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Voltage-driven quantum oscillations in graphene
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Abstract. We predict unusual (for non-relativistic quantum mechanics)
electron states in graphene, which arelocalized withina finite-width potential
barrier. The density of localized states in the sufficiently high and/or wide
graphene barrier exhibits a number of singularities at certain values of the
energy. Such singularities providequantum oscillationsof both the transport (e.g.
conductivity) and thermodynamic properties of graphene—when increasing the
barrier height and/or width, similarly to the well-known Shubnikov–de-Haas
(SdH) oscillations of conductivity in pure metals. However, here the SdH-like
oscillations are driven by anelectricfield instead of the usual magnetically driven
SdH-oscillations.
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1. Introduction

The Shubnikov–de-Haas (SdH) effect, i.e., the oscillations of the magneto-resistance of metals
when increasing an external magnetic field, was one of the first macroscopic manifestations
of the quantum-mechanical nature of matter. The key to understanding this remarkable
phenomenon was pointed out by Landau and Onsager and it is described in many textbooks on
solid state physics (see, e.g. [1]). Namely, electrons in the conduction band of a metal in a strong
magnetic field behave like simple harmonic oscillators. The resulting energy spectrum is made
up of equidistant Landau levels separated by the cyclotron energy. The density of electron states
has singularities at the Landau levels. When the magnetic field is changed, the positions of the
Landau levels move and pass periodically through the Fermi energy. As a result, the population
of electrons at the Fermi surface also oscillates and, in turn, leads to quantum oscillations of
the transport and thermodynamic properties of a metal. The quantum oscillations also manifest
themselves in the thermoconductivity, magnetization, sound attenuation, magnetostriction and
other quantities.

These quantum oscillations are pronounced in conductors with a long mean free path of
charge carriers. This can occur in pure metals, semimetals, and narrow band-gap semiconductors
at low temperatures, as well as in graphene, a one-atom-thick sheet of carbon. The SdH
oscillations of the magneto-resistivity were observed in graphene [2, 3] soon after its
discovery [4]. Due to the monolayer honeycomb-lattice structure of graphene, its electrons obey
a massless Dirac-like equation (see, e.g. [3, 5, 6]). This is responsible for the unusual properties
of graphene. In particular, the Landau levels in graphene are not equidistant and these influence
the period of the SdH oscillations [7]. Graphene has another striking property: it has unusual
relativistic effects which are counterintuitive for electrons with speeds much slower than the
speed of light [8]. For example, it has been recently shown [5] that graphene could be used
for experimentally testing the so-called Klein paradox [9]. This quantum-mechanical effect of
relativistic particles penetrating through high and wide potential barriers can be illustrated with
massless Dirac fermions in graphene with a potential barrier controlled by an applied voltage.
A high potential energy barrier in graphene, as was shown in [10], can also act as an unusual
electron lens, due to the negative refraction of electron waves at the edge of the barrier, in
analogy to the negative refraction of 3D [11] and 2D [12, 13] electromagnetic waves.

Our goal here is to show that, due to the Dirac-like Hamiltonian of graphene with a
potential energy barrier, quantum oscillations similar to the SdH effect can be observedwithout
an applied magnetic field. Below we prove that the density of electron states in a graphene sheet
with a potential barrier should display quantum oscillations if the strength of the barrier (i.e.
the productV0D of the barrier’s heightV0 and widthD) exceeds some threshold value. In these
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oscillations, the barrier strengthV0D, that can be controlled by a gate voltage, plays the same
role as the external magnetic field in the SdH effect.

The quantum oscillations predicted here originate from a new type of electron states in
graphene. Contrary to non-relativistic quantum mechanics, where localized states can only exist
inside quantum wells, we find that the electron states in graphene can be localizedwithin the
barrier. The energyE(qy) of the localized states (versus the wavevector componentqy along
the barrier) becomesnon-monotonicif

V0D > π h̄vF,

(vF is the Fermi velocity). We show that this produces singularities of the density of electron
states for energies where dE/dqy = 0. When the magnitude and/or width of the barrier changes,
the locations of the singularities move and periodically cross the Fermi level, generating
quantum oscillations of both thermodynamic and transport properties, e.g. of the conductance
in the y-direction (along the barrier).

2. Electron states localized in a barrier

The tunnelling of relativistic particles through a finite-width potential barrier has recently been
studied in [5, 14, 15]. Here, we consider another type of electron waves that propagatestrictly
along the barrier anddamp away from it. Our analysis shows that a step-like barrier (i.e. a
single edge of an infinitely wide barrier) does not support such electron waves, which would be
an analogue to surface electromagnetic waves (plasmon-polaritons) at the interface between two
different media. Therefore, even though the potential barrier in graphene could act as an electron
lens [10], it cannotprovide the perfect lensing (i.e. subwavelength image reconstruction) that
is possible for Veselago’s lens in optics [16]. However, as we show in this section, the electron
waves in graphene can be localized insidea finite-widthpotential barrier.

We consider electron states in graphene with a potential barrier located in a single-layer
graphene occupying thex–y-plane (see figure1). For simplicity, we assume that the barrier
V(x) has sharp edges

V(x)=

{
0, |x|> D/2,
V0, |x|< D/2.

(1)

Electrons in monolayer graphene obey the Dirac-like equation,

Ĥψ = ih̄
∂ψ

∂t
, Ĥ = −ih̄ vFσ · ∇ + V(x), (2)

wherevF is the Fermi velocity andσ = (σx, σy) are Pauli matrices.
We seek stationary spinor solutions of the form,

ψ = ψ(x)exp

(
−

i

h̄
Et + iqy

)
, (3)

with energyE and momentum̄hq along the barrier. We focus on the states with

|q|> |ε| ≡ |E|/h̄vF. (4)
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Figure 1. Top: geometry of the problem. A graphene sheet is placed under the
voltage gates indicated by block rectangles. Bottom: potential energy barrier
V(x) in graphene (dashed blue line) and the probability distributionW(x)=

|ψ1(x)|2 + |ψ2(x)|2 for the localized electron state atqd = 3.5625,εD = 0.003
andV = 9 (red solid line).

In this case, the electron waves satisfying equation (2) damp away from the barrier, and the
componentsψ1 andψ2 of the Dirac spinor can be written in the form

ψ1(x)=


a exp(kxx), x <−D/2,

bexp(iqxx)+ cexp(−iqxx), |x|< D/2,

d exp(−kxx), x > D/2,

(5)

ψ2(x)=


a

iε

(kx + q)
exp(kxx), x <−D/2,

−bexp(iqxx + iθ)+ cexp(−iqxx − iθ), |x|< D/2,
−idε

(kx − q)
exp(−kxx), x > D/2,

(6)

with real

kx = (q2
− ε2)1/2

and

qx =

[(
ε−
V
D

)2

− q2

]1/2

.

HereV = V0D/h̄vF is the effective barrier strength and tanθ = q/qx.
Matching the functionsψ1(x) andψ2(x) at the pointsx = ±D/2, we obtain a set of four

homogeneous algebraic equations for the constantsa, b, c andd. Equating the determinant of
this set to zero, we derive a dispersion relation for the localized electron states,

tan(qx D)= −
kxqx

(V/D − ε)ε + q2
. (7)
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A similar equation was obtained in [17] for non-propagating electron states in ribbons of
graphene with armchair boundaries. Figure1 illustrates the behaviour of the probability
distribution W(x) for a localized state. Note thatW(x) is an evenfunction with continuous
derivative W′(x), in spite of the fact that each one of the functions|ψ1|

2 and |ψ1|
2 are not

even (the chirality of the Dirac spinors) and both have discontinuous derivatives at the points
x = ±D/2.

The localized states can also be observed in either a 2D electron gas or graphene (e.g. [18])
when a voltage is applied to produce a potential well. In the 2D electron gas, for electrons with
a quadratic dispersion law, this spectrum is

En = y2
n + 4Q2

−V,

where

E =
mD2E

2h̄2 , V =
mD2V0

2h̄2 , Q = q D,

m is the electron mass. Hereyn is thenth root of the equation

y tan(y)= (V − y2)1/2

for even states, and

y cot(y)= −(V − y2)1/2

for odd states.
The spectrum equation (7) of localized states in graphene is shown by the solid black

curves in figure2, for dimensionless variablesQ = q D andE = εD. This spectrum consists of
an infinite number of branchesEn(Q). Each of these branches starts from the linesE = ±|Q|

(red solid straight lines in figure1(b)) at

E =
V
2

−
π2n2

2V
and tends asymptotically to the linesE = V ± Q (dashed red lines). Moreover, a particular
branch of the spectrum starts at the point (Q = 0, E = 0) and also tends to the lineE = V − Q,
with increasingQ.

The behaviour of different branches of the spectrum depends on the barrier strengthV.
If V < π/2, all branches satisfyE < 0 (see inset in figure2). Localized states with positive
energies appear only forV > π/2. WhenV increases, new branches in the spectrum with
positive energies appear. WhenV is within the interval(

n + 1
2

)
π < V <

(
n + 3

2

)
π,

the number of branches withE > 0 is (n + 1), n = 1, 2, 3, . . .. We emphasize that each of the
branches with positive energy has a maximumEmax

n at a certain wavenumberQ = Qmax
n . Near

these points, the group velocity of localized electron waves tends to zero. This effect is similar
to the stop-light phenomenon [19] found in various media, including superconductors [20].

Note that defect-induced localized electron states in graphene and the enhancement of
conductivity due to an increase in the electron density of states localized near the graphene
edges were recently reported [21]–[23]. Contrary to these examples, the electron states studied
here are localized within the barrier and also theseare tunable, i.e. the energy levels can be
shifted by changing the barrier strength (e.g. via tuning a gate voltage).
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Figure 2. Electron spectrum in graphene obtained forV = 1 (inset) andV = 9
(main panel). The sea of delocalized states (continuum spectrum) is marked by
the light-purple regions. The branches of the spectrum for localized states are
shown by solid black curves between the straight solid and dashed red lines.
There are no states in the forbidden (white) regions.

3. Density of localized electron states

To calculate the densityN(E) of electron states, we use the general formulaN(E)=
∑

α

×δ(E − Eα), whereα labels the quantum state andδ(x) is Dirac’s delta-function. Using∑
α · · · = 2Lx L y(2π)−2

∫
∞

−∞
dkx dky · · · for a continuum spectrum, we derive

Ncont = N0|E|, N0 =
Lx L y

π h̄vFD
, (8)

whereLx andL y are the lengths of the graphene sheet in thex- andy-directions, respectively.
For localized states, we obtain

Nloc(E)= 2N0
D

Lx

∑
n

∣∣∣∣dEn(Q)

dQ

∣∣∣∣−1

En(Q)=E
. (9)

Heren runs over the number of positive roots of the equationE(Q)= E .
The dimensionless density of statesN(E)/N0 is shown in figure3. The localized electron

states exhibit two types of peculiarities. First, increasingE , the jumps or steps (each one of
magnitude 2D/Lx) in N(E)/N0 occur at the points

E =
V
2

−
π2n2

2V
,
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Figure 3. Dimensionless density of electron statesN(E)/N0 in graphene with a
potential barrier, forD/Lx = 0.5 andV = 16.

where new branches of the spectrum arise or disappear. More importantly, singularities are
observed whenE = Emax

n , where|dEn/dQ|
−1 in equation (9) diverges.

The locations of the singularities shift when changing the barrier strengthV. Therefore,
they periodically cross the Fermi levelEF. This produces quantum oscillations of the density of
states at the Fermi energy. They are seen in figure4, showingN(EF)/N0 versus the effective
barrier strengthV.

The periodic change in the number of electron states near the Fermi level, increasing the
barrier strength (e.g. by varying a gate voltage), necessarily results in quantum oscillations of the
transport and thermodynamic properties of graphene. For example, the conductance of graphene
along the barrier qualitatively mimics the quantum oscillations of the density of electron states.

Figure4 shows the quantum oscillations of the density of electron states in e-type graphene
(with a positive Fermi energy). For p-type graphene, withEF < 0, quantum oscillations of the
density of states at the Fermi level can also be observed, if the (now opposite-bias) applied
voltage forms apotential well instead of a barrier. Indeed, the Dirac equation (2) is invariant
with respect to the transformation:E → −E, V → −V, x → −x andy → −y.

4. Conclusions

In conclusion, we predict an unusual type of electron states in graphene localizedwithin
a potential barrier. For barriers with sufficiently high magnitude and width, the density
of localized states has singularities. This feature of localized states can result in quantum
oscillations of the thermodynamic and transport properties (e.g. the conductance along the
barrier) of graphene when changing the barrier strength (e.g. by varying a gate voltage). These
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Figure 4. Dimensionless density of electron statesN(N )/N0 at the Fermi
level versus the effective strengthV of the potential barrier, forD/Lx = 0.5
andEF = 1.

electric-field driven quantum oscillations are similar to the SdH oscillations of conductivity,
which are produced in standard metals when changing the external magnetic field.
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