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We study the influence of a lossless material medium on the coherent storage and quantum-state transfer of
a quantized probe light in an ensemble of A-type atoms. The medium is modeled as uniformly distributed
two-level atoms with the same energy level spacing, coupling to a probe light. This coupled system can be
simplified to a collection of two-mode polaritons which couple to one transition of the A-type atoms. We show
that, when the other transition of A-type atoms is controlled by a classical light, electromagnetically induced
transparency can also occur for the polaritons. In this case the coherent storage and quantum transfer for
photon states are achievable through novel dark states with respect to the polaritons. By calculating the
corresponding dispersion relation, we find that the ensemble of three-level atoms with A-type transitions may
serve as quantum memory for it slows or even stops light propagation through the mechanism of electromag-

netically induced transparency.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1] is a
typical quantum coherent effect, in which the propagation of
a probe field in a A-type atom ensemble can be well con-
trolled by a classical light [2,3]. Most recently, the EIT phe-
nomenon was suggested as an active mechanism [4-6] to
slow down and even stop the photon propagation, so that the
photon state can be stored or released coherently. These in-
vestigations [4—6] are mainly motivated by the fast develop-
ment of quantum information science and technology [7].
This is because, with the help of quantum storage, one could
complete a series of quantum logical operations within the
decoherence time.

In this paper we study the EIT mechanism for quantum
information processing in the presence of a lossless medium.
This is motivated by two reasons. First, we notice that buffer
gases, with different atom species, are used in some of the
recent EIT experiments [8,9]. Usually one introduces a
buffer gas to lengthen the ground-state coherence lifetime of
confined EIT atoms. For the EIT effect in a A sample with a
buffer gas, the probe field has a low group velocity when it
has a small detuning with respect to resonance [8,9]. These
coherent phenomena essentially result from the gaseous me-
dium: the buffer gas. To see the coherent effect of the buffer
gas, one sets up atoms in the “buffer gas” to be resonant with
the probe light (in this case the “buffer gas” no longer only
acts as a buffer to cool down the EIT atoms); the “buffer
gas” just plays the role of a coherent medium and the photon
will be coupled with collective excitations of the buffer at-
oms to form quasiparticles, called polaritons.

Second, the study of EIT for photon-state storage should
be extended to solid-state systems for applications in scal-
able quantum computing. Here, EIT atoms with A-type tran-
sitions may be realized using solid-state devices, such as
artificial atoms based on quantum dots, which are usually
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embedded in a solid-state substrate. To make such solid-state
devices as coherent storage units based on the EIT mecha-
nism, one should consider the EIT process in the medium of
the substrate.

In our study, we first model the medium as a collection of
N two-level atoms, weakly coupled to the quantized probe
field [10]. The “weak” interaction between the atoms and the
probe field is assumed to excite a few atoms, such that the
collective excitations of the atoms behave as bosons. In turn,
the photons of the probe field are dressed by the collective
excitations, forming polaritons [11] of two modes. According
to Hopfield’s original paper on quantum polariton [11] and
also according to others [10], such a polariton can be re-
garded as a macroscopically averaged electromagnetic field
or a displacement field.

We then show that, when one of the two polariton modes
is resonant with the three-level A-type atoms, there still ex-
ists a dark state which decouples from the upper energy level
of the A atom. Utilizing the dark state, we can adiabatically
manipulate the quantum state of the photon such that the
photon state is coherently transferred to the atomic collective
excitation state. We further calculate the susceptibility of
light propagation in the EIT atomic ensemble embedded in a
medium.

In the usual case, due to inhomogeneous broadening,
ground-state decoherence, loss, etc., the broadened energy
levels of atoms in the EIT ensemble can behave as energy
bands and thus limit the transparency due to the off-
resonance of some atoms. Here, the coherent processes in-
duced by the two-level lossless medium can only result in a
frequency split of the effective light field, which also causes
the off-resonance with respect to the fixed energy levels of
EIT atoms. However, by making use of the Hopfield model
[10,11], the split can be estimated quantitatively and then one
can restore the resonance for the EIT by the effective light
field in the medium.
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FIG. 1. (Color online) (a) Schematic diagram of the system
under consideration. (b) The medium [yellow background in (a)] is
modeled by N two-level atoms; each medium atom has an identical
transition frequency wq. (c) The level structure of the three-level
A-type atoms.

The remaining part of this paper is organized as follows.
In Sec. II, we study the coupled system of quantum light plus
medium atoms and describe this using two-mode polaritons.
Section II is devoted to study the EIT effect of a single
three-level atom induced by polaritons. In Sec. IV, for an
ensemble of three-level atoms, we construct the many-atom
dark states based on the spectra-generating algebra method.
The influence of the medium on quantum-state transfer is
discussed in Sec. V. In Sec. VI, we study the propagation of
dressed light. Finally, conclusions are presented in Sec. VIIL.

II. MICROSCOPIC HOPFIELD MODEL FOR MATERIAL
MEDIA INTERACTING WITH A SINGLE-MODE
CAVITY FIELD

The system under consideration, shown schematically in
Fig. 1, includes a single-mode cavity, a lossless medium, and
M identical three-level A-type atoms. The medium is mod-
eled by N two-level atoms with equal level spacing w, and
for the jth medium atom, the ground and excited states are
denoted, respectively, as |0); and |1);. The three-level A-type
atoms have two lower states |g,) and |g,) plus an upper state
le). A single-mode cavity field @ is assumed as the probe
field to induce a transition between levels |e) and |g,). Fi-
nally, a classical control field w, is introduced to couple |e)
and [g,).

To better understand the effect of the medium, we shall
only consider, in this section, the interaction between the
single-mode probe field and the medium, which is described
by the Hamiltonian
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Hy v =hoa'a+ oy [1)(1] + > gjla+ aT)(a',(f) +a),
j=1 j=1

(1)

where a' (a) is the creation (annihilation) operator for the
quantum probe field and 0'8):|1>j<0’ o-E’):|0>j<1 , and o-i’)
=[1)(1/-10) 0| are the quasispin Pauli operators for the jth
atom. Here g; is the electric-dipole coupling strength be-
tween the probe field and the jth atom. For simplicity, we
shall assume throughout this paper that g;= gmedium 1S inde-
pendent of individual atoms.

To simplify Hamiltonian (1), we define the collective
quasi-spin-wave operators as

N
1 : 2mikj
B) = —E o) exp( ),
k VW_/':I + N

N
1 . 2ikj
B, = =2 09) exp(— ),
VN j=i N

where k=0,...,N—1. In the large-N limit with low-
excitation conditions, it was proven that the above collective
quasi-spin-wave operators B, and BZ, satisfy the bosonic

commutation relations [12,13]
[Bi. Bl 1= du 2)

and

N

> (D)1= B/B;.
k

j=1

The commutation relation in Eq. (2) suggests that the low-
excitation behavior of the medium can be described by N
bosonic operators, i.e., exciton operators. The low-energy
part of Eq. (1) then reduces to Hopfield’s Hamiltonian [11]

Hy y=hwd'a+ ﬁwOBSBO +hG(a+a")(By+ Bg) , (3)

where G= gmediumvwoc VN/V, with V being the effective vol-
ume of the probe field, has a finite Van Hove limit. We re-
mark that, to obtain Eq. (3), we have neglected N—1 free
exciton modes B{,B,, ...,By_;, as they are decoupled from
the probe field.

Equation (3) can be solved using polariton operators em-
ployed by several authors [10,11]. Following the procedure
given in Ref. [10], we define the polariton operators as

Cp= x]fa + y]faT + xéBo + yéBS, (4)

with k=1,2. Here ¢; and CZ/ satisfy the usual bosonic com-
mutation relation [ck,c}:,]zékykr and [c;,c,]=0. Assuming
that the Hamiltonian, Eq. (3), is diagonalized by ¢, and c,,
namely,

HL-M = ﬁQ]CTCl + ﬁ92C;C2,

the coefficients xf‘ and yf‘ (I,k=1,2) are then obtained via the
equation
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Ler Hy vl =7Qc.

Explicitly, we have

1 1
k_ L k __
x.i_z(vj"'”j)’ yl_z(vl_ul ’
where
2 2
ukzﬂvk uk=Qk_ka
1 Qk 1° 2 2GQk 2

k_ Q% - k k_ 4GV
Up= U, U1 = 2 N2 27
2Gw, (Qf — )" +4wywG

and the eigenfrequencies

1
02= E{wg + 4+ (— 1)kv/(w(2)_ o)+ 160w,G?.  (5)

The above results are identical to those obtained using the
Hopfield’s approach, as shown in Ref. [11], where the effect
of the medium is phenomenologically modeled by many har-
monic oscillators. Our results then indicate that those phe-
nomenological harmonic oscillators essentially originate
from the low-energy collective excitations of the medium
atoms. As a matter of fact, the same as previous treatments
for the effect of the medium [10], our approach also relies on
the weak-coupling assumption, which suggests that the me-
dium effect can be equivalently studied according to either
the two-level model or the harmonic oscillators.

III. EFFECT OF MATERIAL MEDIA ON THE DARK
STATE OF A THREE-LEVEL ATOM

In this section, we shall assume that there is only one
three-level A-type atom embedded in the medium. As ex-
plained in Sec. II, this atom couples with a single-mode cav-
ity field and a classical light field. However, due to the effect
of the medium, the single cavity mode is effectively replaced
by the two-mode polariton, resulting in the two-color EIT
model shown in Fig. 2. The corresponding Hamiltonian takes
the form

2
h=h2 Qicle;+ hay, [e)Xe] + hlwe, — w4 )]22)(g1l
i=1
2

+ ﬁgZ u(c;+ c:f)(|e)<g1| +H.c.)
i=1

+fig(e”!|e)(ga| + Hoco), (6)

where ui:u"l, g and ¢ are the Rabi frequencies for, respec-
tively, the single-mode cavity field and the classical light
field, and w,,, (@) is the atomic transition frequency from
the level |e) to the level |g;) (|g,)) as shown in Fig. 1.

We first assume that the classical field and one of two
polariton modes—say, c;—satisfy the two-photon resonance
condition: i.e., Q;=w. + Weg — W, In the interaction picture
and taking the rotating-wave approximation, the Hamil-
tonian, Eq. (6), becomes (using #=1)
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FIG. 2. (Color online) The coupled system of the two-mode
polaritons and a three-level atom. {); and (), are, respectively, the
frequencies of the c¢; and ¢, modes. w, is the frequency of the
classical control field and its detuning with the transition frequency
is A.

Weq,

hy= ﬁchCQ + Ale)e| + Ee){ga| + (&le)(gy]
+g(uc +”2C2)|e><gl|+H-C-), (7)

where  ()=0)—w,— (0, —w,) and A=w, -Q=w,,
—w.. We note that h; possesses an invariant subspace
spanned by the states |e,n|,n,), |g,,n1,m), |g1,n1+1,n,),
and |g,,n;,n,+1); here, n; and n, are the number of polari-
tons for modes ¢; and c,, respectively. The matrix represen-
tation of the /; in this invariant subspace is then

hy=(n, Q) +n, Q)1

A 3 gulx/nl +1 guz\/nz +1
¢ 0 0 0
* guy \e’m 0 0 0 > @)
guz\r’m 0 0 Q,

with / being the identity matrix. Here /; has a zero eigen-
value corresponding to the eigenstate

|lﬂ0> = CO0S 0|g1,7’l1 + 1,7’!2) - Sin 0|g2,n1,n2), (9)

where 6 is determined by tan 6=¢/(gu, V’m)- We immedi-
ately notice that |¢) is a dark state formed by polaritons and
the two lower atomic levels, in contrast with that formed
directly by photons. Furthermore, |¢) can be factorized as

o) = o) ® [n2) = (cos blgy,ny + 1) —sin 6]gy.n)) @ [ny),
(10)

where |¢,) superposes different polariton number states.
Considering now the n;=0 subspace, if we manipulate the
Rabi frequency ¢ of the classical field adiabatically, such that
6 varies from O to /2, the information of a single-polariton
state is then stored into the atomic state.

IV. COLLECTIVE ATOMIC EXCITATION DRESSED
BY POLARITONS

As the adiabatic manipulation described in the previous
section is only accompanied by a single-polariton transfer, it
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cannot be used to transfer or store a general state which is a
superposition of multiple-polariton number states. To fulfill
this purpose, an ensemble of atoms is needed to serve as the
quantum data bus or quantum memory. We therefore con-
sider in this section M identical three-level A-type atoms
interacting with the polariton modes. The same as the single
three-level atom case, we assume that only the ¢; mode sat-
isfies the two-photon resonance condition. The Hamiltonian
of the system, in the interaction picture, is (using A=1)

M
Hy=0xcle, + A o) + £ UEQZ
j=1 j=1
M

+g| ey +uscy) >, oY s ) +H.e. |, (11)
Jj=1

where 0 |,u,> (V| (u,v=e,g,,g,) is a flip operator of the
Jjth atom. To further simplify the notation, we define the col-
lective quasispin operators [12]

S= E v, T,.= E all), T——E o), (12)

where A*(A) characterizes the collective atomic excitations.
We note that, in the large-M limit with low atomic excita-
tions, the operators A" and A satisfy the bosonic commuta-
tion relation [A,A"]=1. The Hamiltonian, Eq. (11), can now
be rewritten as

Hy=Oycher + AS + (€T, + gu, V’MC1A+ + guzvﬂczAT +H.c.).
(13)

Following the procedure developed in Ref. [12], we intro-
duce another atomic collective excitation operator

1 M
=_MZ o | (14)

In the large-M and low-excitation limit, the collective opera-
tors defined in Egs. (12) and (14) satisfy the basic commu-
tation relations,

[A,S]=A, [C,S]=0, [A.AT]=1, [C,C']=1,

[T,,CT1=AT, [T_A"l=C', [S,T.]==+T.. (15)

The effective Hamiltonian, Eq. (13), is a function of the
operators A, A", C, C7, and T, that generate a close algebra
L, corresponding to a noncompact group U(L). This means
that the composite system, consisting of photons, the me-
dium, and A-type atoms, possesses a dynamic symmetry of
U(L). Using the symmetry analysis [12], we construct a
dark-state operator of the polariton operator ¢; and atomic
operator C:

D=c;cos §—Csin 0,

which satisfies [H;,D]=0 and [D,D"]=1. Furthermore, we
introduce the state
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10)=[v) ®[0),, ® |0),,.

where |[v)=|g;.,g;,...,g) is the collective ground state with
all atoms in their ground states and |0) and |O) are the
vacuum of the polariton modes. We note that 0) is an eigen-
state of H; with zero eigenvalue, and consequently, a degen-
erate class of H; with zero eigenvalue can be constructed as
follows:

1
ID,y=-=D"|0),
\Vn!

which can be used as a quantum memory. There also exist
other eigenstates with zero eigenvalue; however, as shown in
Appendix A, the adiabatic evolution does not mix them with
the dark state |D,,).

V. QUANTUM ADIABATIC MANIPULATIONS IN
THE PRESENCE OF MATERIAL MEDIA

In earlier work [4—6,12], the EIT system was proposed as
an efficient quantum memory by adiabatic quantum manipu-
lation. In the presence of the medium, we explore the possi-
bility of implementing such quantum manipulation by taking
into account the coupling between the quantum light field
and the medium.

The goal of the EIT-based quantum memory is to transmit
the information of the quantum light to the low-excitation
state of the A-type atomic ensemble. To see the key point of
our studies here, we would like to recall the basic physical
process of the EIT-based quantum storage. If there is no in-
teraction between the quantum light and the medium (G
=0), the state used for quantum storage can be expressed as

(W(0) =2 c,ld,(0)) @ [0)g,

where |0) is the vacuum state of the collective excitation of
the medium atoms and

|d,(6)) =

is a dark state formed by the probe light and the collective
excitations of three-level atoms. Here,
state defined by C and |0), is the photon vacuum state.
Therefore, a perfect quantum storage of photon states by an
atomic ensemble can be realized by the following adiabatic
evolution:

|¥(6=0))=0)c® (E cn|n>a> ® [0)5 — ‘ xp( - §>>

= (2 (- 1)”c,l|n>c) ®10), ® |0)p.

(a" cos O— C" sin 6)"|0)¢ ® |0),

As shown in the previous section, after we turn on the
coupling between the medium and quantum light, the dark
state |d,(6)) is replaced by |D,(6)), a dark state formed by
the resonant mode c; of the polariton and the collective ex-
citations of three-level atoms. In this case, an ideal quantum-
state transfer should realize the process
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FIG. 3. (Color online) The coupling strength G dependence of
the one-photon-state transmission efficiency F; for w;=0.99w
(black solid line), wy=0.95w (red dash-dotted line), and wy=0.9w
(blue dashed line).

|O>C ® E Cn|n>a ® |O>B - E cn|n>C ® |0>c] ® |0>cz'

However, as we shall show below, quantum-state transfer
can only be partially achieved when G # 0. Without loss of
generality, assuming that the photon state to be transferred is
a Fock state, namely, the initial state of the system is

[W(t=0))=[0)c ® |n), ® [0)p.
We note that state |n),®|0)5 can be expanded using the Fock
states of polaritons, which gives
|\I,(0)> = S;10|0>C ® |n>cl ® |0>02 + 2 Sij|0>C ® |i>c| ® |j>62
i#n; j#0
=S$,0|D,(8=0)) + ¢/ (0)), (16)

where [¢/(0))=2,,,. 205,00 ® i), ® |j).,- The coefficients
S;; can be obtained straightforwardly; in particular, when the
coupling between light and medium atoms is weak, S, is
very close to unity. As the system evolves adiabatically to
time ¢, the wave function becomes

[¥ (1)) = S,0|D,(0(0))) + | (1)), (17)
and at 6(t)=m/2, we have

™
Dn<5)> = = 1|n)c @ o)., ® o),
Therefore, the first term on the right-hand side of Eq. (17)
transfers the quanta of the photon to the collective excitation
of the atomic ensemble; the second term, on the other hand,
represents the leakage of the quantum memory.

Furthermore, to quantify the effect of the medium, we
need to calculate the efficiency of the n-photon state transfer,
ie.,

Fn = |Sn0|2'

The detailed results on F, are presented in Appendix B. In
Fig. 3 we plot the one-photon-state transmission efficiency
F versus the coupling strength G for different ratios of the
frequencies of the quantum light and the collective excitation
of the medium. We see that the presence of the medium
notably reduces the transmission efficiency, especially when
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FIG. 4. (Color online) Same as Fig. 2, except that here the ¢,
polariton mode and the classical light field do not satisfy the two-
photon resonant condition: i.e., 6=, — 0.~ w, #0.

the quantum light is nearly resonant with the collective ex-
citation of the medium atoms.

We notice that F, is actually equal to 1 when G=0 in the
resonant case and thus we cannot resort to the same calcula-
tion method about the transmission efficiency shown in Ap-
pendix B. When wy=w together with G=0, there would be a
singularity for the transmission efficiency if we carried out
the same calculation as that in Appendix B. Physically, we
can consider the cases with small detuning wy,— and there
is not an obvious jump of the transmission efficiency as
shown in Fig. 3. Actually, there is a jump of F; from 1 to 0.5
in the resonant case when we turn on the coupling G from 0
to a small value. A strict resonant condition is never feasible
in practical experiments, and thus we only consider two
nearly resonant cases in Fig. 3.

VI. PROPAGATION OF THE DRESSED QUANTUM LIGHT

To consider the dynamical process of a quantum-state
transfer, which is usually described by the slowing and the
stopping of light, we study the dispersion and absorption
properties of dressed quantum light, propagating in a A-type
atomic ensemble. To achieve our goal, we consider the case
when the ¢; mode and the classical light field have a small
two-photon detuning 6=, - w.—w, <, (see Fig. 4). The
Hamiltonian in the interaction picture now becomes

— Ot it [Ne AT INeAT
H;=Oscpc0 + AS + ' éT, + guVNc A" + guy VNe,A' + Hee.

With the help of the basic commutation relations in Eq. (15),
we can approximately write down the Heisenberg equations
for the operators A, C, and c,,

A=-T,A—iAA- igul\rwcl —ie"EC - iguz\chz,
C=-T C—-icT¥¢A,

C"2=—FC.2CZ—iﬁZCZ—l.gl/lz\/%A, (18)

where we have ignored quantum fluctuations since we only
calculate the group velocity. In addition, we have phenom-
enologically introduced the damping rate FCZ of the mode ¢,
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and the decay rates I'y and I, for, respectively, the states |e)
and |g,). 'y and ' can be estimated as the spontaneous
emission rates of the respective levels, which are propor-
tional to the cube of the atomic transition frequencies. We
therefore have I'y>T".. The damping rate of the polariton
mode is mainly due to the spontaneous emissions of the me-
dium atoms and the leakage of the cavity. Since the former is
negligible for a lossless medium, we can further assume
I‘C>FCZ for a high-quality cavity.

To find a steady-state solution for the above equations of
motion, it is convenient to remove the fast-oscillating factors
by making the transformation C=e~'¥C’, which yields

A=-T,A—iAA —igu, \Wcl —iéC’ - iguzchz,
C'=-TC' —itA+idC',

Cy=— Fczcz - iﬁzcz - l'gl/tz\/WA~ (19)

The steady-state solution can be obtained by letting A=C’
=¢,=0, from which we find the mean value of A as
_ — iguaficy)

aB(, +iA) + BE + agzugN’

(4) (20)

with a=¢-id and =T +i{),.
It is noted here that dressed quantum light or propagating

polaritons nearly on resonance with the A-type atom can be
described by

E(f)=ee™™ + He.=u;y/ ce™™ + He.,
2VEO

where €, is the permittivity of free space and V is the effec-
tive mode volume, which, for simplicity, is chosen to be
equal to the interaction volume. In this case, the time-inde-
pendent part of the polariton field strength is u;Vw/2Ve,. We
remark here that the Hopfield polariton field can be under-
stood as a displacement field or macroscopic electromagnetic
field corresponding to the polarization

(Py={p)e ™'+ Hc. = gx{e)e™™ + He., (21)

where yx is the susceptibility. After neglecting the effect of
the nonresonance polariton, the average polarization

’/_
MNN

@ 22)

N
_K 0 )=
<P> - 1% j=21 O-egz -
can also be expressed in terms of the average of the exciton
operator A. Combining Egs. (20)—(22), we obtain
~ i2¢*Naf
X= o[aBT 4 +iA) + BE + ag’usN]’

(23)

The real and imaginary parts y; and y, of the complex sus-
ceptibility y=x;+ix, can be explicitly expressed as

(o, -Tc0)O + (L +0,0)E

0%+52 ’

X1
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FIG. 5. (Color online) y; (red solid lines) and x, (blue dashed
lines) versus the two-photon detuning & (in units of I'y, i.e., here
I'y=1). (a) ®y=0.9w and G=0, (b) wy=0.9w and G=0.1w, (c) w,
=w and G=0.1w, and (d) wy=w and G=0.001w. Other parameters
are Ty=1, [c=10", T, =107, gVN=100, and 0=10°.

(Tl + 0,80 = (o, -T2
X2= E=E F,

where F=2g’N/w and

O =T (T4l - AQ,) + €T + AT, +,L,) + gusNT e,

E == 0Tl — AQy) + Q& + T (AT + QoT,) - Sg%usN.

It is well known that y; and y, are related to the dispersion
and absorption, respectively. In Fig. 5, y; and y, are plotted
versus the two-photon detuning &.

Figure 5(a) shows the case (i) where there is no coupling
between the quantum light and the medium. The result is
obviously the same as that of conventional EIT effects. Fig-
ures 5(b) and 5(c) demonstrate almost the same dispersion
and absorption properties as that in the case without the in-
fluence of the medium shown in Fig. 5(a). Figure 5(b) de-
scribes case (ii) that the frequency of the quantum light w
and the collective excitation frequency of the medium w, are
largely detuned in comparison with the parameters gzugN, 0,
and A, i.e.,

|w— wy| > 5,A,g2u§N.

Figure 5(c) describes case (iii) that the coupling strength G
between the quantum light medium is larger than the param-
eters gzu%N, S, and A, ie., G> 5,A,g2u§N.

The above phenomenon, predicted by our numerical cal-
culations, can be well explained. In the configuration, illus-
trated in Fig. 4, when the mode c; of the polariton is nearly
resonant with respect to the transition between |e) and |g,),
the role of the mode ¢, can be neglected if this mode is
off-resonance with respect to the transitions from |e) to |g,)
and |g,). Then the system will be reduced to the conventional
EIT model, where the mode c; of the polariton plays the
same role as that of the quantum light, taken as the probe
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field. This case must lead to the same result as the conven-
tional EIT case about the dispersion and absorption even in
the presence of the medium. Now we can show that both
cases (ii) and (iii) can give rise to the condition that the
frequencies of the mode ¢; and c¢,—i.e., {}; and ,—are
largely detuned as mentioned above. We note that

Q- Q] = (Qy + Q1)_1\"/(603 - 0)? + 160w G>.

In case (i) with |w—wo|> 8,A,g%u3N, combining the condi-
tion

\/(wg - ")+ 160wyG* > |wj — &

with the condition Q,+€),, being of the order of w+ w,, we
can find that [Q,—€,| is of the order of |w—w,|. This implies
that |Q,-Q,|> 5,A,g2u%N, which shows that the large-
detuning condition is satisfied. The same analysis can also be
applied to case (iii) if we note the condition

\/(w(z) — 0?)? + 160w,G* > 4\ ww,G.
Due to |ﬁ2| = |QZ_QI
|0, - Q> 8,A,8%u3N,

, if

we can neglect all terms which do not have a factor of Q, in
the denominator and numerator of Eq. (23). After calcula-
tions, we can obtain the same expression of the susceptibility
as that in the conventional EIT case [14,15].

For the result illustrated in Fig. 5(d), where the param-
eters are assumed to satisfy the condition |w—w|/w<<1 and
G/w<1, we can obtain the results, about the dispersion and
the absorption, which are different from those in the conven-
tional EIT. The phenomenon is the deformed transparent
window which is assisted by the collective excitation of the
medium. Indeed, if |o—wo|/w<1 and G/w<1, |Q,|=|Q,
- Q| is smaller than or of the same order of 8 and A. So the
term related to the mode ¢, of the polariton, i.e., gzugN(FC
—i6), has a dominant effect on the susceptibility y.

VII. CONCLUSIONS

In conclusion, we have studied the influence of a lossless
medium on an EIT system. We find that even in the presence
of the medium, the whole system still has dark states. This
implies that, in some cases, the EIT system in the medium
can still serve as a quantum memory. We also calculate the
dispersion and absorption properties of the dressed quantum
light. We find that the result obtained here is quite different
from that of the conventional EIT. If the coupling strength
between the quantum light and the medium is sufficiently
strong, the ensemble of the three-level atoms with A-type
transitions can easily become transparent if the usual EIT
approach is applied.
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APPENDIX A: DYNAMIC SYMMETRY ANALYSIS
OF THE SYSTEM

Starting from the dark state |D,), we can use the
spectrum-generating algebra method [16] to build other
eigenstates of the whole system. We now introduce the
bright-state polariton operator

B=csin 8+ Ccos 6,

which satisfies

[B,B']=1, [B,D']=0, [B,D]=0.

It is straightforward to obtain the commutation relations

[H.B'1=eB', [H,A"|=AA"+eB + gu,\Nc},

[H],C;] = 626'; + guz\!’WA*,
with £=\g?u?N&. We can introduce three independent bo-

sonic operators
O;=nA+ B+ C, i=123,
which satisfy
[0.0/1=6,. [0.0,]=0.
to diagonalize the Hamiltonian H/, i.e.,
[0:.H ] = €0;.

Based on the above commutation relations, we can con-
struct the eigenstates

Q}Lle;sz;’".%

—_—
\mymy ! ms!

ID,)

|€(m1’m2’m3’n)> =

of the whole system, corresponding to eigenvalues
E = E(my,my,m3) =m, € +m,& + me,

with m;,m,,m3=0,1,2,... . The above equations show that
there exists a larger class of states

S{le{m.n)) = [DAm}.n))n=0,1, ...

with zero eigenvalue E=E(m,;,m,,m;)=0; here, {m;}
=m;,m,,ms. But we show below that these states with zero
eigenvalue do not mix with each other under adiabatic ma-
nipulation. Any state

|¢([)>= 2 lem2m3n|D(ml’m2?m37n)>’

m 1”12}1131‘[

;E=0},

with zero eigenvalue, evolves according to

roror oy
mlm2m3n
, mlm2m3n

d
lacmlmzmyl(t) = E

P
m1m2m3n

'ttt + F
mymyman 4

where F is a certain functional of the eigenstates with non-
zero eigenvalues, which can be neglected under the adiabatic
conditions [17,18] and
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P11y
iD), 125 = (D(mi.m),m3.n)|d|D(my.my.ms.n)).

We note that d;B=D and dyD=B, and we have
8|D(m,n)) = 00, D(my,my,ms,n)),

where  dy|D(m;,m,,m5,n))  includes  six  terms
le(m, ¥ 1,my,my,nx1)), |e(m;,my¥1,m3,nx1)), and
le(m,,m,,m;=1,n+1)), which are all eigenstates with non-
zero eigenvalues. This implies the exact result

(D(my,my,m3,n)| 6| D(my,mo,ms,n)) =0,

showing that there is no mixing among the states with zero
eigenvalue during the adiabatic evolution.

APPENDIX B: CALCULATION OF THE
TRANSMISSION EFFICIENCY

Starting from the Hamiltonian (3), we now calculate the
transmission efficiency in the coordinate representation. We
recall the relation between the operators a', a, BT, and B and
the corresponding coordinate operators and moment opera-
tors x;, x,, p;, and p,, i.e.,

1=\ 2 (a' +a), B1)
2mw

h

pi=i mz“’(a*—a), (B2)
h .

X=17—(B"+B), (B3)
2mw
h

pr=i —mz‘”(B*—B), (B4)

where m is the mass of the oscillator. We have here assumed
the masses of the two oscillators to be the same. Therefore,
we have the Hamiltonian

1 1
Hym= E(P% +p3) + E(Ax% +Bx3+Cxx))  (BS)

for two coupled harmonic oscillators. Here, we neglect the
zero-point energy and
A=maw?®, B= mwé, C=4Gm\ow,. (B6)

Let w+# w, and define the canonical coordinates

o L«
cos 5 —sin 5 .
y2 . a o )C2
sin — cos —
2 2
where
C
tan a= ——. (B8)
B-A

Then we diagonalize H;_y; with two decoupled harmonic
oscillators
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Hiw=5-(h + 1)+ S K0T+ Knd, (B9)
with
A+B-K A+B+K
1=, s (B10)
and
2
K:(B—A)\/l+m. (B11)
Therefore, the eigenenergy of the above system is
E=ﬁﬂl<n1+%>+ﬁﬂz<n2+%>, (B12)
for n;,n,=0,1,2,..., and the corresponding eigenstate

n1)e, ®|na).., is expressed as

1 1
lvl’nlnz(yl’yZ) =v/\/£,b|1)~/\/(nl;2) CXP{— Eb%y% - Ebgy%}
X Hnl(blyl)Hn](beZ),

in terms of the nth-order Hermite polynomial H, (&) with

12 12
Ao b N
I N S R T ) TESER B
Var2"in, ! V2"n,!

) :(mKl)”4 ) =<m_K2>”4
1 ﬁ 5 2 ﬁ .

When there is no coupling between the medium and quantum
light, the Hamiltonian of the medium and quantum light is

(B13)

1 1
Huncoupled = %(p% + P%) + E(Ax% + B)C%) . (B 14)

Therefore the eigenenergies and eigenstates |1,), ® |n,)s are
given by

1 1
E=ﬁw<n1+—) +ﬁw0<n2+—) (B15)
2 2
and
by (x1,20) = NN expd — lazx2 - lazxz
nyny\ N1 A2) =Ny, ny p 211 222
X Hnl(alxl)Hnl(aZxZ)»
respectively, for n;,n,=0,1,2,..., and

Mal) B a, 1/2 Maz) ~ a, 172
ny T /_2111 | ’ I /_2n2 ' ’
\ 1T, np: \ 1T Usy
(mA)]/4 <m3>1/4
a=\—1| , a=\—] .
T\ "\ n

Now we can calculate the transmission efficiency of the
n-photon state:
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Fy =180/ =00l ® . (n] ® (vl|v) ® [n), ® |0)s]
2

ffwno[yl(xlax2)aY2(xl’xz)]¢n0[xl’x2]dxldx2

ff exp{ —(a1x1+a2x2 1y1+b2y2}

X H,(ayx\)Hy(axx)H,(b1y)Ho(bsy,)

2
X NN NN g e,

(B16)

To explicitly calculate the integral in the above formula we
can define a new pair of coordinates,

B _. B
cos 5 sin > /s
V4
2 . X2
sin — cos —
2 2
where
tan B= R
an B=——
Q-P’

a L«
P =b7 cos> — + b3 sin®> — +a’,
2 2

0= bzsm E+bzcos E+a2,

2l b2 cos Esin E — b2 cos L sin &
R=2 b2005251n2—blcoszsm2 . (B13)

Therefore, the integral

Jf exp{ (al)c1 +a2x2+b1y1 z)’z)}

X H,(a\x))Hy(axxy)H,(b1y)Ho(byy,)dx dx,

is transformed to
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1 , 1 2
exp) — 5W111 - 5W222

X H,(ax))Hy(axx))H,(byy,)Ho(byy,)Jdz,dz,,

(B19)
where
dzy 0z
J=" TP =1
(921 (922
is the Jacobi determinant and
P+Q0-S P+0+S
1= L 5 W2 - Q s (B 20)
2 2
where
R?
S=(Q-P) 1+—(Q—P)2
and

)

B .
COS — sin —
) 2 2 (zl
= N
COoS —

—sin —
2 2

Cos

sin
2 2

We note that Hn(blyl)’ HO(beZ)’ Hn(alxl), and Ho(a2x2) can

be expressed as a polynomial of z; and z,, so that the integral
(B19) can be calculated with the help of the integral formula
1+n

+°° —z__ n (1+n)/2 -
J_x e P [1+( 1)"]p~ F[ 5 ]

where n=0,1,...,p>0, and I'[n] is the gamma function.
For the simplest case, when n=1, we have
a—

4 /a?azb?bz[ 1 B B
— - | — COoS COS —
a W1W2 Wl 2 2

I a-B . /3} ?
— —— Sin sin —

W, 2 2

Fl=

(B21)
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