, —28, 607, —306, 4274, —3080, 31227,—-29718,

list .74 through.7g here: 0,t*+8 t?+6,—2, t8+18t* 234559, —279100, 1803 375,-2572542, 14149891,
+413+48t2+20,—14t2— 14, t8+32t°+16 t5+184t4  —23 398880, and 113 056 535. The moments; through
+48t3+25612+70, and —54t*—181t3—-162t2—72, -7’3 were computed but are not shown here. Through the

for 1=3,4,...,9. Themoments. %, through .#, (the  Calculated parameters  {ao,a;, . .. Aia} and
highest order moment needed to obtain the entire energiP1.b2, ....01} (we only present{ao, ... a0} and
spectrum are not presented here. by, ... .bg} in Table VI), we can construct the polynomial

The correctness of the calculated moments is assured  P1s(E) by using Eq.(7). By solving P;5(E) =0, we thus
by the consistency of the results from these two approacheg§btain 15 energy levels. The results are exactly identical to
It is evident that through these two implementations we carthose obtained from the recursion method approach.
also obtain the quantitie6l|H'|j) for j#1 which can be
appropriately interpreted as thesim-over-pathiisbetween B. Alternative application of the moments method

sites 1 and. For instance(1|H'[j) just equalswi(j). In the above description of the moments approach, the
To obtain the energy spectrum, we again utilize B4 ain ingredient is the computation of the moments for a

So the next step is to express the paramedgrandby.; N nagyral choice of statél) centered at the atom labeled by

terms of the moments. We employ the following formutas: 1 “\o\ever. it is worthwhile to incorporate the inversion

ge;!nedthe aui‘“i;y mstr'”\f] with the first rlow eclietr)nent_s symmetry property. Therefore, instead of focusing on a
efined aslo)=.Z . The other rows are evaluated by using single |ocalized state, we turn to the computation of the mo-
only one immediate predecessor row: ments with respect to states

1-1 ) 1
_kZ:OMn,anfl,lfkv |Ii>_ﬁ(|l>_|24>)’ 17

Mnfl,l+2_ Mnfl,anfl,Hl
2
Mp—12=My_ 14

Mn,I:

where atoms labeled by 1 and 24 in Fig. 2 are antipodes. It is
n=1;1=01,.... (14 3 simple exercise to construct the following identity for the

. moments defined byl ..[H'|1..),
Thea,’s andb, ,,'s are obtained from the elements of the

second and third columns as (I[H' )= (1[H'|1) = (1|H'|24). (18
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TABLE VII. Parametersa, andb, computed from the moments TABLE VIIl. Moments (sums over paths(l i|H'|Ii>, with an

(I.|H'1.) with t=1. arbitraryt, for1=9,...,13.

From (1 . |H'|I}) From (I _|H"]I_) Order () Moment (I.|H'[I,))

4 3 2

n a, b, a, b, 9 —54t4—2413-162t2—72
0 0 0 10 1%+ 50t8+40t7+500t5+ 304t°
1 0 V3 0 V3 +1490t*+ 4003+ 1280t%+ 254
2 -3 V2 3 V2
3 gg 123 g—g 123 11 —154t°—-176t°—990t*— 3963 1232t2— 330
g N LIRS N R 2, 12110, 80155 11100+ 11000+ £70415
5w o OOXINEE _wih OXEXaAT A2 a0t £ e15ot o4s
6 38771 325;571 2X3X13X19 3555507 253 025 %35 2X997
7 18 943 1&%&3\/ 17X 47%x 89

13 —364t8—728t"—4212t5— 4056t>
—10920t*—3952t3— 7774t%>— 1430

These moments can then be readily obtained since the quan-

tities (1|H'|1) and(1|H'|24) are already available. Note that _°rder O) Moment (1 -[H'[1 -))
the lowest order for the appearance of a nonzétél'|24) is 9 —B54t4—1213—16212—72
[=9. This is because the shortest path for vertex 1 to reach
vertex 24 contains 9 steps. We thus obviously have qg t194 5018+ 407+ 5005+ 29615
(1.[H'I.y=.7, for I=<8. +1450t*+ 360t3+ 128012+ 254

For the caset=1, the highest order we need for
(1L [H1) ((1-[H'[12)) is1=14 (16), becausb? (b3) cal- 11 — 154t5—88t5— 902t*— 1761 1232t2— 330
culated from the momext  [H'[1 ) ((I_|H'|I _)) gives ex-
actly 0. Through the computed parametgas, . . . ,as} and 12 124 72194 8019+ 1110t8+ 1056t + 55961°
{bs,....be} ({ao, ... as} and{by, ... bs}), we analyti- +3120t5+ 98404+ 2200t3+ 61922+ 948
cally obtain 7 (8) eigenvalues which are identical to those
belonging to the#’=+1 (7’=—1) category from the recur- 13 — 36418 364t7— 3484t5— 1716t5
sion method. The momengs, [H'|1.), for1=9, ...,14, are —9256t4— 1612t3— 7774t2— 1430

—312, 4319,—3278, 32 339,—33 436, and 252 339. Also
the momentg| _|H'|l _) are —300, 4231,—2882, 30 115,

—26 000 216 779 225 080 and 1571 823 reSpeC“Vely, /’ the moments we now need to Compute %|HI|¢O>

for1=9,...,16. Their respective set of parametafs and and(zpo|H |@o). It is straightforward to find that
b,.{’s are presented in Table VII. The result thegt and

b,.1 for n=0,1,2, and 3 in Table VII are identical to those (¢@o|H'|po)=(1|H'|1)+2(1|H'|3)+2(1|H'|5)
in Table VI comes from the fadti ..|H'[l .)=.#, for |<8. /j | | |

For an arbitranyt, we need the momengs_.|H'|1.) up to +7 ((1H]24)+2(1[H22)+2(1[H|19)
order 16. The momentd ..|H®|l ) through({l.|H¥1.) are (19)
listed in Table VIII, while {I.|H™1.), (1.|H¥I.), and
(1.|H¥1.) were computed but are not presented here. W&" .
analytically find thatb2 calculated from these two sets of (@olH'|@o) = (1|H'| 1) —(1[H'[2) — (1|H"|3) — (1|H'|7)
momentsexactlyequals 0 in both cases. Consequently, con- 0 0
sistent results for the eigenvalues are recovered. +2(1|H"4)

In this section, we have presented an unconventional
choice of initial states and concentrated on the moments with

+72 ((1|H'[24)— (1|H'[23) = (1]|H'|22)

respect to these states. It is shown that this approach is even —(1|H'|22) + 2 (1|H'|20)). (20)
more efficient in analytically obtaining the energy eigenval-
ues. Notice that the site labels on the right-hand sides of the

above two equations refer to Fig. 2. Through the techniques
for the calculation of these quantities previously discussed,
the moments ¢o|H'| #o) and{@o|H'| o) can be readily ob-
tained.

Generally speaking, the moments method is closely re- Anticipating the termination abj, we only need these
lated to the recursion method, especially in the aspect thanoments up to order 8. In Table IX we give the moments
both methods lead to the same results for the paramaters with respect td ¢o) and|<p0) By utilizing Egs.(14)—(16),
andb?_ ;. In this section, we illustrate this point by showing we thus obtaina,’s and b2, ,'s which are consistent with
that the same expressions for the parameters in the recursitiose (in Table 1)) derived directly from the recursion
method case# can be obtained through the momentsmethod. To illustrate this consistency, we explicitly present
method. As the initial states ateb,) and|e,) in this case here the results for thbZ, ;’s. From (¢o|H'|¢o), we have

V. RELATIONSHIP BETWEEN THE RECURSION AND
MOMENTS METHODS
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TABLE IX. Moments (sums over paths (¢olH'|¢o) and VI. LOCAL DENSITY OF STATES
(@olH'|@o) for 1=1,... 8.

In the recursion and moments methods, the diagonal ele-

Order () Moment( ¢o|H'[ ¢bo) ment of the Green functionE—H) ~* can be expressed as a
1 -, continued fractiof™
2 t?2+4 1
3 —4t2-8 Go(E)=<folﬁ|fo>
4 2
4 t*+ 1412+ 16
5 -6t*—213-40t2-32 1
6 t6+30t*+8t3+110t%+ 64 - b2
7 —8t0—61t5—112t*—(36+2)t3—282t2— 128 E—-ap— b2
E-a, - : 2
8 t8+ 525+ 325+ (396+ 4 t* by
+(116+ 127)t3+ 708t2+ 256 E-& -~ ga
Order () Moment(¢o|H'| ¢o) (2D)
The local density of statep(E) for |fy) is related to the
1 trl imaginary part ofGy(E) by
2 t2+2t+2
3 t3+3t2+5t+3 1
4 t4+4t3+10t2+10t+5 p(E)=lim = —ImGy(E+ie). (22)
5 t5+ 514+ 16t°+ 252+ 20t+8 o0
6 t5+61t5+24t*+48t3+60t2+38t+13 From the computational point of vievi;,(E) can be ob-
tained by iteratively applying the following transformation:
7 t’'+7t5+33t5+ 8414+ (133+ A)t3 L
2
+133t2+71t+21 Gy(E)= — k
E-ay,— by, 1Gnsa(E)’
8 t8+81t7+44t%+ 132t5+ (266+ 2)t* i .
+(336+47)t3+ 28412+ 130t + 34 starting fromGy_1(E)=1/(E—ay_1). By substituting the

parameters,, andb?, ; from either one of the two methods
into Eq. (21) and using Eq(22), we thus obtain the local
b2=t?, b3=2, b3=1, and bj=(1-7%)t?=0. From density of states on several initial states. In our two alterna-
(¢olH'l¢o), we have b?=1, b2=t% b2=1, and tive applications of the recursion method, we have used four

b2=(1—7%)t?=0. We thus demonstrate the fact that thedifferent starting stateuo), [vo), o), and |go). Their

same results for the parametersandb?, ; can be obtained Go(E)'s can be written explicitly as

by using either the recursion or moments methods. The ad- Gyl=E+2—t}E-2[E+t—(E+1+ ¥, o) -1t
vantage of the recursion method lies in the fact that we can (23
simultaneously generate the states and the parameters. How-
ever, it is sometimes difficult to derive the states and param@"
eters when the recursion method is applied to some starting
state, for example, a single carbon atom stgte while the
moment method provides standard procedures to calculate
the parameters after the moments are obtained. where

Go'=E—-t—-1-{E-t[E-1—(E- %) 1471,
(24

Pt for the state ¢q)

IpT | P+ 1-{E+t-2[E-(E+2) "3 D! for the statéuq)

and

_ Pt for the statepg)
T tE—{E-1-tE—(E-t-1)"1 "3 1)1 forthe statb).
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The LDOS around these ring-clusters are plotted in Fig. 3s the sum of the coefficients for orbitals on the bonds asso-
and Fig. 4. Notice that around a pentagbexagonring the  ciated with the sité. Similar equations hold for the othérs
LDOS is large at lowmhigh) energies. This is related to the andB’s. In the first place, Eq$26) and(29) can be rewritten
fact that a pentagothexagomn has zerdthree double bonds as

and five (three single bonds. Also from the moments ap-

proach, the local density of states on two antipode carbon (e—=Vi)aj+Vsa;=—-V,A (39
atoms are plotted in Fig. 5. In principle, they are experlmen-
tally accessible by using a scanning tunneling mlcros@ope
In one of the moments method approaches, the initial state is
a 2p, orbital on a carbon atom. The local density of states in
the case=1 is plotted in Fig. 6. From Fig. 6, we can obtain

Vzai+(€_vl)aj: _VlAJ . (35)

the degree of degeneracy for each energy level, which isthe g 7Ty T [T T T
respective LDOS value times 2. The common factor of 2 - .
comes from the consideration that the total numbermof - 1
electrons is 60. For# 1, conclusions for the degeneracy can i (a)
be similarly drawn. 81 ]
VII. SOLUTION FOR THE ELECTRONIC o STATES 3 b
6 - -
It is apparent that the Hamiltoniad,, is more complex 4 F -
than H,. due to the two different couplings. However, an © r 1
analytic transformation of this Hamiltonian into a simpler =5 [ i
one with a single “renormalized” hopping parameter be- B
tween sites can be establish@dlhe energy states can then ]
be readily solved. Below we first present the transformation 4
of the o-states Hamiltonian into ar-type one. As a conse- 2 -
guence, the resulting solutions of the eigenvalues forathe - .
states are obtained. r §
We first write theo states eigenfunctions as ol U L M .

1 ! | D | | o T N 3 I | S S | I i 4 31 1 I 1 1 1 1 ' § IS W § | 1

. -3 -2 -1 0 1 2 3

¥ )=2 7Zlia), (25)
. Energy

where Z=a,b, and c represents, respectively, the corre- L LI L L L B B
sponding coefficient for the orbitat=sp?,sp?, andsp? at ol 1
each sitei. Let us now focus attention on a given atom i (b)——
labeledi. Also let atomsj,k, and| be the three adjacent L ]
nearest neighbors of theatom. The energy eigenvalue equa- N .
tion H,| W, )=¢|¥,) then reads 8 y
ea;=—V,a,— V(b +c), (26) I ]
n 6 -
o+ N
ebj=—V,c—Vy(ai+¢), (27 Q i
€Ci=— Vb —Vy(a;+by), (28) r ]
and i |
2 - -
eaj=—V2ai—V1(bj+Cj), (29) : l :
eCy= _Vzbi_vl(ak+ bk), (30) 4] :‘ I ] l L L—/} L |

1 Ll 1 ] B IS IS I b I I | I 11 & 1 ' 11 41 1 l b I I | ] !

_8 —_ —
eby=—V,¢,~ Vi(a+c), (31 ° o 23
Energy

and so on. We then define

FIG. 3. The local density of states around ring clustéas:a
Ai=a+bi+c (32 pentagon(b) a hexagon. They are obtained by using the recursion
method. Notice that around a pentagbexagon ring the LDOS is
large at low(high) energies. This is related to the fact that a penta-

gon (hexagom has zerdthree double bonds and fivéhree single
Bi=a;+cyt+b (33 bonds.

as the sum of the coefficients for orbitals at the sjtand
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FIG. 4. The local density of states around two oppoSite, antipodespentagons witl{a) even parity(b) odd parity, and two opposite
hexagons withc) even parity,(d) odd parity. They are obtained by using the recursion method. Notice that around two antipode pentagon
(hexagon rings the LDOS is large at lowhigh) energies.

When the situatiom’A;=A;=0 occurs, the secular equation (e=V1)Bi=— VoA —Vi(Aj+A+A). (39)
immediately yields . . .
By substituting Eq(37) into Eq. (38), we obtain
szliVZ. (36) 2
[(e+2V1)(e—V1)—V3]A =V Vo(Aj+ A+ A). (39

In all, there are 30 pairs of similar equation sets. We thu§t can be directly recognized that E@9) is entirely equiva-

have two energy levelsv; ~V, belonging to the bonding lent to the problem of a tight-binding Hamiltonian with one

states, and/; +V, belonging to the antibonding states, eaChstate per atom and a single nearest-neighbor hopping inte-

having a degree of degeneracy equal to 30. Furthermore, b . . :
respectively summing up Eq€26) through (28) and Eqs. (_:Yral, whose eigenvalue and eigenvector solutions are already

fully explored in previous sections. Let E,
(29) through(31), we have (A=1,2,...,15) stand for the eigenvalues listed in Table IlII.

€A = —V,B, — 2V, A (37) It follows then that
and (ex+2V1)(€ = V1) ~V3=VVE, . (40)
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FIG. 5. The local density of states on two opposite carbon atom
(antipodeg with (a) even parity,(b) odd parity. They are obtained
by using the moments method. Notice that there are seven eve
parity solutions in(a) and eight different odd-parity solutions (h);
for a total of 15 different energy levelgor t=1).

Thus, we obtain

Y Vi
€=— 71i \/Zl'i'ZVi‘FVg-FVlVZE}\

Ny 1+VlE+9V%
- 2 Moavse

v (41
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5 ¢ ]
4l N
3l a
no 5 5 55 ]
o i
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r 3 3 33 3 3]
1| ]
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ol UU U _'
]IJJI‘IIIIIIIIIIIIIIIIIIIlIIII|I_
-3 -2 -1 0 1 2 3

Energy

FIG. 6. The local density of states for a carbon atom obtained
from the moments method with the respective degree of degeneracy
shown above each peak.

Summarizing, in this section we obtain 90 bonding
states and 90 antibonding states. Among the bondingn-
tibonding states, 30 states are lumped together at the energy
level V,—V, (V;+V,). The other 600 bonding and 6Qr
antibonding states are closely related to the energy spectrum
for the 7 states. Finally, in the limiv,>V,, we have

Vi

1
E)\z___'_VZi 2

>+ E,. (42
It is also straightforward to obtain the corresponding eigen-
vector for an eigenvalue, . Since all theA;’s are already
known, the initial coefficient®;, b;, andc; can be calcu-
lated.

VIIl. CONCLUSION

S .
In conclusion, we use several approaches based on the

tecursion and moments methods in order to explore the elec-
tronic structure of a gy molecule, obtaining exact closed-
form expressions for the ando eigenvalues and eigenfunc-
tions, including the HOMO and LUMO states, as well as the
Green’s functions and LDOS through alternative methods.
These quantities are relevant to the several important experi-
mental techniques which probe the local spectroscopy of
molecules; for instance, by using a scanning tunneling mi-
croscope, as described in the review in Ref. 9. For compari-
son purposes, we have also done a direct numerical diago-
nalization of the full Hamiltonian and the results obtained are
consistent with those from the previous analytical methods.
However, the much more elegant and powerful recursion and

The minus sign designates the bonding states, and the plisoments methods provide valuable insights and closed-form

sign designates the antibonding states.

expressions for various quantities characterizing the elec-
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tronic structure of G@y. Finally, a generalized version of the and
recursion method can be used to greatly simplify the calcu-
lation of the electronic properties of largegg2 fullerenes —V2=(i,sp§|H(,|j,sp§>

- 13
(i.e., Coa0, Cs40, Cos0, C1500: C2160, @Nd Cogag)- . e e
=agaltsstay altp p Tay ayty o
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In this appendix we examine more closely the physical
interpretation for the hopping integral; and V,. Let (i,sPaIH,li,sp5)=(i,spalH,|i,spd)=(i,sp}|H,|i,sp)
li,) be a hybrid orbital located at site We have (A6

APPENDIX A: ORIGIN OF V; AND V,

and
: 2 i i i
hopmadze AR a2 (AL (5B 550)=SRsR) ~( sREMlL o).
H | 1 I
i.57) =b5[25) +bi|2p.)-+ 31 2py). (A2) In the above equation, we have assumed that orbitals
and I ,spﬁ),
_ _ A orbitals|i,sp?), |I,sp?) along the bond connectirigand|.
li.sp)=all2s)+all2py+al2p,),  (A3)
wherei andj are nearest neighbors. We also assume that APPENDIX B: CALCULATION OF H |¢3) AND H|p3)
orbitals|i,sp) and|j,spf) lie along the bond connectirig In this appendix we present the calculation of the recur-
andj. Itis straightforward to obtain rence relations for statefgp;) and |¢3) in the recursion
o S method case?. It is shown that the recurrence terminates at
—Vy=(i,spdH,li,spt)=a*ble,+ (al* b+ a,* b'y)osp these states and two solutions fag are constructed from

(A4) each state. First,

H|¢s)= J—oz (IN+AIN+—= ! {Z (liy+tlj’ >)+f2 (tljy+1j’ >)]

:|¢2>

30
HE [(A+2D)]])+(t+2)])’ >]]

1 ®
:|¢>2>—[— =2 [(A+2)]j)+(1+I)A] ,>]1
20i=21

=|¢2) — (1+71)| ).
We thus obtairag= — (1+7*) andb;=1. Second,

1
Hlps)=e2) + \/Tz[t(|23'>—|24’>+|26'>—|27’>+|29'>—|30’>)+:’/)t(|23>—|24>+|26>—|27>+|29>—|30>)]

[(123)—|24)+|26)— |27)+|29)—[30) + /(|23 ) — |24 ) +|26') — |27') + |29') —[30'))]

1
J12
=|@2)+ 7| @3).

Therefore, we hava;=7% andbs=1.
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