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We theoretically study a cavity filled with atoms, which provides the optical-mechanical interaction between
the modified cavity photonic field and a oscillating mirror at one end. We show that the cavity field “dresses”
these atoms, producing two types of polaritons, effectively enhancing the radiation pressure of the cavity field
upon the oscillating mirror, as well as establishing an additional squeezing mode of the oscillating mirror. This
squeezing produces an adiabatic entanglement, which is absent in usual vacuum cavities, between the oscil-
lating mirror and the rest of the system. We analyze the entanglement and quantify it using the Loschmidt echo
and fidelity.
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I. INTRODUCTION

Fabry-Perot cavities can trap incident light between the
two fixed mirrors located at both ends of the cavity. A way to
modify these cavities �see, e.g., Refs. �1–3�� is to introduce a
mirror �4� on a flexible wall, usually a cantilever tip, at the
other end. The mirror on the flexible wall is allowed to os-
cillate around an equilibrium position, and this oscillation is
usually treated as harmonic when the flexible wall is operat-
ing at its resonance frequency �8�. This oscillation induces
infinitesimal contractions and dilations of the cavity length,
resulting in a radiation pressure on the mirror which is pro-
portional to the intensity of the trapped cavity field. This
mechanism facilitates an optical-mechanical coupling be-
tween the cavity field and the mirror and is now generating
considerable interest. In recent years, for example, a high-
precision spectrometer for detecting gravitational waves
�5,6� and an interferometric measurement apparatus �7,8�
have used movable cavity mirrors as sensing devices. For
detecting weak signals, a number of experiments have re-
duced the thermal fluctuations in the mirrors, effectively
lowering the temperature of the mirror �1–3�.

A key variable in previous designs is the number of pho-
tons trapped inside the cavity. Since the radiation pressure on
the mirror is proportional to the photon number, it is desir-
able to increase this photon number in order to increase the
magnitude of the radiation pressure and hence to control or
cool down the mirror more efficiently. Moreover, the cooling
of a nanomechanical resonator or an oscillating mirror has
been extensively studied recently �e.g., in Refs. �9,10��. This
then naturally leads us to conceive a cavity filled by a dielec-
tric medium to achieve this purpose. Specifically, following
our previous idea in Ref. �11�, we now propose that this
medium can be made of a gas of two-level atoms.

Recently, Ref. �12� proposed a similar scheme to target an
interesting optical effect: the cavity mode forms an optical
lattice inside the cavity and arranges the free atoms that were
deposited into the cavity to form a Mott-insulator-like me-
dium with atoms trapped at the lattice sites. It was shown

that, with the atoms assuming an initial Bose-Einstein con-
densate distribution, such an atomic condensate would act
effectively as a semitransparent mirror itself and shift the
cavity to function in its “superstrong coupling regime.”
Nonetheless, based on Monte Carlo simulations �13,14�,
there exist disputes for the realizability of this proposal. In
addition, the relationship between the atoms, the cavity field,
and the mirror as in a tripartite system has been examined
from the view of quantum correlation of their thermal fluc-
tuations in a recent article �15�.

In this paper, we analyze the dynamical effect that occurs
when placing an atomic medium into a Fabry-Perot cavity,
but assuming that the atoms have been placed inside a trans-
parent gas chamber. Due to the strengthened coupling, now
enhanced by the mediating atoms between the cavity field
and the mirror, the resulting three-component system �the gas
of atoms, the cavity field, and the oscillating mirror� induces
interesting phenomena worth investigating. We point out
here that, in contrast with the Bose-Einstein condensate at-
oms in Ref. �12�, which can only be realized at very low
temperatures, our gas of atoms makes use of low-energy col-
lective excitations, which avoids the stringent low-
temperature requirement.

To better extract the physical features of each part of this
three-component system, we assume adiabatic processes
over different time scales. We employ the Born-
Oppenheimer approximation to study the dynamic behavior
of a micromirror by assuming it is a slow-varying part. We
also study the dynamic behavior of the atomic excitations as
a fast-varying process, while the reflected radiation from the
mirror stays relatively constant. The complex interactions be-
tween the system components lead us to expect many inter-
esting physical phenomena including �i� realizing an adia-
batic entanglement process �16�, �ii� producing squeezed
modes as in optical parametric oscillators, �iii� detecting po-
laritons through the mechanical mode of the mirror, and �iv�
detecting the mechanical mode of the mirror through the
polariton spectrum.

We first describe the model in Sec. II. The resulting en-
tanglement process is then described in Sec. III, and its quan-
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tification follows in Sec. IV. The squeezed variance is de-
rived in Sec. V, and conclusions are presented in Sec. VI.

II. ATOMIC OPTOMECHANICS

A. Exciton model

As shown in Fig. 1, the system we study here consists of
a gas of two-level atoms, each with the same eigenfrequency
�0 and a modified Fabry-Perot cavity carrying a photonic
field with mode frequency �C, as well as a harmonically
bounded micromirror with coordinate x, momentum p, mass
m, and oscillating frequency �M. The system Hamiltonian,
with units normalized according to �=1 to simplify the no-
tation, is

H = �0�
j

� j
z + �Ca†a + �

j

�gj� j
+a + gj

�� j
−a†� +

p2

2m

+
1

2
m�M

2 x2 + �a†ax . �1�

In Eq. �1�, the Pauli matrix � j
z= �ej��ej� denotes the internal

energy of each two-level atom, while � j
+= �ej��gj� and � j

−

= �gj��ej� in the last term of the first line denote the flip-up
and flip-down operators of the jth atom. Here, a and a† de-
note, respectively, the annihilation and creation operators of
the cavity field. The last term of the second line is a
radiation-pressure-type interaction on the mirror, which is
proportional to the incident photon number and the coupling
coefficient � of which is inversely proportional to the cavity
length and proportional to the cavity field frequency �0. We
assume that no direct interaction exists between the atoms
and the mirror; the indirect interaction between them solely
relies on the cavity field.

Since all the atoms have the same frequency �0, we can
consider the gas of atoms that fills the cavity as a whole to be

a Hopfield dielectric �17�. That is, the electrically insulated
atoms form a dielectric medium, where the photons are re-
peatedly absorbed and reemited by the atoms, such that the
interaction between the photons and the atoms can be com-
pletely described by a type of collective low-energy excita-
tions �or excitons� of the ensemble of atoms as a whole. The
dielectric constant of this Hopfield dielectric is in fact deter-
mined by the eigenenergy of these excitons. In terms of the
atomic Pauli matrices, the exciton is described by the
bosonic annihilation operator �11�

b = lim
N→�

�
j

N
gj

�

G
� j

− �2�

and its Hermitian conjugate b†, where

G =	�
j=1

N

�gj�2

can be understood as the total coupling strength. The exciton
operators b and b† are consistent with those of the Dicke
model; a similar spin-bosonization technique has been used
to study nuclear spins �18�. The resulting Hamiltonian for the
system can then be written as

H = �0b†b + ��C + �x�a†a + G�b†a + ba†� +
p2

2m
+

1

2
m�M

2 x2,

�3�

with �=�C /L. Here, L is the cavity length in mechanical
equilibrium.

B. Interaction between the oscillating mirror and the
polaritons

The coupling between the excitons and the cavity field
can lead to the emergence of dressed excitons, here denoted
as polaritons. In the adiabatic limit of the oscillating
mirror—that is, when the mirror coordinate x stays un-
changed with respect to the fast-varying field occupation
number a†a—we can diagonalize the interaction between the
excitons and the cavity field by rotating the Hilbert space of
these two components through an angle

� = arctan
 2G

�0 − �C − �x
� , �4�

for which we define a unitary transformation

A = a cos
�

2
� − b sin
�

2
� , �5�

B = a sin
�

2
� + b cos
�

2
� . �6�

The A and B operators above still obey bosonic commutation
relations and can be understood as “dressed exciton modes”
that mix atomic excitations b with the cavity field a. In other
words, these dressed exciton modes are polaritons �11� of a
phonon mode A and an optical mode B.

FIG. 1. �Color online� Schematic diagram illustrating the system
with three main components: �i� a gas of two-level atoms, �ii� a
movable mirror at one end, and �iii� a cavity field mediating the
interaction between the atoms and the oscillating mirror.
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Under this view, the Hamiltonian of our system in Eq. �3�
can be divided into two portions: the Hamiltonian HM of the
mirror’s oscillation and the potential V from the polaritons
acting on the mirror—i.e.,

H = HM + V , �7�

HM = Hmirror oscillations �8�

=
p2

2m
+

1

2
m�M

2 x2, �9�

V = Vpolaritons on mirror �10�

=
1

2
��0 + �C + �x��A†A + B†B�

−
1

2
	��0 − �C − �x�2 + 4G2�A†A − B†B� . �11�

The potential V in Eq. �11� quantifies the interaction between
the mechanical mirror and the modes of the cavity. Without
the “filling” atoms, the cavity mode is simply the photon
field a, and this potential V will degenerate back to a linear
radiation pressure impinging on the mirror if we do not con-
sider the nonlinear Kerr effect that could be induced by the
wave detuning due to the flexible length of the cavity
�19,20�.

The atoms let the linear radiation pressure be proportional
to the total number �A†A+B†B� of polaritons ��x�A†A
+B†B� in Eq. �11�� rather than the number �a†a� of photons
��a†ax in Eq. �1��. Moreover, the atoms also impose an ad-
ditional nonlinear term �the second term in Eq. �11�� for non-
zero coupling constant G.

Note that this nonlinear effect, in the second term of Eq.
�11�, increases when increasing the number N of filled atoms
because G grows with N. Thus, the gas of atoms enhances
the coupling between the cavity field and the mirror. This
enhanced coupling would produce squeezed states of the
mirror mode and also entanglement between the mirror and
the polaritons, which will be discussed in Sec. III. Without
the intervening atoms, the potential V simply introduces a
displacement to the mirror, producing neither squeezing nor
entanglement.

III. ADIABATIC ENTANGLEMENT AND EVOLUTION
UNDER SQUEEZING

A. Entanglement using the Born-Oppenheimer approximation

By considering fast-varying polariton modes and slow-
varying mirror modes, we can write the wave vector at time
t for our system under the Born-Oppenheimer approximation

�	�t�� = �
n

�n� � �
�n,t�� , �12�

where n= �nA ,nB
 denotes the collective index of energy lev-
els of the polariton modes A and B. Thus, A†A�n�=nA�n� and
B†B�n�=nB�n�. Here, �n� describes the time-independent

wave vector for the polariton space in its adiabatic limit and
�
�n , t�� the time-dependent wave vector for the mirror. The
potential V in Eq. �11� then becomes an effective c number
according to the eigenspectrum n:

Vn =
1

2
��0 + �C + �x��nB + nA�

+
1

2
	��0 − �C − �x�2 + 4G2�nB − nA� . �13�

We consider the displacement of the mirror, x, to be small
around its equilibrium position x=0 and thus expand Eq.
�13� up to second order in x:

Vn =
1

2
��0 + �C��nB + nA� +

1

2
	��0 − �C�2 + 4G2�nB − nA�

+
�

2��nB + nA� −
��0 − �C��nB − nA�
	��0 − �C�2 + 4G2�x

+
N�g�2�2�nB − nA�

���0 − �C�2 + 4G2�3/2x2. �14�

Using Eq. �14�, when the polariton modes are in state �n�, the
effective Hamiltonian operating on the mirror is

Hn = HM + Vn. �15�

If we prepare an initial state of the system

�	�0�� = �
n

�n�n� � �
�0�� , �16�

where �n is the expansion coefficient, then the mirror wave
subvector will evolve along the path generated by the effec-
tive Hamiltonian Hn:

�	�t�� = �
n

�n�n� � �
n�t�� , �17�

�
n�t�� = e−iHnt�
�0�� . �18�

In other words, the final state of the mirror is determined by
or dependent on the state of the polaritons in their adiabatic
limit; specifically, the number distribution of the polaritons
�nA ,nB
 will decide the evolution of the mirror.

Geometrically, if the initial state �
�0�� was conceived to
be represented by a point on a manifold over the Hilbert
space of the mirror, then the effective Hamiltonians Hn and
Hm for n�m can be regarded as generators of the motion of
the same vector �
�0�� toward different directions over the
manifold. The evolution over time due to different generators
will leave trajectories of different branches of paths on the
manifold. The end points �
n�t�� and �
m�t�� of the paths are
separated, and the separation depends on the discrepancy be-
tween Hn and Hm induced by different polariton distribu-
tions. The nonzero separation reflects geometrically the adia-
batic entanglement of the mirror and the polaritons.

The original concept of adiabatic entanglement proposed
in Ref. �16� concerns an abstract model consisting of two
parts: a main system of interest and a detector apparatus
external to the main system. When the main system is fast
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varying while the detector is slow varying, the detector is
akin to a classical system and adiabatically follows the main
system. Then the interaction between these two parts can be
considered as a quantum measurement process and the en-
tanglement thus emerging between these two parts, as re-
flected by Eq. �12�, is called the adiabatic entanglement. We
hence regard the three-component system discussed above
�mirror, cavity field, and atomic gas� as a practical realization
of the adiabatic entanglement model, where the polaritons
are the main system and the mirror corresponds to the detec-
tor.

B. Evolution of squeezed coherent states of the mirror

Before quantifying the entanglement described above, we
first study the dynamics of the mirror via the effective
Hamiltonian Hn. If we write the coordinate operator x and
the momentum operator p of the mirror in their creation and
annihilation operator form

x =
1

	2m�M

�c + c†� , �19�

p = − i	m�M

2
�c − c†� , �20�

the effective Hamiltonian—i.e., Eq. �15�—then reads

Hn = ��M + 2�n�c†c + �n�c2 + c†2� + 
n�c + c†� + �n,

�21�

where the coefficients depend on the polariton modes

�n =
G2�2�nB − nA�

2m�M���0 − �C�2 + 4G2�3/2 , �22�


n =
�

	8m�M
��nB + nA� −

��0 − �C��nB − nA�
	��0 − �C�2 + 4G2� , �23�

�n =
1

2
��0 + �C��nB + nA� +

1

2
	��0 − �C�2 + 4G2�nB − nA�

+
N�g�2�2�nB − nA�

m�M���0 − �C�2 + 4G2�2/3 . �24�

The first- and second-order terms of c and c† in Eq. �21� can
be recognized as the polaritons inducing a squeezed coherent
state in the mirror. The amount of displacement can be found
by writing Eq. �21� as

Hn = D†
 
n

�M + 4�n
�Hn�D
 
n

�M + 4�n
� , �25�

where D���=exp���a−�a†
 is the displacement operator.
The resulting Hamiltonian in the displaced space is

Hn� = ��M + 2�n�c†c + �n�c2 + c†2� −

n

2

�M + 4�n
+ �n.

�26�

The amount of squeezing can be found by further diagonal-
izing Eq. �26� through a Bogoliubov transformation

Cn = �nc − �nc†, �27�

�n =
1

2
�
 �M

�M + 4�n
�1/4

+ 
�M + 4�n

�M
�1/4� , �28�

�n =
1

2
�
 �M

�M + 4�n
�1/4

− 
�M + 4�n

�M
�1/4� , �29�

for which the resulting Hamiltonian becomes

Hn� = �M,nCn
†Cn + �n, �30�

where �M,n denotes the modified pseudoenergy splitting of
the transformed mirror excitations according to Cn and Cn

†,

�M,n = 	�M��M + 4�n� , �31�

and �n denotes the nonoperator terms

�n = −
�	�M − 	�M + 4�n�2

4
−


n
2

�M + 4�n
+ �n. �32�

Here, �M,n is called a pseudofrequency because it might be-
come imaginary for some cases of the index n. This reflects
the fact that the distribution of polaritons has a strong influ-
ence over the time evolution of the mirror, as we have
pointed out above. In the next subsection, we shall give more
definite consideration for �M,n being real or imaginary when
discussing the Loschmidt echo.

The transformation, Eq. �27�, is physically equivalent to
squeezing the operator c. To simplify the derivation we shall
develop in the following, we define this squeezing process
inversely with the operator Sn:

c = Sn
†CnSn, �33�

Sn = exp� rn

2
Cn

2 −
rn

2
Cn

†2� , �34�

where cosh rn=�n. Over an initial coherent state ��� with
c���=����, we can define a special “coherent state”

���n = Sn��� �35�

according to the operator Cn—i.e.,

Cn���n = ����n.

The time evolution of the mirror, starting from an initial
vacuum state, can then be computed as

�
n�t�� = e−iHnt�0� = D†
 
n

�M + 4�n
�e−iHn�t� 
n

�M + 4�n
�

= D†
 
n

�M + 4�n
�Sn

†�t�� 
n

�M + 4�n
�

n

= � 
n

�M + 4�n
�e−i�M,nt − 1�� , �36�

where Sn
† is the Hermitian conjugate of the squeezing opera-

tor Sn in Eq. �34� in the Heisenberg picture; more explicitly,
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Sn
†�t� = exp� rn�t�

2
Cn

†2 −
rn
*�t�

2
Cn

2� , �37�

with rn�t�=rn exp�−i�M,nt
. This derivation is similar to the
technique used in Ref. �21� for computing the evolution of
squeezed states. The difference is that the coupling nature of
the system we consider permits the entanglement of the os-
cillating mirror even when initialized from a vacuum state,
which avoids the difficulty of preparing a coherent superpo-
sition. The squeezed states using polaritons have been stud-
ied in Ref. �22�, the phonon squeezed states in Ref. �23�.

IV. QUANTIFICATION OF DECOHERENCE AND
ENTANGLEMENT

A. Loschmidt echo

At the end of Sec. III A, we interpreted the adiabatic en-
tanglement as two distinct end points of the evolution over a
manifold. The metric distance between the two points natu-
rally becomes an appropriate measure of the degree of co-
herence or correlation between the two quantum states. The
Loschmidt echo, which has been known to characterize the
decoherence of a perturbed system �24�, plays the role of
metric. Originally this echo was defined as the wave function
overlap between the states with and without the presence of
the perturbing potential. This echo exactly describes the dy-
namic sensitivity of the system in the context of quantum
chaos.

In our case, the perturbation potential can be understood
as �Hn−Hm� and the echo as

Ln,m�t� = ��
n�t��
m�t��� .

Using Eq. �36�, we find

Ln,m�t� = exp�− �
i=m,n

2
i
2

��M + 4�i�2sin2
�M,i

2
t�

+ � �
i=m,n

sin2
�M,i

2
t� − sin2��M,n−mt��

�

n
m

��M + 4�n���M + 4�m�� , �38�

with

�M,n−m =
1

2
��M,n − �M,m� . �39�

Note that when �M,n and �M,m are real, the echo exhibits a
cycling shape, similar to the decoherence effect shown in
Ref. �21�, only that the oscillation is not simply sinusoidal.
When the two pseudofrequencies are indeed imaginary,
which occurs when

�n � −
�C

4
�40�

for some n or, equivalently,

�nA − nB� �
m�M

2 ���0 − �C�2 + 4G2�3/2

2G2�2 , �41�

the sinusoidal functions will become hyperbolic and the echo
will dampen with time exponentially. Whether the latter can
happen depends on the difference between the excitation
numbers of the polaritons. The requiring difference being
large or small depends on the coupling constant G, which in
turn increases with the number N of atoms in the cavity. In
other words, we can operate our system in two regimes: for
either periodic or hyperbolic Loschmidt echos, based on the
number N of atoms.

Figure 2 plots the echo Ln,m between two mirror states
over the same period of time for the two regimes. Without
loss of generality, the parameters are all set to orders of
magnitude accessible to current experiments: �M /2�
=10 MHz, �n /2�=1011 Hz, and 
n /2�=107 Hz. The pe-
riodic Loschmidt echo in Fig. 2�a� demonstrates the cycling
of decoherence between two mirror states, whereas the hy-
perbolic type of echo in Fig. 2�b� shows a straight one-way
decoherence. In the language of Ref. �24�,

�M + 4�n = 0

is a critical point of dynamic sensitivity. When Eq. �41� is
met, the evolution paths of the two states on the manifold
always remain close to each other, giving an almost perfect
echo. Once the parameters cross into the opposite side of Eq.
�41�, the echo gets lost almost instantly with no comeback,
as shown in Fig. 2�b�.

B. Fidelity

Fidelity serves as another metric for measuring the corre-
lation between two quantum states. When seen in coordinate
space, the fidelity roughly represents the overlap of the spa-
tial wave packets of the two states �illustrated in Fig. 3 as the
shaded region�. Defined as the inner product of the ground
states of two Hamiltonians, its physical meaning differs from
that of the Loschmidt echo in that it is not a time-dependent

t �s�

0.9992

0.9996

1

5�10�7 1�10�6 1.5�10�6 2�10�6
t �s�

0.2

0.6

1

FIG. 2. Plots of the Loschmidt echo Ln,m over the same period
of time for two mirror states under adiabatic entanglement for the
operating regimes of �a� circular functions and �b� hyperbolic
functions.
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measure of the distance between two evolving states, but a
static estimate of the differentiating effects of two dynamic
evolution generators. The fidelity has recently seen extensive
applications to characterizing quantum phase transitions in
strongly correlated systems �26�.

For our model, we use the fidelity to estimate the effects
between different polariton distributions on the mirror, under
the Born-Oppenheimer approximation. From Eqs. �26�, �30�,
and �34�, the mirror ground state of the effective Hamiltonian
in the adiabatic limit is the squeezed coherent vacuum state
�0�n displaced by the amount 
n / ��M+4�n�. The fidelity, as
the overlap of the ground states of two branching Hamilto-
nians Hn and Hm �n�m�, can then be computed as the inner
product of two coherent states:

Fn,m = ��0�Sn
†D†
 
n

�M + 4�n
�D
 
m

�M + 4�m
�Sm�0��

= exp�−
1

2

 
n

�M + 4�n
−


m

�M + 4�m
�2� . �42�

We hence see that the wave-packet overlap Fn,m depends on
various parameters and, generally, based on the relations of
�n and 
n with �M �cf. Eqs. �22� and �23��, the overlap
decreases for increasing �M over a normal mechanical oscil-
lating frequency range. Figure 4 shows the plot of the fidelity
with the ordinate being the mirror frequency over the range
from 100 kHz to 100 MHz on a logarithmic scale for two
typical values of the parameters: �n ,�m�0 and �n ,�m�0.
The orders of magnitude of �n and 
n are set to ranges
consistent with the values given in the last subsection.

The low-frequency range coincides with our expectation
that a higher oscillating frequency of the mirror will render
itself more vulnerable to the effect of the polaritons and in-
duce its entanglement with other system components faster.
When �M further increases, the different operating regimes
studied using the Loschmidt echo manifest themselves more
apparently. For �n ,�m�0, the two ground states of the mir-
ror always remain close to each other, corresponding to the
cyclic operating region for the Loschmidt echo, and hence
the fidelity retains its value close to 1, whereas for �n ,�m
�0, it might cross into the hyperbolic operating region,
where �M+4�n�0. For the latter case, the fidelity drops to
0 near the critical point �M+4�n=0, simulating the behavior
of a phase transition.

V. SQUEEZED QUADRATURE VARIANCE
OF THE MIRROR

The gas of atoms inside the cavity also acts like an optical
parametric oscillator when regarded as a cavity dielectric.
The original photon field traveling in the cavity vacuum is
dressed by the atoms into two polariton modes. These two
modes in their adiabatic limit act on the mirror as if confin-
ing the mirror oscillation in a nonlinear medium �cf. Eqs.
�11� and �21� in which the polariton-mirror mode coupling is
nonlinear�. This case occurs in traditional nonlinear optics
when the signal beam and the idler beam have the same
frequency and the process of optical interference is then de-
noted as “degenerate parametric oscillation.” A mechanical
version of the process was suggested in Ref. �25�, where the
interference took place between two nanomechanical resona-
tors and it was shown to be the analog of a two-mode para-
metric down-conversion.

For our case, the procedure is half-optical �the polariton
excitations� and half-mechanical �the mirror excitations�. To
show the similar squeezing effect in quadrature variance, we
write the equations of motion of the mirror operators from
Eq. �21�:

ċ = − i��M + 2�n�c − i2�nc† − i
n, �43�

ċ† = i��M + 2�n�c† + i2�nc + i
n. �44�

The solution of the above equations, through Laplace trans-
formation, reads

c�t� = �cos��M,nt� − i
�M + 2�n

�M,n
sin��M,nt��c�0�

− � i2�n

�M,n
sin��M,nt��c†�0� +

2
n

�M + 4�n
sin2
�M,nt

2
�

−
i
n

�M,n
sin��M,nt� . �45�

We recognize that, unlike a typical optical parametric oscil-
lator, even when the mirror is set initially to a vacuum state
�0�, the expectation value �0�c�t��0� will be nonzero over time
because of the perturbation from the polaritons. As long as
the numbers nA and nB of polaritons are not both zero at the
same time, the inhomogeneous term i
n on the right-hand

FIG. 3. Illustration of the fidelity between two quantum state
vectors represented in coordinate space as Gaussian functions

105 106 107 108
�M �2Π �Hz�

0.4

0.8

FIG. 4. �Color online� Semilogarithmic plots of the fidelity Fn,m

between two mirror states as a function of the mirror oscillating
frequency �M for two typical operating regimes. The solid line
represents the case for �n ,�m�0 while the dashed line for
�n ,�m�0.
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side of Eqs. �43� and �44� would become nonzero and the
motion of the mirror would be initiated by the incident po-
laritons, which is consistent with the vacuum-state entangle-
ment we discussed in the last section. Compared to Ref. �9�
for generating a squeezed entangled state of a mechanical
resonator, the requirement of preparing different initial Fock
and coherent states is lifted.

When the criterion �41� is met, the variance ��x2� in the
coordinate quadrature �19� demonstrates a squeezing effect:

��x2� =
2 cosh2��M,nt�

m�M
+

2 sinh2��M,nt�
m��M + 4�n�

, �46�

where �M,n is meant in the equation above to be the real
magnitude of the pseudofrequency �M,n.

VI. CONCLUSION AND REMARKS

We have studied a cavity system composed of atoms, a
cavity field, and a movable mirror and showed that the col-
lective excitations of the atoms are dressed by the cavity
field and transformed into polaritons, causing their entangle-
ment with the cavity mirror. The mirror state, in the adiabatic
limit of the polaritons, is distinctly squeezed, according to
the number distribution of two polariton modes; and its vari-
ance in coordinate space is also squeezed.

Before we conclude this paper, we make note of a recent
article by Paz and Roncaglia �27� in which the entanglement
dynamics between two resonators at finite temperatures is
classified into “sudden-death” �28�, “sudden-death-and-
revival,” and “no-sudden-death” regions according to the
amount of fluctuations the resonators experience compared
to their squeezing rate. Note that the squeezing rate in our
model, Eq. �34�, defined through Eq. �27�, is also related to
the choice of operating regimes determined by Eq. �41�.
Therefore, we conclude that entanglement operates in re-
gions of different characteristics not only in finite-
temperature environments, but also in zero-temperature set-
tings, as shown by our model.
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