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When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per
qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We
propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the
quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning
both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity Fmax

between the stationary entangled state, ��, and the maximally entangled state, �m, can be about 2 /3
�max�tr����m��=Fmax, corresponding to a maximum stationary concurrence, Cmax, of about 1 /3�C����
=Cmax. This is significant because the quantum entanglement of the two-qubit system can be produced and
kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and
show how the entanglement of these two-qubit circuits can be optimized by varying experimentally control-
lable parameters.
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I. INTRODUCTION

Quantum information processing using superconducting
qubits �see, e.g., �1–4�� has made remarkable advances in the
past few years. One-qubit and two-qubit quantum circuits
�see, e.g., �5–11�� have been realized experimentally in su-
perconducting systems. One of the most important issues in
quantum information processing is how to couple two qubits,
which has been widely studied theoretically and experimen-
tally in superconducting quantum circuits �see, e.g., �5–27��.
To couple two qubits, there are two types of approaches: �1�
direct coupling and �2� indirect coupling. Examples of qubit-
qubit direct coupling include, e.g., capacitively coupled
charge qubits �5,6� or inductively coupled flux qubits
�8,9,12�. Examples of indirect coupling include, e.g., qubit-
qubit coupling via a quantum LC oscillator or an inductance
�16–19�, a Josephson junction or an extra superconducting
qubit acting as a coupler �21,22�, a nanomechanical oscilla-
tor �23�, or a transmission line resonator �24–26�. The main
merit of indirect coupling is that any two qubits can be se-
lectively coupled in a controllable way �see, e.g., �27��. By
tuning some control parameters, one can continuously adjust
the coupling strengths between qubits, which can be further
used to switch between one-qubit and two-qubit operations.

Although maximally entangled states can be prepared via
two-qubit quantum operations realized by the time evolution
of either directly or indirectly coupled two-qubit supercon-
ducting quantum circuits �28�, the entanglement of the pre-
pared quantum states would be greatly reduced in open en-
vironments. Thus, it is important to study how to prepare
entangled states under decoherence and dissipation, which

leads to the so-called stationary entanglement production
strategies �29–31�. Most of the proposed stationary entangle-
ment production strategies utilize a common dissipative en-
vironment �29,30�, e.g., a heat bath. Specifically, a common
dissipative environment would lead to a collective decoher-
ence channel which may induce a so-called decoherence-free
subspace �31� to produce and protect special two-qubit en-
tangled states.

Although the dissipation-induced entanglement produc-
tion strategies based on collective dissipative environments
have been well developed, it is difficult to obtain perfect
collective decoherence channels in experimental solid-state
systems �e.g., superconducting quantum circuits�. The deco-
herence channels for different qubits in these systems are
sometimes independent or a mixture of independent and col-
lective decoherence channels. In contrast to the collective
decoherence channels, independent decoherence channels
usually lead to disentanglement �32�. This loss of entangle-
ment cannot be recovered by local operations and classical
communications, when the two qubits reach their stationary
states. Even worse, a mixture of the “independent decoher-
ence” and the “collective decoherence” channels may de-
stroy the decoherence-free subspace and lead to a failure of
the entanglement production. Thus, it is challenging to pro-
duce stationary entanglement in the presence of such a dis-
sipative environment, with independent decoherence chan-
nels acting on each qubit.

Compared to the transient entanglement produced, e.g.,
by two-qubit quantum operations, the stationary entangle-
ment would not oscillate as the transient entanglement and
could be preserved for a long time even in the presence of
decoherence. Also, the stationary entanglement is more “ro-
bust” on the initial-state preparation �e.g., the stationary en-
tanglement we obtain in this paper is independent of the
system initial state�, but the transient entanglement strongly*jing-zhang@mail.tsinghua.edu.cn
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depends on the initial states and the time duration of the
dynamical evolution. Therefore, the dissipation-induced sta-
tionary entanglement is more stable and “robust” than the
transient entanglement prepared by the system time evolu-
tion with different initial states.

Although the stationary entanglement has many benefits,
we would like to raise the following questions: �i� the level
of entanglement remaining in an open system that reaches its
steady state and �ii� if the stationary entangled state can be
used for quantum information processing. In this work, we
first study a general theory on two-qubit entanglement when
the two-qubit system reaches its steady state. We find that the
stationary state of this system includes a component of the
maximally entangled state. The weight of this component
can be tuned by either single-qubit or two-qubit parameters,
by which the maximum fidelity between the maximally en-
tangled state and the stationary state can be achieved. Al-
though the obtained stationary entanglement nay not be high
enough to be applied directly to quantum information pro-
cessing, it could be increased by introducing an additional
entanglement-purification process. We further apply our gen-
eral theory to study several examples of superconducting qu-
bits.

This paper is organized as follows: in Sec. II we present
our main results for general two-qubit systems. The en-
tanglement production for directly and indirectly coupled su-
perconducting qubits via an inductive or a capacitive coupler
is presented in Secs. III and IV. In Sec. V, we study the
entanglement production in superconducting qubit circuits
interacting with controllable squeezed modes in cavities or
resonators �e.g., circuit QED�. Conclusions and discussions
are given in Sec. VI.

II. GENERAL RESULTS

We consider two coupled qubits with a general Hamil-
tonian

HA = �1�exp�− i�1��+
�1��+

�2� + exp�i�1��−
�1��−

�2��

+ �2�exp�− i�2��+
�1��−

�2� + exp�i�2��−
�1��+

�2��

+ �
j=1

2
�aj

2
�z

�j�, �1�

where the Planck constant � is assumed to be 1. Here, �	
�j�

=�x
�j�	 i�y

�j�, and �x
�j� ,�y

�j� ,�z
�j� are the ladder and Pauli opera-

tors of the jth qubit. The frequency of the jth qubit is de-
noted by �aj. The real coefficients �1 �with phase �1� and �2
�with phase �2� correspond to the �−

�1��−
�2� and �−

�1��+
�2� cou-

pling strengths, which are assumed to be tunable parameters.
The qubits also interact with uncontrollable degrees of

freedom in the environment �see, e.g., Refs. �33–35��. If the
two qubits interact independently with their own environ-
ments, then, under the Born-Markov approximation �36�, we
can obtain the following master equation:

�̇ = − i�HA,�� + �
j=1

2


1D��−
�j��� + �

j=1

2

2
�D��z
�j��� , �2�

where the superoperator D�L�� is defined as

D�L�� = L�L† −
1

2
L†L� −

1

2
�L†L ,

and 
1 and 
� represent the relaxation and pure dephasing
rates for each qubit, respectively. In order to simplify our
discussions, it is assumed that the two qubits have the same
relaxation and pure dephasing rates.

Below, we will use the concurrence C���:

C��� = max��1 − �2 − �3 − �4,0� , �3�

to quantify the quantum entanglement between the two qu-
bits �see Ref. �37��, where the �i’s are the square roots of the
eigenvalues, in decreasing order, of the matrix

M = ���y
�1��y

�2������y
�1��y

�2�� ,

and �� is the complex conjugate of the density matrix �.
If the two qubits do not interact with each other, i.e., �1

=�2=0 in Eq. �2�, the stationary state of the two qubits
should be the ground state ��

u = 	00
�00	 �see, e.g., �32��,
where the superscript “u” refers to “uncontrolled” qubit sys-
tem. Since ��

u = 	00
�00	 is a separable state, no stationary
entanglement is produced even if the initial state is prepared
to be a maximally entangled state. However, the following
discussions show that the stationary entanglement can be
produced by tuning the interaction strength �1 and the
single-qubit frequencies �aj in Eq. �1�.

A. Strong interaction regime: �iÈ10−1(�a1+�a2)

Let us now study the regime where the coupling strengths
�1 and �2 are about 1 order of magnitude smaller than the
sum of the two single-qubit frequencies: =�a1+�a2, and
the phases �1 ,�2 are both time-independent parameters. For
such systems, we have the following results:

The solution ��t� of Eq. �2� tends to a stationary state

�� = p�m + �1 − p��s �4�

as a convex combination of a maximally entangled state �m:

�m =
1

2
�	00
 + ei��1−��	11
���00	 + e−i��1−���11	�

=
1

2�
1 exp�− i��1 − ���

0

0

exp�i��1 − ��� 1


and a diagonal separable state �s:

�s =�
1 − 3�

�

�

�
 ,

where

� =
1

8
�1 −�1 −

8
2


1
p2� .

The subscript “m” is an abbreviation of “maximally en-
tangled,” and the subscript “s” refers to “separable.” 	0
 , 	1
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are the two eigenstates of a single qubit. The parameters p ,�
can be expressed as

p =
�2 + 64
2

2/8�1

2
2/
1 + �2 + 64
2
2�/64�1

2 ,

� = arctan�−
8
2


� . �5�


2 in Eq. �5� is the dephasing rate that is defined as 
2
=
1 /2+
�.

The concurrence C of the stationary state �� �hereafter
called the stationary concurrence� and the fidelity F between
�� and the maximally entangled state �m �hereafter called the
stationary fidelity� are given by

C���� = max� 8�1
�2 + 64
2

2 − 64�1
2
2/
1

128�1
2
2/
1 + �2 + 64
2

2�
,0� ,

F���� = tr��m��� =
4�1

�2 + 64
2
2 − 32�1

2
2/
1

128�1
2
2/
1 + �2 + 64
2

2�
+

1

2
.

�6�

The derivation of Eq. �6� is given in the Appendix.
Our calculations show that the stationary concurrence

C���� and fidelity F���� are not affected by the interaction
strength �2. Indeed, �2 induces a coherent superposition of
the two eigenstates 	01
 and 	10
 �see Fig. 1�. These two
states always decay to the two-qubit ground state 	00
, when
subject to independent relaxation and dephasing channels.
Thus, �2 does not affect the stationary state ��. However, the
interaction strength �1 induces a coherent superposition of
the two eigenstates 	00
 and 	11
. Of course, 	00
 is already
in the ground state, while the state 	11
 can be partially re-
covered from 	00
 by the coherent superposition caused by
�1. Therefore, the stationary concurrence C���� and fidelity
F���� only depend on �1.

As a remark, we should emphasize that the detuning be-
tween the single-qubit frequencies �a1 and �a2 should be
large enough such that

	�a1 − �a2	 � 	�a1 + �a2	 . �7�

In fact, the effective two-qubit Hamiltonian in the interaction
picture can be expressed as

HA
eff = �1�ei���a1+�a2�t−�1��+

�1��+
�2� + H.c.�

+ �2�ei���a1−�a2�t−�2��+
�1��−

�2� + H.c.� . �8�

Under the condition in Eq. �7�, the first and second terms in
Eq. �8� are of the same order, so both terms should be kept.
However, if the detuning between the single-qubit frequen-
cies �a1 and �a2 is small enough, such that

	�a1 − �a2	 � 	�a1 + �a2	 ,

the nonrotating wave term

exp i���a1 + �a2�t − �1��+
�1��+

�2� + H.c.

would be a fast-oscillating term which should be omitted,
compared with the rotating-wave term. This implies that the
�1 term in HA

eff �Eq. �8�� would vanish, producing zero sta-
tionary entanglement, C����=0. In the following sections,
we will use superconducting qubits as examples to show that
the detuning condition in Eq. �7� can be satisfied by tuning
the system parameters.

Of course, quantum systems acting as qubits usually have
many energy levels �the two lowest energy levels are usually
taken as the qubit�. The condition in Eq. �7� means that two
qubits have very different transition frequencies. Therefore,
to make the two-level approximation valid for our proposal,
the transition frequencies from the first excited state to the
second excited state �E1, �E2 for each qubit system should
be far larger than the qubit frequencies, i.e.,

�E1, �E2 � �a1,�a2, �9�

so that the qubit with the highest frequency will not excite
the higher energy levels of the qubit with the lower fre-
quency. The condition in Eq. �9� can be satisfied. For ex-
ample, when superconducting qubits work at their degen-
eracy points, the condition in Eq. �9� can indeed be satisfied
�see, e.g., Figs. 1�a�–1�c� in Ref. �38�a�� and Figs. 2�a�–2�c�
in Ref. �39�, the two lowest energy states are far separated
from the higher energy states at the flux degeneracy point f
=0.5�. Thus, the two-level approximation is valid in these
examples and can result in the Hamiltonian used for coupled
superconducting qubits �e.g., in Refs. �8–10��.

Equation �6� shows that the maximum concurrence Cmax
and the maximum fidelity Fmax, where

Cmax =
1

4
��2
1


2
+ 1 − 1� ,

Fmax =
1

8
��2
1


2
+ 1 − 1� +

1

2
, �10�

can be obtained when the parameters �1 and  satisfy

2�

00

01 10

11

1�

FIG. 1. Schematic diagram of the energy transitions between the
four states: 	00
, 	11
, 	10
, and 	01
. The solid arrows denote the
decays caused by independent relaxation and dephasing channels.
The dashed arrows represent the coherent superpositions caused by
the interactions between qubits �with interaction strengths �1 and
�2, respectively�.
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�1 =

1

8

�2 + 64
2
2

�2
1
2 + 
2
2 + 
2

. �11�

The maximum concurrence Cmax and fidelity Fmax, given in
Eq. �10�, are plotted in Fig. 2. This clearly shows that the
concurrence Cmax and fidelity Fmax in Eq. �10� increase when
the ratio


1


2
=


1


1/2 + 
�

�12�

increases, and the highest concurrence and fidelity

Cmax →
�5 − 1

4
� 0.31, �13�

Fmax →
�5 + 3

8
� 0.65 �14�

can be obtained when 
2→
1 /2, i.e., 
�→0.
The obtained maximum concurrence Cmax may not be

high enough to be used for demanding tasks in quantum
information processing. However, there are two possible
ways to increase the stationary entanglement. First, the ratio

1 /
2 in Eq. �12� can approach the optimal value 2 for cer-
tain systems. For example, if the superconducting charge or
flux qubits are at their degenerate points �1–3�, the optimal
value 2 might be obtained. In this case, the optimal concur-
rence and fidelity can be obtained, as shown in Eqs. �13� and
�14�.

Second, Eq. �10� shows that the maximum fidelity Fmax
between the stationary state �� and the maximally entangled
state �m is always larger than 0.5, which makes it possible to
introduce additional entanglement purification process to in-
crease the proportion of the maximally entangled state �m.
Even if the concurrence and fidelity reach the optimal values,
as in Eqs. �13� and �14�, we can, in principle, further increase
the stationary entanglement by using purification strategies,
e.g., as in Refs. �40,41�.

B. Weak interaction regime: �i™10−1(�a1+�a2)

The results obtained in Sec. II A cannot be efficiently ap-
plied to the case when �1 ,�2�10−1  �e.g., when �1 ,�2

are 2 orders of magnitude smaller than �. In fact, optimal
condition �11� shows that we can obtain the maximum con-
currence Cmax and fidelity Fmax only when

�1 =

1

8

�2 + 64
2
2

�2
1
2 + 
2
2 + 
2

�

1

8��5 + 1�
2

 .

Thus, if �1�10−1 , then, optimally, the ratio 
1 /
2 should
be very small. In this case, from Eq. �6�, the obtained maxi-
mum stationary concurrence Cmax will be extremely small.
Alternatively, in order to avoid this problem, a time-
dependent interaction between qubits should be introduced.

If the phase �1 in Eq. �1� can be tuned to be

�1 = t + �0 = ��a1 + �a2�t + �0, �15�

then the obtained long-time state �� will be a time-dependent
state

���t� =
�1
1

2�1
2 + 
1
2

�̃m�t� + �1 −
�1
1

2�1
2 + 
1
2

��̃s

as a convex combination of a time-dependent maximally en-
tangled state

�̃m�t� =
1

2�
1 e−i�t+�0−�/2�

0

0

ei�t+�0−�/2� 1


and a time-independent diagonal separable state �̃s:

�̃s =�
1 − 3�̃

�̃

�̃

�̃
 ,

where

�̃ =
1

8
�1 −�1 −

8
2


1
� �1
1

2�1
2 + 
1
2

�2� .

The corresponding stationary concurrence and fidelity can
now be expressed as

C���� = max��1�
1 − �1�
2�1

2 + 
2
1
,0� ,

F���� =
�1�
1 − �1�
4�1

2 + 2
1
2
+

1

2
. �16�

The time-dependent phase �1 given in Eq. �15� induces a
time-dependent coupling between qubits, which can be real-
ized by applying an external time-dependent field �see Sec.
V for a possible realization of such a coupling�.

It should be pointed out that we do not need to introduce
the detuning condition �7� in this case, because the fast-
oscillating frequency of the nonrotating wave term
“e−i�1�+

�1��+
�2�+H.c.” can be offset by the time-dependent

phase �1 in Eq. �15�. In fact, in the interaction picture, the

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

Γ
1
/Γ

2

F
max

C
max

0.65

0.31

FIG. 2. Maximum concurrence Cmax and maximum fidelity
Fmax, versus the ratio 
1 /
2 of the relaxation rates, as given in Eq.
�10�. Note that Cmax→0.31 and Fmax→0.65 when 
1 /
2→2.
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two-qubit effective Hamiltonian can be written as

HA
eff = �2�ei���a1−�a2�t−�2��+

�1��−
�2� + H.c.� + �1�e−i�0�+

�1��+
�2�

+ H.c.� ,

where the term “e−i�0�+
�1��+

�2�+H.c.” would not be a high-
frequency term, and thus would contribute.

The condition that the nonrotating wave term is kept in
HA

eff above is that the frequency of the time-dependent modu-
lation coupling the two qubits matches the sum of the two
frequencies of the two qubits. Similar to the time-
independent case in Sec. II A, this modulation might excite
the high-energy levels of the quantum systems acting as qu-
bits. Therefore, in this case, the two-level approximation re-
quires that the transition frequencies from the first excited
state to the second excited states �E1, �E2 should satisfy

�E1,�E2 � �a1 + �a2. �17�

This assumption is valid when the superconducting qubits
discussed below are at their degeneracy points.

For the same reason discussed in Sec. II A, the stationary
concurrence C���� and fidelity F���� are not affected by the
interaction strength �2. The proof of Eq. �16� is similar to the
proof of Eq. �6�. From Eq. �16�, the maximum stationary
concurrence and fidelity

Cmax =
1

4
��2
1


2
+ 1 − 1� ,

Fmax =
1

8
��2
1


2
+ 1 − 1� +

1

2
�18�

can be obtained when

�1 =

1
2

�2
1
2 + 
2
2 + 
2

. �19�

A higher stationary concurrence and fidelity can be obtained,
as in the strong interaction regime, by increasing the ratio

1 /
2. Below, we apply the above results to several super-
conducting circuits and discuss how their parameters can be
varied so that the stationary concurrence and fidelity can be
maxima.

C. Additional discussions of our model

In Secs. II A and II B, we consider the ideal case when
the relaxation rates and the dephasing rates of the two qubits
are equal. In practice, the two qubits may not have identical
decoherence rates, especially when the single-qubit frequen-
cies satisfy condition �7�. However, additional calculations
show that different decoherence rates do not greatly affect
our main results. In order to investigate the influence of non-
identical decoherence rates on the optimal concurrence given
in Eq. �13�, let us now assume that the two qubits are both at
the degeneracy points, i.e., 
1

�i�=2
2
�i�, i=1,2, for the ith qu-

bit, and the coupling strength �1 is chosen to be

�1 =

̄1

8

�2 + 64
̄2
2

�2
̄1
̄2 + 
̄2
2 + 
̄2

for the strong interaction case, and

�1 =

̄1
̄2

�2
̄1
̄2 + 
̄2
2 + 
̄2

for the weak interaction case, where 
̄1= �
1
�1�+
1

�2�� /2 and


̄2= �
2
�1�+
2

�2�� /2 are, respectively, the average relaxation
and dephasing rates of the two qubits. As shown in Fig. 3,
when the ratio between the relaxation rates of the two qubits
is less than 5, i.e., 0.2�
1

�1� /
1
�2��5, the difference between

the concurrence Cmax� obtained in this case and the ideal
maximum concurrence Cmax given in Eq. �13� is about 20%
of Cmax. The above analysis shows that different decoherence
rates do not greatly affect the optimal concurrence. Thus, in
the following discussions we only consider the ideal case
when the decoherence rates of the two qubits are identical.

Additionally, in Secs. II A and II B, we only consider in-
dependent decoherence channel. In general, the decoherence
channel of the two-qubit system may be a mixture of inde-
pendent and collective decoherence channels. If the two-
qubit interaction Hamiltonian does not include the nonrotat-
ing wave term �+

�1��+
�2�+H.c., i.e., �1=0 in Eq. �1�, it can be

verified by the approach introduced in the Appendix that the

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Γ
1
(2)/Γ

1
(1)

C
’ m

ax

C
max

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Γ
1
(2)/Γ

1
(1)

(C
m

ax
−

C
’ m

ax
)/

C
m

ax

(a)

(b)

FIG. 3. Influence of nonidentical decoherence rates for two qu-
bits on the maximum concurrence. �a� The maximum concurrence
Cmax� versus the ratio between the relaxation rates of the two qubits

1

�2� /
1
�1�; �b� the ratio �Cmax−Cmax� � /Cmax, where Cmax is the ideal

maximum concurrence given in Eq. �13�. The solid lines and the
solid lines with asterisks represent, respectively, the cases when the
qubits interact strongly and weakly.
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stationary state of the two-qubit system under a mixture of
independent and collective decoherence channels is the same
as that under the pure independent decoherence channels dis-
cussed in Secs. II A and II B. It is different when we add the
nonrotating wave term �+

�1��+
�2�+H.c.. For example, the sta-

tionary concurrence in this case may depend on the initial
state of the two-qubit system. However, under this condition,
it is difficult to obtain an explicit expression of the stationary
concurrence like those in Eqs. �6� and �16�. Thus, the en-
tanglement protection for this general situation is still an
open problem.

Furthermore, we only consider the relaxation and pure-
dephasing rates of the qubits. Apart from these exponential
damping terms, there exist other sources of decoherence
which cannot be expressed like this, especially those from
the low-frequency noises. For example, the phase noises
from the charge, critical-current, and flux 1 / f fluctuations
induce complex damping terms, which can be expressed as
logarithm terms or the products of slowly varying logarithm
terms and fast damping t2 terms, and cannot be understood as
rates �see, e.g., Eqs. �32� and �33� in Ref. �35��. However, as
shown in Ref. �35�, this kind of noises can be significantly
reduced by spin echo or Rabi sequences. The effective deco-
herence rate �� induced by 1 / f noises can be reduced to be
in the ms−1 regime by these approaches. For this reason, we
can omit this kind of noises in our discussions.

III. DIRECT COUPLING BETWEEN SUPERCONDUCTING
QUBITS

A. Two capacitively coupled charge qubits

Let us first study the superconducting circuit shown in
Fig. 4, where two single Cooper pair boxes �CPBs� are con-
nected via a small capacitor �5,6�. The Hamiltonian of the
total system can be

HA = �
j=1

2

�4EC�n̂j − ngj�2 − EJ��xj�cos �̂ j� + 4Jn̂1n̂2,

�20�

where �̂ j is a phase operator denoting the phase drop across
the jth CPB; n̂j =−i� / ���̂ j�, which represents the number of
Cooper pairs on the island electrode, is the conjugate opera-
tor of �̂ j. The reduced charge number ngj, in units of the

Cooper pairs �2e�, can be given by ngj =−CgVgj /2e, where
the parameters Cg and Vgj are the gate capacitance and gate
voltage of the jth CPB. The Josephson energy EJ��xj� of the
jth dc superconducting quantum interference device
�SQUID� is

EJ��xj� = 2EJ
0 cos��

�xj

�0
� ,

where EJ
0 represents the Josephson energy of a single Joseph-

son junction �42�; �xj denotes the external flux piercing the
SQUID loop of the jth CPB; and �0 is the flux quantum. The
coupling constant J between two CPBs is

J =
e2Cm

�Cg + 2CJ
0�2 − Cm

2 ,

where CJ
0 and Cm are the capacitance of a single Josephson

junction and the coupling capacitance between two CPBs.
EC=e2 /2�Cg+2CJ

0� is the single-electron charging energy of
a single CPB. For simplicity, we assume that EC and EJ

0 are
the same for the two CPBs.

Near ngj =0.5, which is called the charge degenerate point,
the two energy levels of the jth CPB corresponding to nj
=0,1 are close to each other and far separated from other
high-energy levels. In this case, a single CPB can be approxi-
mately considered as a two-level system. In the charge basis,
the Hamiltonian HA in Eq. �20� can be written as �2�

HA = �
j=1

2 �−
1

2
EC�ngj��̃z

�j� −
1

2
EJ��xj��̃x

�j�� + J�̃z
�1��̃z

�2�,

�21�

where EC�ngj�=4EC�1−2ngj� and the Pauli operators are de-
fined as

�̃x
�j� = 	0
 j j�1	 + 	1
 j j�0	 ,

�̃z
�j� = 	0
 j j�0	 − 	1
 j j�1	 .

Here, 	0
 j and 	1
 j are the charge states with the Cooper pair
numbers nj =0,1, respectively.

Rewriting Eq. �21� using the eigenstates of the single-
qubit Hamiltonian, we have

HA = �
j=1

2
�aj

2
�z

�j� + J�
j=1

2 �EJj

�aj
�x

�j� −
ECj

�aj
�z

�j�� ,

with �aj = �ECj
2 +EJj

2 �1/2, ECj =EC�ngj�, and EJj =EJ��xj�. The
new Pauli operators �x

�j� and �z
�j� are defined by the eigen-

states 	+ 
 j and 	−
 j of the jth qubit as

�x
�j� = 	 + 
 j j�− 	 + 	− 
 j j�+ 	 ,

�z
�j� = 	 + 
 j j�+ 	 − 	− 
 j j�− 	 ,

where

	 + 
 j = cos � j	0
 j − sin � j	1
 j ,

	− 
 j = sin � j	0
 j + cos � j	1
 j .

Here, � j = �arctan�−EJj /ECj�� /2.

2x�

0

JC

gC

0

JE

0

JC

gC

0

JE

1x�

mC

Vg2Vg1

FIG. 4. Schematic diagram of two capacitively coupled
CPBs.
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Now, the two-qubit state ��t� evolves following the mas-
ter equation:

�̇ = − i�HA,�� + �
j=1

2


1D��−
�j��� + �

j=1

2

2
�D��z
�j��� .

Let us now assume that the two qubits are both in the charge
degenerate point ngj =0.5 with ECj =0, so that the dephasing
effects can be minimized. In this case, we have 
�=0, which
means that 
2=
1 /2+
�=
1 /2. Further, from ECj =0, we
have

HA = �
j=1

2
EJ��xj�

2
�z

�j� + J�x
�1��x

�2� = �
j=1

2
EJ��xj�

2
�z

�j�

+
J

4
��+

�1��+
�2� + �−

�1��−
�2�� +

J

4
��+

�1��−
�2� + �−

�1��+
�2�� .

In some experiments �e.g., �5��, the coupling strength J is
of the same order of

 = 2EJ
0�

j=1

2

cos��
�xj

�0
� ,

where J�4 GHz, EJ
0�10 GHz and the decoherence rates

�43� 
1 ,
2 are of the order of 10–100 MHz�J ,.
By substituting  and �1=J /4 into optimal condition

�11�, then, in the limit �
1 ,
2, the maximum concurrence
Cmax�0.31 and fidelity Fmax�0.65, as in Eqs. �13� and �14�,
can be obtained, if the fluxes �x1 and �x2 are tuned such that

cos��
�x1

�0
� + cos��

�x2

�0
� �

�5 + 1

2

J

EJ
0 . �22�

Furthermore, detuning condition �7� requires that �x1 and
�x2 should be tuned such that

0 � �
�x1

�0
� �

�x2

�0
�

�

2
,

or

0 � �
�x2

�0
� �

�x1

�0
�

�

2
. �23�

The above two conditions �22� and �23� can be satisfied in
experiments.

B. Two inductively coupled flux qubits

Let us now consider a superconducting circuit, as shown
in Fig. 5, where two flux qubits are coupled through their
mutual inductance. Here, we modify the design used in the
experimental device in Ref. �9�. Namely, the small junction
of each three-junction flux qubit is replaced by a dc SQUID,
from which we can adjust the tunneling amplitude between
the left and right wells �see Fig. 6� of each single flux qubit.

Near the flux degenerate point � j ��0 /2, with the exter-
nal flux � j piercing the superconducting loop of the jth qu-
bit, each flux qubit behaves as a two-level system. The total
Hamiltonian of the two-qubit system can be expressed as �9�

HA = −
1

2�
j=1

2

���� j��̃z
�j� + ��� j

c��̃x
�j�� + J�̃z

�1��̃z
�2�, �24�

where

�̃x
�j� = 	Lj
�Rj	 + 	Rj
�Lj	 ,

�̃z
�j� = 	Lj
�Lj	 − 	Rj
�Rj	 ,

and 	Lj
 , 	Rj
 are the two lowest energy states in the left and
right wells of the jth flux qubit �see Fig. 6�. The parameter
��� j� denotes the energy difference between 	Lj
 and 	Rj

which can be expressed as

��� j� = 2Ipj�� j −
1

2
�0� ,

where Ipj is the circulating current in the loop of the jth
qubit. The tunneling amplitude ��� j

c� between the two wells
is tunable by varying the magnetic flux � j

c piercing the jth
dc-SQUID. In the limit

0 �
2�LjIc�� j

c�
�0

− 1 � 1,

��� j
c� can be approximately expressed as �20�

��� j
c� �

3�0
2

8�2Lj
�1 −

�0

2�LjIc�� j
c��

2

,

where Lj is the self-inductance of the superconducting loop
of the jth flux qubit, and

c

1�

2�1�

c

2�

FIG. 5. Schematic diagram of two flux qubits coupled via their
mutual inductance.

jR
jL

jR

jL
jR

jL

2/1/ 0 ��� j 2/1/ 0 ��� j 2/1/ 0 ��� j

FIG. 6. Schematic diagram of the double-well potential of the
jth flux qubit with the two lowest-energy states for � j ��0 /2, � j

=�0 /2, and � j ��0 /2.
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Ic�� j
c� = 2I0�cos��� j

c

�0
��

is the tunable critical current of the jth dc-SQUID, with I0
being the maximum critical current. The coupling strength J
between the two flux qubits is

J = MIp1Ip2,

with the mutual inductance M between the two flux qubits.
Let us now assume that � j =�0 /2, then the two-qubit

Hamiltonian in Eq. �24� can be further simplified to

HA =
1

2�
j=1

2

��� j
c��z

�j� +
J

4
��+

�1��+
�2� + �−

�1��−
�2�� +

J

4
��+

�1��−
�2�

+ �−
�1��+

�2�� ,

where

�x
�j� = 	 + 
 j j�− 	 + 	− 
 j j�+ 	 ,

�z
�j� = 	 + 
 j j�+ 	 − 	− 
 j j�− 	 ,

and

	 + 
 j =
�2

2
�	Lj
 − 	Rj
� ,

	− 
 j =
�2

2
�	Lj
 + 	Rj
� .

The decoherence process can be described by the master Eq.
�2� under the Born-Markov approximation. At the degenerate
point �� j =�0 /2; j=1,2�, we have 
�=0, which means that

2= �
1 /2�+
�=
1 /2.

By substituting

 = ���1
c� + ���2

c�, �1 =
J

4

into optimal condition �11�, then, in the limit ��� j
c�, J

�
1 ,
2, the maximum concurrence Cmax�0.31 and fidelity
Fmax�0.65 can be obtained when

���1
c� + ���2

c� � ��5 + 1�J . �25�

Furthermore, detuning condition �7� requires that ��� j
c�

should be tuned such that

	���1
c�	 � 	���2

c�	 or 	���2
c�	 � 	���1

c�	 . �26�

In experiments �e.g., in Ref. �9��, ��� j
c� and J are of the

same order ��1 GHz� that are far larger than the decoher-
ence rates 
1 ,
2�1–10 MHz �see, e.g., �44��. Thus, condi-
tions �25� and �26� could be realized in experiments.

IV. TUNABLE COUPLING BETWEEN
SUPERCONDUCTING QUBITS: STRONG-INTERACTION

REGIME

There are two ways to tune the system parameters to
achieve optimal condition �11�. One way is by tuning the

sum of the single-qubit oscillating frequencies , which was
used in Sec. III. In this section, we study another way to
achieve optimal condition �11� by tuning the coupling
strength �1 between the two qubits.

A. Variable coupling between two charge qubits

Many strategies have been proposed to obtain a control-
lable coupling between qubits �see, e.g., �16,17,20–27��. Let
us first study the superconducting circuit shown in Fig. 7,
where two CPBs are coupled via an LC oscillator. This strat-
egy was first proposed in Ref. �16� and also investigated by
other researchers �e.g., in Ref. �45��. In the charge degenerate
point, the two-qubit Hamiltonian in Refs. �1,16� is

HA = − �
j=1

2
1

2
EJ��xj��̃x

�j� − Eint�̃y
�1��̃y

�2�, �27�

with Eint=EJ��x1�EJ��x2� /EL and EJ��xj�
=2EJ

0 cos���xj /�0�. Here

�̃x
�j� = 	0
 j j�1	 + 	1
 j j�0	 ,

�̃y
�j� = − i	0
 j j�1	 + i	1
 j j�0	 ,

and 	0
 j , 	1
 j are the two charge states of the jth CPB. The
quantity EL in the expression above for the coupling strength
Eint can be written as

EL = �2CJ
0

Cqb
�2 �0

2

�2L
,

where Cqb=2CJ
0Cg�2CJ

0+Cg�−1 is the capacitance of a single
CPB in the external circuit, and L is the inductance of the
coupling current-biased inductor.

Rewriting Eq. �27� under the eigenstates of the single-
qubit Hamiltonian, we have

HA = �
j=1

2
EJ��xj�

2
�z

�j� +
Eint

4
��+

�1��+
�2� + �−

�1��−
�2�� −

Eint

4
��+

�1��−
�2�

+ �−
�1��+

�2�� ,

where

�z
�j� = 	 + 
 j j�+ 	 − 	− 
 j j�− 	 = − �̃x

�j�,

�y
�j� = − i	 + 
 j j�− 	 + i	− 
 j j�+ 	 = �̃y

�j�,

and

Vg1

1x�

0

JE
gC

0

JC

gC

Vg2

2x�

0

JE

0

JC

L

FIG. 7. Schematic diagram of two charge qubits coupled via an
LC oscillator.
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	 + 
 j =
1
�2

�	0
 j − 	1
 j� ,

	− 
 j =
1
�2

�	0
 j + 	1
 j� .

Since 
2=
1 /2 at the charge degenerate point, then, replac-
ing  and �1 in Eq. �11� by � jEJ��xj� and Eint /4, the maxi-
mum concurrence Cmax�0.31 and fidelity Fmax�0.65 can be
obtained when the external fluxes �x1 and �x2 are tuned
such that

cos��
�x1

�0
� + cos��

�x2

�0
� �

2

�5 + 1

EL

EJ
0

,

when these conditions hold: EL ,EJ
0�
1 ,
2. Furthermore,

detuning condition �7� requires that �x1 ,�x2 should satisfy
condition �23�.

B. Variable coupling between two flux qubits

Our strategy can also be applied to flux qubits with con-
trollable coupling. Here, let us consider a superconducting
circuit design as in Ref. �21� �see Fig. 8�, where two three-
junction flux qubits �qubits 1 and 2� are coupled via an aux-
iliary three-junction flux qubit �qubit 3�. This middle flux
qubit �qubit 3�, acting as a coupler, is connected to qubits 1
and 2 by sharing junctions a and b with the same Josephson
energy EJ

0, while junction c is smaller than a and b, with
Josephson energy �EJ

0 ,��1. By adiabatically eliminating
the degrees of freedom of the auxiliary flux qubit 3, the total
Hamiltonian of the flux qubits 1 and 2 becomes �21�

HA = −
1

2�
j=1

2

���� j��̃z
�j� + � j�̃x

�j�� + J��3��̃z
�1��̃z

�2�,

where ��� j�, � j , j=1,2, �̃z
�j�, and �̃x

�j� have the same meaning
as in Sec. III B. When ��1, the coupling strength J��3�
between the two flux qubits 1 and 2 becomes �21�

J��3� �
�Ip1Ip2

4e2EJ
0 cos�2�

�3

�0
� � J0 cos�2�

�3

�0
� . �28�

From Eq. �28�, the coupling strength J��3� is tunable by
varying the flux �3 piercing the superconducting loop of the
auxiliary qubit 3.

At the flux degenerate point, i.e., � j =�0 /2 for both qu-
bits, and using the eigenstates of the single-qubit Hamil-
tonian, we have

HA =
1

2�
j=1

2

� j�z
�j� + J��3��x

�1��x
�2� =

1

2�
j=1

2

� j�z
�j�

+
J��3�

4
��+

�1��+
�2� + �−

�1��−
�2�� +

J��3�
4

��+
�1��−

�2� + �−
�1��+

�2�� .

Since the two flux qubits are at their flux degenerate points,
then, replacing  and �1 in Eq. �11� by �1+�2 and J��3� /4,
the maximum stationary concurrence Cmax�0.31 and fidelity
Fmax�0.65 can be obtained when J��3����1+�2� / ��5
+1�, i.e.,

cos�2�
�3

�0
� �

��1 + �2�
��5 + 1�J0

,

when these conditions hold: �1 ,�2 ,J0�
1 ,
2.
From the experiment �21�, where �1, �2, and J0 are of the

same order ��1 GHz� and far larger than 
1 ,
2
��1–10 MHz�, the above optimal condition could be satis-
fied by varying the magnetic flux �3 through the middle
superconducting loop.

Furthermore, in order to satisfy detuning condition �7�,
the tunneling amplitude � j of the flux qubits should satisfy

	�1	 � 	�2	 or 	�2	 � 	�1	 .

This can be realized by replacing the small junctions of the
two flux qubits �on the left and right of Fig. 8� by dc-
SQUIDs, to introduce extra control parameters, just like
what we have done in Fig. 6.

V. TUNABLE COUPLING BETWEEN
SUPERCONDUCTING QUBITS: WEAK INTERACTION

REGIME

In this section, we study how to prepare entangled states
in superconducting circuits where two charge qubits are
coupled to a one-dimensional transmission line resonator.
Since the interaction strength �10–100 MHz� between the
two charge qubits coupled via the resonator is far smaller
than the single-qubit oscillating frequency �5–15 GHz�, then
we are now considering the weak-interaction regime. From
the analysis in Sec. II B, in order to prepare entangled states
in this case, the following time-dependent interaction Hamil-
tonian should be introduced:

Hint = �1�e−i�t+�0��+
�1��+

�2� + ei�t+�0��−
�1��−

�2�� .

The main idea in this section is the following: borrowing
strategies that produce controllable squeezed fields in optical
cavities �see, e.g., �46��, an auxiliary flux qubit circuit is
introduced to squeeze the oscillating mode in the resonator
�see Fig. 9�. The auxiliary flux qubit circuit in fact acts like a
�-shaped three-level atom which is further driven by a clas-
sical field. By adiabatically eliminating the degrees of free-
dom of the auxiliary flux qubit circuit, one can obtain a con-
trollable squeezed field in the resonator where the squeezed

1� 2�

3�
a b

c

FIG. 8. Schematic diagram of two three-junction flux qubits
coupled via an auxiliary flux qubit.
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coefficient is tunable by changing the coupling strength be-
tween the classical driving field and the auxiliary flux qubit.
With the help of the controllable squeezed field in the reso-
nator, one can continuously adjust the stationary entangle-
ment between the two qubits.

A. Controllable squeezed electric field in a transmission line
resonator

We first show how to obtain a controllable squeezed elec-
tric field �47–50� in the resonator by using a theoretical pro-
posal of realizing squeezed states in cavities �46�. The aux-
iliary flux qubit circuit in our proposal �shown in Fig. 9� acts
as a three-level system with �-type transition �38,39�.

As depicted in Fig. 10, we are now considering a three-
level system with a ground energy level 	g
, an intermediate
energy level 	i
, and an excited energy level 	e
. Here, the
transitions 	g
↔ 	i
 and 	e
↔ 	i
 are coupled dispersively to
the quantized cavity mode in the resonator, with coupling
strengths �g and �e. The transition 	g
↔ 	e
 is coupled dis-
persively to a classical field with coupling strength �d and

frequency ̃. In the rotating-wave approximation, the total
Hamiltonian of the three-level artificial atom and the resona-
tor can be expressed as H=H0+V, with

H0 = �̃ca
†a − �̃c	g
�g	 + �	i
�i	 + �̃c	e
�e	 ,

V = ��ga	i
�g	 + H.c.� + ��ea	e
�i	 + H.c.�

+ ��d	e
�g	e−it + H.c.� , �29�

where H.c. means Hermitian conjugate; �̃c is the frequency
of the resonator; � is defined as a detuning from the energy
levels 	e
 and 	g
 to the intermediate energy level 	i
.

Let us initially prepare the artificial atom in the interme-
diate level 	i
. With the help of the dispersive-detuning con-
dition

� � 	�g	, 	�e	, 	̃ − 2�̃c	 ,

one can obtain the following reduced Hamiltonian by adia-
batically eliminating the degrees of freedom of the three-
level artificial atom �46�:

Hc = �ca
†a + ��e−i�̃t+�̃0�a†2 + ei�̃t+�̃0�a2� , �30�

where

�c = �̃c +
2

�
�	�g	2 + 	�e	2�

is the effective frequency of the cavity mode; � and �̃0 are
the effective amplitude and the initial phase of the squeezed
field. The relation between � and �̃0 is given by

� exp�i�̃0� =
2

�2�d�g�e.

Notice that one can continuously adjust � by varying the
coupling strength �d between the classical field and the
three-level artificial atom.

B. Tunable coupling between qubits

In Fig. 9, let us now consider the interaction between the
two charge qubits and the cavity field. After eliminating the
degrees of freedom of the auxiliary three-level system, we
can obtain the following total Hamiltonian of the charge qu-
bits and the cavity field:

H = ��e−i�̃t+�̃0�a†2 + ei�̃t+�̃0�a2� + �
j=1

2

g�� j − cos � j�z
�j�

+ sin � j�x
�j���a† + a� +

1

2�
j=1

2

�aj�z
�j� + �ca

†a , �31�

where

�aj = �EJ
2��xj� + EC

2 �ngj�

has the same meaning with the corresponding quantity in
Secs. III and IV; g=−e�Cg /C��Vrms

0 is the coupling strength
between the resonator and a single qubit; C� is the total
capacitance of a qubit; Vrms

0 =��c /2Cr is the root mean
square �rms� of the voltage across the LC circuit; Cr is the
capacitance of the resonator; � j =1−2ngj; and the angle � j
=arctan�EJ��xj� /EC�1−2ngj��.

By using the rotating-wave approximation and assuming
that ngj =1 /2�j=1,2�, the total Hamiltonian H in Eq. �31�
can be rewritten as �36�

auxiliary flux qubit

e�

s�

charge qubit 2charge qubit 1

Vg2Vg1

1x� 2x�

transmission line resonator

FIG. 9. Schematic diagram of our proposal for producing quan-
tum entanglement in two charge qubits coupled to a resonator.

e

ec ��� ,~
�

gc ��� ,~
�

d�,
~
�

i

g

(b)

auxiliary flux qubit

transmission line resonator

Lr

Cr

s�

e�

(a)

FIG. 10. Schematic diagrams for realizing a controllable
squeezed electromagnetic field in a resonator coupled to an auxil-
iary flux qubit. �a� The auxiliary flux qubit and the transmission line
resonator: the parameters in the auxiliary flux qubit are the same as
those in Ref. �39�; by varying the flux �s threading through the
SQUID loop one can obtain a �-shaped three-level artificial atom.
�b� Transition energy-level diagram of the �-shaped three-level ar-
tificial atom.
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HJC = �ca
†a + �

j=1

2
EJ��x�

2
�z

�j� + �
j=1

2

g�a†�−
�j� + a�+

�j��

+ ��e−i�̃t+�̃0�a†2 + ei�̃t+�̃0�a2� .

Here, to simplify our discussions, we have set �x1=�x2
=�x.

We now assume that the qubits and the cavity field are in
the dispersive regime, i.e.,

� = �EJ��x� − �c� � 100 MHz � 	g	 � 10 MHz.

Thus, we can introduce the following unitary transformation
to diagonalize the Hamiltonian HJC:

U = exp� g

�
�
j=1

2

�a�+
�j� − a†�−

�j��� .

Up to first order in g /�, we have

UHJCU† � �ca
†a + �e−i�̃t+�̃0�a†2 + �ei�̃t+�̃0�a2

+ �
j=1

2 � �̃a

2
+

4g2

�2 ��e−i�̃t+�̃0�a†2 + H.c.�

+
4g2

�
a†a��z

�j� + �
j=1

2 ��2g�e−i�̃t+�̃0�

�
a†

+
g2�e−i�̃t+�̃0�

�2 ��+
�j� + H.c.�

+ �1�e−i�̃t+�̃0��+
�1��+

�2� + ei�̃t+�̃0��−
�1��−

�2��

+ �2��+
�1��−

�2� + �−
�1��+

�2�� ,

where

�̃a = EJ��x� + 4g2/� ,

�1 = 2g2�/�2, �2 = g2/� .

By adiabatically eliminating the degrees of freedom of the
resonator, the following two-qubit Hamiltonian can be ob-
tained:

HA � �
j=1

2
EJ��x�

2
�z

�j� + �2��+
�1��−

�2� + �−
�1��+

�2��

+ �1�e−i�̃t+�̃0��+
�1��+

�2� + ei�̃t+�̃0��−
�1��−

�2�� .

Here, we have omitted all the single-qubit terms induced by
the interaction between qubits and the resonator because of
the conditions

EJ��x�/2 � g2/�,�g/� .

As analyzed in Sec. V A, we can continuously adjust the
parameter �, thus the coupling strength �1 is continuously
tunable.

Since the two superconducting charge qubits also interact
with the uncontrollable degrees of freedom in the environ-
ment �e.g., quantum noises induced by charge fluctuations on

the electric gates�, the discussed two-qubit system should be
considered as an open quantum system. For this two-qubit
system, the master Eq. �2� can be obtained under the Born-
Markov approximation �26�. From Eq. �19�, at the charge
degenerate points for both qubits, we know that the optimal
concurrence Cmax�0.31 and fidelity Fmax�0.65 can be ob-
tained when

̃ = 2EJ��x�, � =
1

�5 + 1

�2

g2 
1.

Using now the same experimental parameters from Ref. �26�:

� = EJ − �r = 5 GHz − 4.8 GHz = 200 MHz,

g = 20 MHz, 
1/2� � 0.1 MHz,

�g,�e � 10 MHz, � � 100 MHz,

the squeezed amplitude � is of the order of 1 MHz, which
can be realized by a strong microwave driving field with
coupling strength �d�100 MHz. These parameters show
that our entanglement-production proposal is experimentally
realizable.

Although this section mainly concentrates on how to pre-
pare entangled states in two charge qubits coupled to a trans-
mission line resonator, our proposal is also extendable to two
flux qubits in a coplanar transmission line resonator �51�.
Since the system parameters �51� are almost of the same
order of those for charge qubits, there is no essential differ-
ence between them, as far as applying our proposal.

VI. CONCLUSIONS

In summary, we study the stationary entanglement for
two-qubit systems, each qubit with independent decoherence
channels. We discussed two scenarios: �i� no time-dependent
field or �ii� a time-dependent field is applied to the two-qubit
system. We find that by tuning the single-qubit and two-qubit
parameters a maximum concurrence of the stationary en-
tangled states is about 0.31 and a maximum fidelity between
the maximally entangled states and the stationary state is
about 0.65 for such two-qubit system.

It should be noted that the detuning between the frequen-
cies of the two qubits should be large enough for scenario �i�,
so that the nonrotating term cannot be neglected. However,
for scenario �ii�, the frequency of the time-dependent field
should match the sum of the frequencies of the two qubits.
Thus, the nonrotating term is naturally kept. The qubit with
the highest frequency might excite the higher energy levels
of the qubit with lower frequency for case �i�, or the time-
dependent field might excite the higher energy levels of both
qubits for case �ii�. To make the two-level approximation
valid, we assume that the transition frequency from the first
excited state to the second excited state satisfies either the
condition in Eq. �9� for case �i�, or the condition in Eq. �17�
for case �ii�. These conditions can be satisfied in physical
systems.

As examples, we apply our general theory to several dif-
ferent superconducting quantum circuits. For two supercon-
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ducting qubits coupled strongly via an inductive or a capaci-
tive element, one can tune the stationary entanglement by
varying either the single-qubit oscillating frequencies or the
coupling strengths between the qubits. For superconducting
qubits weakly coupled via a quantum cavity �e.g., a transmis-
sion line resonator�, an auxiliary superconducting three-level
system �38,39� with �-shaped transition is introduced to in-
duce a controllable squeezed field in the cavity. Such a con-
trollable quantum squeezed field can be further used to en-
tangle two qubits in open environments.

Even though the proposed strategy can be used to produce
stationary entanglement, the obtained entanglement may not
be high enough to be used in quantum information process-
ing. Additional entanglement purification processes �e.g.,
�41�� should be introduced to increase the stationary en-
tanglement. These procedures could make the superconduct-
ing circuit too complex. For this reason, further research
�possibly using the methods in Ref. �52�� will be focused on
modifying our proposal to obtain higher stationary entangle-
ment.

Another interesting problem would be to develop a short-
time regime dissipation-induced entanglement production
strategy, e.g., to investigate the entanglement production
when the decoherence and dissipation effects cannot be omit-
ted during the gate operation process. In this regime, the
correlation effects of the environmental noises should be
considered, which leads to non-Markovian noises �53�. Dif-
ferent effects may be produced under non-Markovian noises.

The existing decoherence suppression strategies �54,55�
against non-Markovian noises may be helpful to solve this
problem.
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APPENDIX: DERIVATION OF THE MAXIMUM
CONCURRENCE AND FIDELITY

In this appendix, we show the derivation of the concur-
rence C of the stationary state �� and the fidelity F between
�� and the maximally entangled state �m. Thus, we will de-
rive Eq. �6� in the main text.

In order to simplify our discussions, let us use the so-
called coherent vector picture as in Refs. �56,57�. Consider-
ing the inner product �X ,Y
=tr�X†Y�, we can find the follow-
ing matrix basis for all two-qubit matrices:

�1

2
I4�4,14

x ,14
y ,23

x ,23
y ,

1

2
�x

�1�,
1

2
�y

�1�,
1

2
�x

�2�,
1

2
�y

�2�,
1

2
�x

�1��z
�2�,

1

2
�z

�1��x
�2�,

1

2
�y

�1��z
�2�,

1

2
�z

�1��y
�2�,14

z ,23
z ,

1

2
�z

�1��z
�2�,� �A1�

where I4�4 is the 4�4 identity matrix, and 14
x , 14

y , 23
x , 23

y , 14
z , and 23

z are defined as

14
x =�

1

�2

0

0

1

�2

 , 14
y =�

− i

�2

0

0

i

�2

 ,

23
x =�

0

1
�2

1
�2

0

 , 23
y =�

0

− i
�2

i
�2

0

 ,
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14
z =�

1
�2

0

0

− 1
�2

 , 23
z =�

0

1
�2

− 1
�2

0

 .

The system density matrix � can be expanded under this
matrix basis as

� =
1

4
I4�4 + �

i=1

15

mii,

where i�i=1, . . . ,15� are all traceless basis matrices in Eq.
�A1� and mi=tr�i��.

Let m= �m1 , . . . ,m15�T, and thus the master Eq. �2� can be
rewritten as �56,57�

ṁ = OAm + Dm + g , �A2�

where OA is the adjoint representation matrix of −iHA and
�Dm+g� is the coherent vector representation of the Lind-
blad terms

�
j=1

2


1D��−j�� + �
j=1

2

2
���zj�� ,

with D�0 and g a constant vector. Further, let

mp = �m14
x ,m14

y ,m23
x ,m23

y �T,

m� = �m14
z ,m23

z ,mzz�T,

m� = �mx0,my0,m0x,m0y,mxz,mzx,myz,mzy�T,

where

m14
� = tr�14

� ��, m23
� = tr�23

� ��, �,� = x,y,z ,

m�� = tr��1

2
��

�1���
�2����, �,� = 0,x,y,z ,

and �0
�j�= I2�2�j=1,2� are 2�2 identity matrices acting on

the qubit j. Then, we can rewrite Eq. �A2� as

ṁp = O0
pmp + �

i=1

4

uiOi
�m� + Dpmp,

ṁ� = �
i=1

4

ui�− Oi�mp + D�m� + g�,

ṁ� = �
i=1

4

uiOi
�m� + D�m�, �A3�

where Dp=−4�
1+2
��I4�4=−8
2I4�4 and

u1 = 8�1 cos �1, u2 = 8�1 sin �1,

u3 = 8�2 cos �2, u4 = − 8�2 sin �2,

O0
p =�

0 

−  0

0 �a1 − �a2

�a2 − �a1 0
 ,

O1
� =�

0 0 0

− 1 0 0

0 0 0

0 0 0
, O2

� =�
1 0 0

0 0 0

0 0 0

0 0 0
 ,

O3
� =�

0 0 0

0 0 0

0 0 0

0 − 1 0
, O4

� =�
0 0 0

0 0 0

0 1 0

0 0 0
 ,

D� = � − 4
1 0 0

0 − 4
1 0

4�2
1 0 − 8
1
, g� = �2�2
1

0

0
 .

�A4�

D� and Oi
� in the last equation in Eq. �A3� are, respectively,

negative and traceless skew-symmetric matrices.
With simple calculations, we can obtain the following sta-

tionary solution of Eq. �A3�:

m���� = 0, m23
x ��� = m23

y ��� = m23
z ��� = 0,

m14
x ��� =

1

�2
p cos��1 − ��, m14

y ��� =
1

�2
p sin��1 − �� ,

m14
z ��� =

�2

4
�1 +�1 −

8
2


1
p2� ,

mzz��� =
1

4
�1 +�1 −

8
2


1
p2� ,

where p and � are given in Eq. �5�, from which we can
calculate the stationary state �� and the stationary fidelity
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F���� in Eq. �6�.
Further, recall that the concurrence of the quantum state

� =�
a w

b z

z� c

w� d


can be analytically solved as �58�

C��� = 2 max�	w	 − �bc, 	z	 − �ad,0� ,

from which we can obtain the stationary concurrence C����
in Eq. �6�.
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