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Abstract. We theoretically study the implementation of two-qubit gates in
a system of two coupled superconducting qubits. In particular, we analyze
two-qubit gate operations under the condition that the coupling strength
is comparable with or even larger than the anharmonicity of the qubits.
By numerically solving the time-dependent Schrödinger equation under the
assumption of negligible decoherence, we obtain the dependence of the two-
qubit gate fidelity on the system parameters in the case of both direct and indirect
qubit–qubit coupling. Our numerical results can be used to identify the ‘safe’
parameter regime for experimentally implementing two-qubit gates with high
fidelity in these systems.
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1. Introduction

Superconducting (SC) circuits based on Josephson junctions are promising candidates for the
realization of scalable quantum computing on a solid-sate platform, owing to their design
flexibility, large-scale integration and controllability (see the reviews in [1–7]). SC qubits
include charge [8], flux [9] and phase qubits [10, 11] as well as their variants, capacitively
shunted flux qubits [12] and capacitively shunted charge qubits (transmon qubits) [13]. The
phase qubit, the capacitively shunted flux qubit and the transmon qubit are relatively insensitive
to charge noise and can be operated over a wide range of parameters. Single-qubit gates [14],
two-qubit gates [15, 16] and simple quantum algorithms [17] with these types of qubits have
been demonstrated experimentally in recent years. However, compared with flux qubits, a
common disadvantage of these types of qubits is their weakly anharmonic energy level structure,
i.e. the detuning between adjacent transition frequencies is small.

Generally, the influence of the small anharmonicity (denoted by 1) on quantum gate
operations can be neglected when the qubit–field and qubit–qubit coupling strengths are very
small compared with 1. However, for the practical application of quantum computation, one
has to maximize the number of quantum gate operations with a given coherence time. In other
words, we must implement quantum operations as fast as possible, which requires a strong
qubit–qubit or qubit–field coupling to be employed during the single- and two-qubit gate
operations [18]. The anharmonicity of SC qubits will influence the quality of quantum gates
more and more with increasing coupling strength. In recent years, there have been a number
of theoretical studies analyzing the effects of the weak anharmonicity of SC qubits on the
operation of single-qubit gates, and several optimization strategies have been proposed based
on different driving pulse shapes and sequences [19–23]. Similar to single-qubit gates, the weak
anharmonicity of SC qubits will also influence the implementation of two-qubit gates. Then two
questions arise naturally: (i) how much does the weak anharmonicity of the qubits influence the
implementation of two-qubit gates in a system of coupled SC qubits? (ii) How strong can the
coupling be while allowing a high two-qubit gate fidelity? In other words, how fast can two-
qubit gates with high fidelity be implemented, given the weak anharmonicity of SC qubits?

Motivated by the above questions, we study in this paper the implementation of two-
qubit gates with SC systems in the strong coupling regime. First, we introduce some possible
methods for implementing two-qubit gates and qualitatively discuss the effect of strong coupling
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Figure 1. Systems with direct (a) and indirect (b) qubit–qubit coupling. Here,
g, G j and 1 j ( j = A, B) are the qubit–qubit coupling strength, qubit–cavity
coupling strength and anharmonicity, respectively.

(section 2). Then, in section 3, we numerically simulate the influence of the coupling strength
and anharmonicity on the fidelities of two-qubit gates in different SC systems, and show that the
‘safe’ parameter regime for implementing two-qubit gates with high fidelity can be identified,
which is useful in guiding experimental efforts based on SC qubits. Finally, we conclude with a
brief summary in section 4.

2. The model and qualitative discussion

As shown in figure 1, as model systems we consider two directly (a) or indirectly (b) coupled SC
qubits with weakly anharmonic multilevel structure (such as transmon or phase qubits). Here it
should be pointed out that flux qubits have a strong anharmonicity, and the problem discussed
in this paper is not a serious limitation. The two lowest levels {|0〉 j , |1〉 j}, separated in energy
by h̄ω j ( j = A, B), are the computational basis, and the (n > 2) higher levels are different from
nh̄ω j by h̄ε j

n . Here ε j
n has the standard nonlinear oscillator form ε j

n = 1 j(n − 1)n/2 [24] and
1 j is the anharmonicity of the qubit, and it is positive in our paper.

In the case of direct qubit–qubit coupling, two qubits are directly (capacitively) coupled,
while they are dispersively coupled to a common transmission line resonator in the case of
indirect qubit–qubit coupling. The Hamiltonian of these two types of coupled systems is given
by (h̄ = 1) [25–32]

H direct
=

N−1∑
n=1

[(
nωA − εA

n

)
|n〉A〈n| +

(
nωB − εB

n

)
|n〉B〈n|

]
+ g J x

A ⊗ J x
B, (1a)
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H indirect
= ωca

†a +
∑

j=A,B

[
N−1∑
n=1

(
nω j − ε j

n

)
|n〉 j〈n| + G j(a + a†)J x

j

]
, (1b)

J x
A =

N−1∑
n=1

ηA
n−1,nσ

Ax
n−1,n, J x

B =

N−1∑
n=1

ηB
n−1,nσ

Bx
n−1,n, (1c)

where H direct and H indirect denote the Hamiltonians for the system with direct and indirect
qubit–qubit coupling, N is the number of levels in each SC qubit, η

j
n−1,n ≈

√
n is the level-

dependent coupling matrix element and r j x
n−1,n = |n − 1〉 j〈n| + |n − 1〉 j〈n| is the effective Pauli

spin operator for levels |n − 1〉 and |n〉. Also, ωc is the frequency of the quantized cavity mode;
g and G j denote the qubit–qubit and qubit–cavity coupling strengths.

In order to qualitatively analyze the implementation and fidelity of two-qubit gates, we
assume that each qubit has three levels. Then, the Hamiltonian of the direct qubit–qubit coupled
system (H direct), under the rotating-wave approximation (RWA), can be reduced to

H direct
I =

∑
j=A,B

[
ω j |1〉 j〈1| +

(
2ω j − 1 j

)
|2〉 j〈2|

]
+g[|01〉〈10| +

√
2|02〉〈11| +

√
2|20〉〈11| + 2|12〉〈21| + h.c.], (2)

where |mn〉 denotes |m〉A|n〉B .
For the system with indirect qubit–qubit coupling, under the dispersive qubit–cavity-

coupling condition, i.e. |δ j | = |ω j − ωc| � G j ( j = A, B), the qubits will exchange energy
by virtual photon processes. Then we can obtain the Hamiltonian of the effective qubit–qubit
interaction by a Fröhlich transformation [33–36],

H indirect
eff,1 = exp (−S)H indirect exp (S)

≈

∑
j=A,B

{[(
ω j +

G2

δ j

)
|1〉 j〈1| +

(
2ω j − 1 j +

2G2

δ j − 1 j

)
|2〉 j〈2|

+
G2

2δ j
a†a

(
|1〉 j〈1| − |0〉 j〈0|

)
+

G2

δ j − 1 j
a†a

(
|2〉 j〈2| − |1〉 j〈1|

)]
+

[√
2G2

2

(
1

δ j − 1 j
−

1

δ j

)
a2

|2〉 j〈0| +
G2

2

(
1

δA
+

1

δB

)
|01〉〈10|

+

√
2G2

2

(
1

δB − 1B
+

1

δA

)
|02〉〈11| +

√
2G2

2

(
1

δA − 1A
+

1

δB

)
|20〉〈11|

+G2

(
1

δA − 1A
+

1

δB − 1B

)
|12〉〈21| + h.c.

]}
, (3)

where

S =

∑
j=A,B

[
G

δ j
a†

|0〉 j〈1| +

√
2G

δA − 1A
a†

|1〉 j〈2| − h.c.

]
. (4)

Here, we have assumed that G A = G B = G.
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The terms proportional to G2 in the first four terms of equation (3) represent level shifts,
and the fifth term describes two-photon processes. Under the dispersive qubit–cavity-coupling
condition, the cavity mode is only virtually excited during the gate operation and therefore the
third, fourth and fifth terms of equation (3) vanish. Then, Hamiltonian (3) can be simplified
further as [37–41]

H indirect
eff,2 =

∑
j=A,B

[
ω̃ j |1〉 j〈1| +

(
2ω̃ j − 1 j

)
|1〉 j〈1|

]
+

[√
2geff,1|02〉〈11| +

√
2geff,2|20〉〈11| + geff,3|01〉〈10| + 2geff,4|12〉〈21| + h.c.

]
. (5)

where

ω̃ j = ω j +
G2

δ j
, (6a)

1̃ j =
2G2

δ j
−

2G2

δ j − 1 j
+ 1 j , (6b)

geff,1 =
G2

2

(
1

δB − 1B
+

1

δA

)
, (6c)

geff,2 =
G2

2

(
1

δA − 1A
+

1

δB

)
, (6d)

geff,3 =
G2

2

(
1

δA
+

1

δB

)
, (6e)

geff,4 =
G2

2

(
1

δA − 1A
+

1

δB − 1B

)
. (6 f )

Now, we obtain an effective interaction Hamiltonian similar to Hamiltonian (2) in the system
with direct qubit–qubit coupling.

From Hamiltonians (2) and (5), it is easily seen that various two-qubit gates can be realized
by appropriately adjusting the qubit frequencies (ωA, ωB) in both the systems with direct and
indirect qubit–qubit coupling. For example, by setting ωA = ωB (ωB = ωA + 1B), the resonant
transition between states |01〉 and |10〉 (|11〉 and |02〉) can be obtained as shown in figure 2. Then
the two-qubit iSWAP [15] (CZ [16, 17]) gate can be realized after an interaction time gtg = π/2
or geff,3tg = p/2 (

√
2gt = π or

√
2geff,1t = π ). Here it should be pointed out that some undesired

transitions (see the (green) dotted arrows in figure 2) have been neglected in the weak-coupling
regime g � |1 j | or geff,m � |1 j |(m = 1 − 4; j = A, B). However, with increasing coupling
strength (g or geff,m), the average amplitude g/|1 j | or geff,m/|1 j | of undesired transitions will
become larger and larger, which cannot be neglected anymore and will reduce the fidelity of the
two-qubit gate. As a result, the ratio of coupling strength g or geff,m to the anharmonicity 1 j is
an important parameter for the quality of the two-qubit gate. In the two-qubit gate scheme based
on SC qubits, a very strong qubit–qubit or qubit–cavity coupling strength cannot be employed
owing to the weak anharmonicity of the qubits, if one wants to obtain a high fidelity. How strong
the coupling can be, while allowing high two-qubit-gate fidelities, will be analyzed in detail in
section 3.
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Figure 2. The energy-level diagram of two-qubit product states for the iSWAP
gate (a) and the controlled-Z gate (b) in the system with direct qubit–qubit
coupling. Red levels denote the states in the computational basis. The black
dashed arrows are the resonant transitions used for realizing the two-qubit gates
and the green dotted arrows are the main undesired transitions, which adversely
affect the implementation of two-qubit gates. The couplings g and

√
2g are

indicated in blue, while the detuning between levels is indicated in black. This
figure also applies to the system with indirect qubit–qubit coupling when the
corresponding couplings are replaced by geff,m (m = 1, 2, 3).

3. Numerical results

In this section, we will numerically calculate the fidelity of two-qubit gates in the circuits with
either direct or indirect qubit–qubit coupling. Importantly, the present numerical results can help
identify the safe parameter regime for implementing two-qubit gates with high fidelity. Here,
we neglect the noise and decoherence of the system in order to show explicitly the influence
of coupling strength and anharmonicity on the fidelity of two-qubit gates. Here, it should
also be pointed out that the single-qubit gates are performed using microwave pulses (with
frequencies of a few GHz), while the frequency tuning for the two-qubit gates is implemented
using trapezoidal pulses.

Here, the fidelity of a two-qubit gate is defined as the Euclidean distance between the target
UT and the actual evolution U (tg) [22],

F = 1 −
1

16
‖UT − P†U (tg)P‖

2
2, (7)

where U (t) is the usual time evolution operator obeying the Schrödinger equation U̇ (t) =

−
i
h̄ H(t)U (t) in the full space of the quantum system. Here ‖X‖

2
2 = tr(X † X), where X is

an arbitrary operator. P is the projection operator on the two-qubit computational basis
{|00〉, |01〉, |10〉, |11〉}; note that

UT = |00〉〈00| − i|01〉〈10| − i|10〉〈01| + |11〉〈11|

corresponds to the two-qubit iSWAP gate, and

UT = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|

corresponds to the two-qubit CZ gate. Here it should be pointed out that single-qubit rotations
and overall phase factors U A

z = eiθAσ A
z , U B

z = eiθBσ B
z and UI = eiθ I are used in the numerical
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calculations to eliminate any extra phase factors; I is the unit matrix and

σ A
z = |00〉〈00| + |01〉〈01| − |10〉〈10| − |11〉〈11|,

σ B
z = |00〉〈00| − |01〉〈01| + |10〉〈10| − |11〉〈11|.

Specifically, in our numerical calculations, we replace the unitary operation U (tg) in
equation (7) by U ′(tg) = UI U B

z U A
z U (tg) and choose θA, θB and θ that maximize the fidelity.

We also note here that, in our numerical calculations, we do not use the RWA. But there is
almost no difference between these results shown below and the numerical results with the RWA
(not shown in this paper). The reason is that the parameter regime we consider does not reach
the ultrastrong coupling regime and thus the RWA is valid here. Very recently, the influence of
the counter-rotating terms in the Hamiltonian on the two-qubit gates in the ultrastrong coupling
regime has been studied in a related system [42]. Also, the effect of counter-rotating terms was
studied in [43].

3.1. System with direct qubit–qubit coupling

In this subsection, based on the original Hamiltonian equation (1a), we numerically calculate
the influence of the coupling strength g and anharmonicity 1 j on the fidelities of the two-
qubit iSWAP and CZ gates (see figures 3–5). Here we consider the two-qubit iSWAP and CZ
gates implemented in experiments [15]. In figures 3(a) and (b), we plot the fidelities of the
two-qubit iSWAP gate (FiSWAP) and the CZ gate (FCZ) as functions of g/1B in a circuit with
direct qubit–qubit coupling, where we consider each SC qubit to have three levels (the same
approximation will be used in figures 4 and 5). From figure 3(a) and the (green) solid line in
figure 3(b), it can be seen that the fidelities of these gates decrease with increasing g/1B , and
the present numerical results can help identify the safe parameter regime for realizing two-qubit
gates with high fidelities. As shown in figure 3(a), if we want to implement the two-qubit iSWAP
(CZ) gate with fidelity higher than 99% (99.2%), the safe parameter regime is g/1B < 0.152
(g/1B < 0.24). In other words, based on the relationship gtg = π/2 for the iSWAP gate and
√

2gtg = π for the CZ gate, the present numerical results can also identify the time limit for
implementing two-qubit gates with high fidelity. For example, here the shortest gate time is
tg ≈ 16.4 ns (tg ≈ 12.9 ns) for implementing a two-qubit iSWAP (CZ) gate with fidelity higher
than 99% (99.2%).

The (green) solid line in figure 3(b) shows small oscillations in the fidelity of the two-qubit
CZ gate. These oscillations can be reduced by slowly adjusting the frequencies of the qubits
during the gate operation. As shown in the inset of figure 3(b), the frequency of qubit B starts at
1.1ωB , is first ramped down to ωB in τd and then ramped up to 1.1ωB after an interaction time
tg (

√
2gtg = π). During the full gate operation time (2τd+tg), the frequency of qubit A is fixed.

Using such pulses, we numerically calculate the fidelities of the two-qubit CZ gate for different
values of τd and present the results in figure 3(b) (see dashed, dotted and dot-dashed lines in
figure 3(b)). It can be seen that the oscillations of the fidelity can be eliminated by adiabatically
adjusting the qubit frequencies during the gate operation.

In order to show the influence of 1A and 1B on the two-qubit gates, we plot the fidelities
of the two-qubit iSWAP and CZ gates as functions of 1A/g and 1B/g in figure 4. It is
easily seen from figure 4(a) that the anharmonicities 1A and 1B have an equal effect on the
two-qubit iSWAP gate; that is, the stronger the anharmonicities 1 j ( j = A, B), the higher the
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Figure 3. The fidelities of the two-qubit iSWAP (a) and CZ (b) gate as functions
of g/1B in a circuit with direct qubit–qubit coupling. Some representative dots
are denoted by the dashed lines and red circles in order to present the relationship
between the gate time tg and fidelity F . The red arrows point out the parameter
regime corresponding to the two-qubit gate with high fidelity. In panel (b),
the qubit frequencies are adiabatically adjusted during the gate operation, as
shown in the inset. The system parameters used here are (a) ωA/2π = 5.5 GHz,
ωB = ωA, 1A/2π = 0.15 GHz and 1B/2π = 0.1 GHz; (b) ωA/2π = 7.16 GHz,
1A/2π = 0.087 GHz, 1B/2π = 0.114 GHz and ωB = ωA + 1B .
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Figure 4. The fidelities of the two-qubit iSWAP gate FiSWAP (a) and the CZ gate
FCZ (b) versus 1A/g and 1B/g in a circuit with direct qubit–qubit coupling. The
dashed lines correspond to the fidelities 95 and 99%. The system parameters are
the same as in figure 3 except for g/2π = 0.2 GHz.

Figure 5. The fidelities of the two-qubit iSWAP gates versus 1B and g in a circuit
with direct qubit–qubit coupling. The dashed lines correspond to the fidelities
95 and 99.5%. The system parameters are the same as in figure 3 except for
1A = 1B .

fidelity. This symmetric property disappears in the two-qubit CZ gate due to the asymmetry in
the condition on the parameters, ωB = ωA + 1B (see figure 4(b)). In other words, the influence
of the anharmonicity 1A on the two-qubit CZ gate can be neglected when ωB = ωA + 1B is
chosen. In addition, the dashed lines in figure 4 indicate the safe regime of 1 j/g ( j = A, B) for
implementing two-qubit iSWAP and CZ gates with fidelity higher than 99%.
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Figure 6. The fidelity of the two-qubit CZ gate versus 1A/geff,1, 1B/geff,1 (a) and
versus geff,1, 1B (b) in the system with indirect qubit–qubit coupling. The dashed
lines correspond to the fidelities 95 and 99%. The basal system parameters are
ωc/2π = 6.9 GHz, ωA/2π = 8.2 GHz, ωB = ωA + 1B , δ j = ω j − ωc ( j = A, B);
and G = 0.2 GHz for panel (a) and 1A/2π = 1B/2π GHz for panel (b).

In figures 3 and 4, either the anharmonicity 1 j or the coupling strength g has been set to
a fixed value. A natural question is whether the conclusions obtained from figures 3 and 4 are
universal. In other words, will the properties of figures 3 and 4 change much when either 1 j or g
is changed? Thus, we now present in figure 5 three-dimensional (3D) plots of the dependence of
FiSWAP on g and 1B . It is shown that the fidelity of two-qubit gates is approximately determined
by the ratio of the qubit–qubit coupling strength g to the anharmonicity 1 j of the SC qubits. As
a result, the conclusion obtained from figure 3(a) (or figure 4(a)) will not be changed when
adjusting 1B (or g). A similar property is also obtained from the two-qubit CZ gate (the
corresponding figures are not shown in this paper because they are very similar to figure 5).

3.2. System with indirect qubit–qubit coupling

In this subsection, based on the Hamiltonian equation (1b), we present the results of numerical
calculations for the dependence of the fidelity of the two-qubit gates on the effective qubit–qubit
coupling geff1 and anharmonicity 1 j of SC qubits. Here the two-qubit CZ gates are realized
based on the qubit–cavity dispersive interaction method [17], and the parameter

geff,1 =
G2

2

(
1

δB − 1B
+

1

δA

)
=

G2

δA

under the condition ωB = ωA + 1B .
In figure 6, we present 3D plots of the dependence of FCZ on 1A/geff,1 and 1B/geff,1 (panel

(a)) and geff,1 and 1B (panel (b)), where we consider the SC qubits to have three levels. Dashed
lines denote the parameter regime for implementing the two-qubit CZ gate with fidelities 95 and
99%. It is shown in figures 6(a) and (b) that high-fidelity areas correspond to the weak-coupling
regime geff,1/1 j � 1 ( j = A, B), while low fidelity corresponds to the strong-coupling regime,
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Figure 7. The fidelities of the two-qubit gates as a function of g/1B (a) and
geff,1/1B (b) in systems with direct (a) and indirect (b) qubit–qubit coupling,
when the three, four or five lowest levels are considered for each qubit. The
system parameters are the same as in figure 3 or 6. The green and red circles in
(a) and cyan circle in (b) mark, respectively, the experimental parameters regime
in [15–17].

where geff,1 is comparable to or larger than 1 j . This property is similar to that in the system
with direct qubit–qubit coupling. The present numerical results can be used to identify the safe
parameter regime for implementing the two-qubit CZ gate with high fidelity in the circuit with
indirect qubit–qubit coupling.

3.3. Going beyond the three-level approximation

Until now, three-level system approximation for qubits has been used in the above numerical
calculations. It is then natural to ask the following question: will our conclusions, obtained from
the above numerical results, still be valid for qubits with N (N >3) levels? To explore this,
in figure 7, we plot the fidelities of the two-qubit iSWAP and CZ gates as functions of g/1B

(or geff,1/1B) in the system with direct (or indirect) qubit–qubit coupling when each qubit has
three, four or five levels. It can be seen from figure 7 that there is not much difference between
the numerical results based on the three-, four- and five-level approximations for the qubits. So,
our conclusions obtained from the above numerical calculations are still valid for N -level (with
N >3) SC qubits.

3.4. Limits on the gate fidelities of recent experiments imposed by weak anharmonicity

In order to serve as a guide for future experiments, we compare our numerical results with
corresponding experiments and show the limited fidelity of the two-qubit gate based on SC
qubits with weak anharmonicity. Based on the experimental parameters (ωA/2π , ωB/2π ,
1A/2π , 1B/2π , g/2π ) equal to (5.5, 5.5, 0.15, 0.1, 0.011) GHz and (7.16, 7.274, 0.087,
0.114, 0.0091) GHz, two-qubit iSWAP [15] and CZ [16] gates with fidelities 63 and 70%
were implemented in the circuit with direct qubit–qubit coupling. In the circuit with indirect
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qubit–qubit coupling, a two-qubit gate [17] with fidelity 85% was realized with system
parameters (ωc/2π , ωA/2π , ωB/2π , 1A/2π , 1B/2π , G A/2π = G B/2π ) equal to (6.9, 8.2,
8.45, 0.2, 0.25, 0.199) GHz. Corresponding to the above experimental parameters, in figure 7
we indicate the ideal fidelity (see the green, red and magenta circles) based on our theoretical
calculations. From the comparison between experiments and our numerical calculations, we
show that two-qubit gates with fidelities 99.52, 99.91 and 99.2% can be realized, in principle, if
the influence of decoherence can be eliminated. Recently, the effects of decoherence on quantum
gates and possible optimization routes were studied in [44].

4. Conclusion

We have studied the performance of two-qubit gates in a system of two coupled SC qubits under
the condition that the coupling strength is comparable to or larger than the anharmonicity of the
qubits. First, by using the three-level approximation for the qubits, we analyzed and numerically
calculated the dependence of the two-qubit gate fidelity on the qubit–qubit coupling strength and
the anharmonicity of the qubits. Based on extensive numerical results, the safe parameter regime
was identified for experimentally implementing two-qubit gates with high fidelity. Secondly,
we numerically calculated the fidelity of the two-qubit gates in the case of four- and five-level
approximations for the qubits, and demonstrated the validity of our numerical results for N -
level qubits with N > 3. Our results can serve as a guide for future experiments based on SC
qubits.
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