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Abstract. We investigate the spontaneous emission (SE) spectrum of a qubit
in a lossy resonant cavity. We use neither the rotating-wave approximation nor
the Markov approximation. For the weak-coupling case, the SE spectrum of
the qubit is a single peak, with its location depending on the spectral density
of the qubit environment. Then, the asymmetry (of the location and heights
of the two peaks) of the two SE peaks (which are related to the vacuum Rabi
splitting) changes as the qubit–cavity coupling increases. Explicitly, for a qubit
in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is
enhanced as the qubit–cavity coupling strength increases. However, for a qubit in
an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared
to the low-frequency bath case. With further increasing the qubit–cavity coupling
to the ultra-strong regime, the height asymmetry of the left and right peaks
is slightly inverted, which is consistent with the corresponding case of a
low-frequency bath. This inversion of the asymmetry arises from the competition
between the Ohmic bath and the cavity bath. Therefore, after considering the
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anti-rotating terms, our results explicitly show how the height asymmetry in the
SE spectrum peaks depends on the qubit–cavity coupling and the type of intrinsic
noise experienced by the qubit.
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1. Introduction

Strong and ultra-strong qubit–cavity interactions have been achieved in both cavity quantum
electrodynamics (QED) and circuit QED systems (see, e.g., [1–4]). This opens up several
new research directions. For example, one can use the cavity as a quantum bus to couple
widely separated qubits in a quantum processor [5, 6], as a quantum memory to store
quantum information or as a generator and detector of single microwave photons for quantum
communications [4].

As a demonstration of strong interaction in cavity QED and circuit QED systems, the
vacuum Rabi splitting has been a growing subfield of optics and solid-state physics (see,
e.g. [7–10]) after its observation in atomic systems [11]. In 2004, two groups [12, 13] reported
the experimental realization of vacuum Rabi splitting in semiconductor systems: a single
quantum dot in the spacer of a photonic crystal nanocavity and in a semiconductor microcavity,
respectively. In the same year, the experiment [14] observed vacuum Rabi splitting in a
superconducting two-level system, playing the role of an artificial atom, coupled to an on-
chip cavity consisting of a superconducting transmission line resonator. When the qubit was
resonantly coupled to the cavity mode, it was observed [14] that two well-resolved spectral
lines were separated by a vacuum Rabi frequency νRabi ≈ 2g. Except for the asymmetry
in the height of the two split energy-peaks (e.g. [14]), the data are in agreement with the
transmission spectrum numerically calculated using the rotating wave approximation (RWA).
When considering the vacuum Rabi splitting for strong qubit–cavity coupling, the anti-rotating
terms should be taken into account, and this might explain the observed [14] asymmetric SE
spectrum.
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1.1. Anti-rotating terms are important for strong coupling QED

The effect of anti-rotating terms on the atomic spectra has been noted earlier [15–17]. More
recently, in the ultra-strong coupling regime, the anti-rotating coupling terms of the intrinsic
bath to the qubit became more important [18–21]. As a consequence of the anti-rotating terms
in the Hamiltonian of cavity QED and circuit QED, even the ground state of the system contains
a finite number of virtual photons. Theoretical research [22, 23] revealed that these virtual
photons can be released by a nonadiabatic manipulation, where the Rabi frequency g(t) is
modulated in time at frequencies comparable to or higher than the qubit transition frequency.
This phenomenon, called ‘emission of the quantum vacuum radiation’, would be completely
absent if these anti-rotating terms are neglected. The energy shift of the qubit in its intrinsic
bath has been studied in [24] using the full description (i.e. non-Markov and without RWA) and
it was found that the deviation from the previous approximate result already amounts to ∼5%
for g/1∼ 0.1 (where g is the qubit–cavity coupling strength and1 is the energy spacing of the
qubit).

In doped semiconductor quantum wells embedded in a microcavity, considering the anti-
rotating coupling of the intracavity photonic mode and the electronic polarization mode, but
using RWA in the coupling to their respective environments, it was found [25] that for a coherent
photonic input, signatures of the ultra-strong coupling have been identified in the asymmetric
and peculiar anti-crossing of the polaritonic eigenmodes. From the descriptions given above, it
can be seen that as g/1 increases to the ultra-strong coupling limit, the anti-rotating terms that
were negligible before become more relevant and will lead to a profound modification in the
nature of the quantum state of the qubit system.

1.2. The asymmetry of the two splitting Rabi peaks beyond the rotating wave approximation
(RWA) approximation

In this paper, we study the spontaneous emission (SE) spectrum of a qubit in a cavity. Our
calculations include two kinds of anti-rotating terms: one from the intrinsic qubit bath and the
other from the cavity bath. Our method is a powerful tool for investigating various kinds of
qubit–environment interaction beyond the RWA and the Markov approximation. Comparing the
case of a qubit in an Ohmic bath with the case of a qubit in a low-frequency bath, we find that
in the case of a qubit in a low-frequency bath, as the qubit–cavity coupling strength increases,
the height asymmetry of two splitting peaks is enhanced. However, in the case of a qubit in
an Ohmic bath, the height asymmetry of the spectral peaks is inverted from the corresponding
case of a low-frequency bath when the qubit is strongly coupled to the cavity; with further
increasing the qubit–cavity coupling to the ultra-strong regime, the height asymmetry of the
left and right peaks is slightly inverted, which is consistent with the corresponding case of a
low-frequency bath. Since experiments reported that a superconducting qubit intrinsic bath is
mainly due to low-frequency noise, our results are consistent with experimental data [14] using
a superconducting qubit. We also investigate the dependence of the SE spectrum on the strength
of the qubit–cavity coupling and the quality factor Q of the cavity in either an Ohmic or a
low-frequency intrinsic qubit bath. Furthermore, we identify the contributions to asymmetry
from the baths, and clarify the reason for the different kinds of peak asymmetry.

SE spectra under strong- and ultra-strong couplings are, for the most part, sharp doublets,
with each peak well localized, isolated from the other. The main factors that determine peak
properties, e.g. location and height, are the anti-rotating terms and the local (at the peak
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Figure 1. Schematic diagram of a two-level system or qubit with dissipation
rate γ, which is coupled to a cavity with loss rate κ by the qubit–cavity coupling
strength g.

resonance) bath coupling strength and density of states. Thus, one can explain many of the
reported results by performing a calculation for each peak, but using the local properties
of the bath and involving the anti-rotating terms. In particular, the observed different behavior
for the low-frequency versus Ohmic bath are readily explained in this way. Our results directly
indicate that in the strong coupling regime, the SE spectrum is deeply influenced by the anti-
rotating terms and the type of intrinsic noise experienced by the qubit.

2. Beyond the RWA

By using a cavity to confine the electromagnetic field, the strength of the qubit–cavity
interaction can be increased by several orders of magnitude to the regime of strong or even
ultra-strong coupling [26]. The strong-coupling regime for cavity QED has been reached
for superconducting qubits in circuit resonators (i.e. on-chip cavities) and quantum dots in
photonic-crystal nanocavities. Recently, the ultra-strong coupling regime was achieved for a
superconducting qubit in an on-chip cavity [2].

Although the coupling of the qubit to the cavity is much stronger than the coupling of
the qubit to its intrinsic environment, the parameters in [14] show that both the decay rate of
the cavity photon (κ/2π ≈ 0.8 MHz) and the qubit decoherence rate (γ /2π ≈ 0.7 MHz) are
comparable. Therefore, we model the environment of the qubit in a cavity using two bosonic
baths: one, called the ‘intrinsic bath’ of the qubit and represented by operators ak,1 and a†

k,1, is
related to the relaxation of the qubit induced by its intrinsic environment; and the other, denoted
as ‘cavity bath’ of the qubit and represented by the operators a†

k,2 and ak,2, involves the relaxation
of the qubit caused by photons in the cavity.

Figure 1 schematically shows the model considered here. For the intrinsic qubit bath, a
broad frequency spectrum (e.g. either an Ohmic or a low-frequency spectrum) can be used
to characterize it. For the cavity bath, because of the cavity leakage, it can be described by
a Lorentzian spectrum with a central frequency, i.e. a single-mode cavity with its frequency
broadened by the cavity leakage.

The Hamiltonian can be written (throughout this paper, we choose h̄ = 1) [25] as

H =
1

2
1σz +

∑
k,i

ωk,1a†
k,iak,i +

∑
k,i

gk,i(a
†
k,i + ak,i)σx , (1)

where 1 is the qubit energy spacing, i = 1 for the intrinsic bath and i = 2 for the
cavity bath. The baths experienced by the qubit can be characterized by a spectral density
Ji(ω)=

∑
k g2

k,iδ(ω−ωk,i).
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To deal with the anti-rotating terms in equation (1), we apply two unitary transformations to
the Hamiltonian H as H ′

= exp(S)Hexp(−S) (see appendix A). The transformed Hamiltonian
H ′ can be written as

H ′
≈

1

2
η1σz +

∑
k,i

ωk,ia
†
k,iak,i +

∑
k,i

g̃k,i(a
†
k,iσ− + ak,iσ+), (2)

where

g̃k,i =

(
2ηi1

ωk,i + ηi1

)
gk,i , (3)

η = η1η2, (4)

with

ηi = exp

(
−

∑
k

2g2
k,i

ω2
k,i

ξ 2
k,i

)
. (5)

Using Ji(ω)=
∑

k g2
k,iδ(ω−ωk,i), one can derive that ηi is determined self-consistently by the

equation

log ηi +
∫

∞

0

2Ji(ω)dω

(ω + ηi 1)2
= 0. (6)

Here we re-emphasize that the transformed Hamiltonian contains the zero-boson transition in η
and the terms of single-boson transition in H ′

1, whose contributions to the physical quantities are
O(g2

k,i), and drops the multiboson nondiagonal transition (a†
k,ia

†
k′,i , ak,iak′,i ), whose contributions

to the physical quantities are O(g4
k,1), O(g4

k,2) or O(g2
k,1g2

k,2). Now the transformed Hamiltonian
(2) has the same form as the Hamiltonian under the RWA, but its parameters have been
renormalized to include the effects of the anti-rotating terms related to the intrinsic and cavity
baths of the qubit.

From the transformed Hamiltonian H ′, one can see that, based on energy conservation, the
ground state of the transformed Hamiltonian H ′ is∣∣g′

〉
= |↓〉 ⊗

∏
k

|0k,1, 0k,2〉, (7)

(σz|↓〉 = −|↓〉) and the corresponding ground-state energy is −η1/2. Therefore, the ground
state of the original Hamiltonian H is given by

|g〉 = exp (−S) |g′
〉, (8)

which is a dressed state of the qubit and its baths due to the anti-rotating terms [22, 23]. In this
paper, we choose the initial excited state as

|ψ(0)〉 = exp (−S) |↑〉 ⊗

∏
k

|0k,1, 0k,2〉, (9)

which can be achieved by σx |g〉. It is obvious that this initial state is also a dressed state.
A qubit can experience different types of intrinsic baths. The most commonly used bath is

the photon or phonon bath, which can be described by an Ohmic spectrum. However, for many
solid-state qubits (e.g. superconducting qubits), the dominant dissipation is due to two-level
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fluctuators, which behave like a low-frequency bath [27]. Here we consider either an Ohmic or
a low-frequency intrinsic bath. The Ohmic bath with the Drude cutoff is given by

J Ohm
1 (ω)=

2 αOhmω

1 + (ω/ωOhm)
2 , (10)

where ωOhm is the high-frequency cutoff and αOhm a dimensionless parameter characterizing
the coupling strength between the qubit and its intrinsic bath. Here the low-frequency bath is
written as

J low
1 (ω)=

2αlowω

(ω/1)2 + (ωlow/1)
2 , (11)

where ωlow is a characteristic frequency lower than the qubit energy spacing 1 of the qubit, and
αlow is the dimensionless coupling strength between the qubit and its intrinsic bath. If ω > ωlow,
J low

1 (ω)∼ 1/ω, corresponding to 1/ f noise.
For a lossy cavity, the bath can be described by a Lorentzian spectral density with a central

frequency [28]:

J2(ω)=
g2λ

π [(ω−ωcav)2 + λ2]
, (12)

which corresponds to a single-mode cavity, with its frequency broadened by the cavity loss. In
equation (12), λ is the frequency width of the cavity bath density spectrum, ωcav is the central
frequency of the cavity mode, and g denotes the coupling strength between the qubit and the
cavity. Also, the parameter λ is related to the cavity bath correlation time and ωcav/λ is the
quality factor Q of the cavity.

Below we will solve the equation of motion for the density matrix in Hamiltonian (1) and
obtain the qubit SE spectrum.

2.1. Equation of motion for the density matrix

The equation of motion for the density matrix ρSB for the whole system, i.e. the qubit system
(S) and the bath (B), is given by

d

dt
ρSB(t)= −i[H, ρSB(t)]. (13)

After the unitary transformations, we have

d

dt
ρ ′

SB(t)= −i[H ′, ρ ′

SB(t)], (14)

where ρ ′

SB = exp(S)ρSBexp(−S) is the density matrix of the whole system in the Schrödinger
picture with the transformed Hamiltonian H ′ (i.e. equation (2)). In the interaction picture, the
transformed Hamiltonian H ′ is written as

V ′

I (t)=

∑
k,i

g̃k,ia
†
k,iσ− exp[i(ωk,i − η1)t] + h.c. (15)

The equation of motion for the density matrix ρ ′I
SB(t) of the whole system (S+B) can be written

as
d

dt
ρ ′I

SB(t)= −i[V ′

I (t), ρ
′

SB(0)] −

∫ t

0
[V ′

I (t), [V ′

I (t
′), ρ ′I

SB(t
′)]] dt ′. (16)
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Under the Born approximation [29] and tracing over the degrees of freedom of the two baths,
one obtains [30]

d

dt
ρ ′I

S (t)= −iTrB[V ′

I (t), ρ
′

S(0)⊗ ρ ′

B(0)] − TrB

∫ t

0
[V ′

I (t), [V ′

I (t
′), ρ ′I

S (t
′)⊗ ρB(0)]] dt ′, (17)

where ρ ′I
S(t)= TrB[ρ ′I

SB(t)]. Then, substituting V ′

I (t) (15) into equation (17), we have

d

dt
ρ ′I

S (t)= −

∑
k,i

g̃2
k,i

∫ t

0
f
(
t ′
)

exp[i(ωk,i − η1)(t − t ′)]dt ′
− h.c.,

where

f (t ′)=nk,i [σ−σ+ρ
′I
S

(
t ′
)
− σ+ρ

′I
S (t

′)σ−] +
(
nk,i + 1

)
[ρ ′I

S (t
′)σ+σ− − σ−ρ

′I
S (t

′)σ+], (18)

and nk,i is the thermal average boson number at mode k in the bath i . In the right-hand side
of equation (18), the terms related to nk,i and nk,i + 1 describe, respectively, the decay and
excitation processes, with the rates depending on the temperature. Here, for simplicity, we
study the zero-temperature case with nk,i = 0, i.e. only the spontaneous decay occurs, which
corresponds to a purely dissipative process. Therefore, the reduced density matrix ρ ′

S(t) of the
qubit in the Schrödinger picture is obtained as (for the details, see appendix B)

ρ ′

S(t)= exp(iη1σzt/2)ρ
′I
S (t) exp(iη1σzt/2)

=

 L−1
[

ρ′

22(0)
p+A++A−

]
L−1

[
ρ′

21(0)
p+A+

]
e−it1η

L−1
[
ρ′

12(0)
p+A−

]
eit1η L−1

[
ρ′

22
(0)

p −
ρ′

22
(0)

p+A++A−

+
ρ′

11
(0)

p

]
 , (19)

where L−1 represents the inverse Laplace transform, p the complex argument and A± =∑2
k,i g̃2

k,i/[p ± i(ωk,i − η1)].

2.2. Derivation of the spontaneous emission (SE) spectrum

When measured by an ideal system with negligible bandwidth, the SE spectrum can be given
by [31]

P(ω)∝

∫
∞

0
dt
∫

∞

0
dt ′ exp[−iω(t − t ′)]C(t, t ′), (20)

with the two-time correlation function

C(t, t ′)= 〈σ+(t)σ−(t
′)〉

= 〈ψ(0)| σ+(t)σ−(t
′)|ψ(0)〉. (21)

Since we have obtained the density matrix ρ ′

S(t) in the above derivation, we now solve the
two-time correlation function in the transformed Hamiltonian

C(t, t ′)= 〈ψ ′(0)|eiH ′tσ+e−iH ′teiH ′t ′σ−e−iH ′t ′
|ψ ′(0)〉, (22)

with |ψ ′(0)〉 = exp(S)|ψ(0)〉.
For a qubit state specified by a density matrix ρ(t), we can formulate the expectation

values of σ+(t), σ−(t) and σ+(t)σ−(t) by the matrix elements 〈σ+(t)〉 = 〈σ−(t)〉∗
= ρ21(t) and
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C(t, t)= ρ11(t). According to the quantum regression theorem [31], the correlation function
becomes

C(t, t + τ)H ′ = L−1

(
1

p + A+

)
τ

e−i1ητρ ′

11(t). (23)

Then, the initial state in the transformed Hamiltonian (2) is |ψ ′(0)〉 = |↑〉 ⊗
∏

k

∣∣0k,1, 0k,2

〉
,

i.e. ρ ′

11(0)= 1. In this paper, we only focus on the single-particle excitation case (either the baths
or the system). When considering the case of the multiple-particle excitation, the two-photon
term should be included [32]. Therefore, from equation (B.12) in appendix B, the dynamical
evolution of ρ ′

11 is expressed as

ρ ′

11(t)= L−1

(
1

p + A+ + A−

)
t

. (24)

From appendix C, we have [33]

L−1

(
1

p + A+ + A−

)
t

= L−1

(
1

p + A+

)
t

×L−1

(
1

p + A−

)
t

, (25)

where L−1( 1
p+A+

) and L−1( 1
p+A−

) are conjugate quantities. Then, the two-time correlation
function for any t and t ′ becomes

C(t, t ′)H ′ = L−1

(
1

p + A+

)
t

e−i1ηtL−1

(
1

p + A−

)
t ′

e−i1ηt ′ . (26)

Finally, using the Wiener–Khinchin theorem, the SE spectrum is given by

P(ω)∝

∫
∞

0
dt
∫

∞

0
dt ′ exp[−iω(t − t ′)]C(t, t ′)

=

∣∣∣∣F [L−1

(
1

p + A+

)
e−i1ητ

]∣∣∣∣2
=

1

[ω−1η− R (ω)]2 +0 (ω)2
, (27)

where F is the Fourier transform.

3. Dependence of the SE spectrum on the baths

We will show the SE spectrum of the qubit in resonance with the cavity central frequency
(1= ωcav) as a function of the microwave probe frequency for three cases: weak, strong and
ultra-strong qubit–cavity couplings.

Weak coupling means that the qubit–cavity coupling strength g is less than the sum of
the dissipation rate of the qubit and cavity. The dissipation rate of the qubit due to its intrinsic
bath is approximately denoted by 0qb, which is approximated as αOhm1 or αlow1. Also, the
dissipation rate due to the cavity bath can be approximately equal to the spectrum width of the
cavity spectral density λ. Thus, weak coupling can be expressed as g < (0qb + λ).

Strong coupling means that the qubit–cavity coupling strength g is larger than the sum
of the dissipation rate of the qubit and the cavity: g > (0qb + λ), but it is typically two
orders of magnitude smaller than the qubit energy spacing 1 and the cavity frequency ωcav,
i.e. g ∼ 10−21, such as the case in [14].
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Figure 2. The spectrum density of the qubit environment. (a) Lorentzian cavity
bath and low-frequency intrinsic bath of the qubit. (b) Lorentzian cavity bath
and Ohmic intrinsic bath of the qubit. From (a) and (b), it is evident that the
dominant regimes of the low-frequency and Ohmic qubit bath spectral densities
are different.

Ultra-strong coupling means that the qubit–cavity coupling g is a significant fraction of
the transition frequency 1 (e.g. g & 0.11). This case extends to the fine-structure limit for the
maximal value of an electric–dipole coupling.

The properties of the bath, especially the local properties (bath coupling strength and
density of states) at the resonant peak, play an important role in determining the energy-shift
direction and the asymmetry of the SE spectrum [34, 35]. In figure 2, we show the spectral
densities of the qubit intrinsic bath and the cavity bath. For the qubit intrinsic bath, both a
low-frequency bath and an Ohmic bath are considered. The spectral density of the cavity bath
is symmetric about the central frequency ωcav of the cavity.

Considering the experimental parameters [14, 36], we assume the qubit energy spacing to
be 1= 10 GHz. The dimensionless coupling strength α between the qubit and its intrinsic bath
(either Ohmic or low-frequency bath) is fixed at α = 10−4, which implies that the decay rate of
the intrinsic bath is 0qb ∼ 1 MHz.
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Figure 3. The SE spectra of the qubit only in the cavity bath (symmetric spectral
density). Panels (a) and (c) show the results without RWA with Q = 102 and
Q = 103, respectively. Panels (b) and (d) show the results of the RWA with
Q = 102 and Q = 103. To see the height asymmetry of two peaks clearly,
horizontal grid lines are plotted as a reference. Note that in (a) and (c), the two
peaks of the SE spectrum present an obvious height and position asymmetry
(about ω =1) in the ultra-strong qubit–cavity coupling.

3.1. Effect of the cavity bath on the SE spectrum

To illustrate the effect of the cavity bath with a symmetric spectral density, in figure 3 we show
the qubit SE spectrum when only the cavity bath is present. To enhance these features further, we
choose the low quality factors Q = 102 and Q = 103, and plot the SE spectra in figures 3(a) and
(c) for strong (g = 102 MHz) and ultra-strong (g = 103, 2 × 103 MHz) qubit–cavity couplings.
For comparison, the results obtained under RWA are given in figures 3(b) and (d). In the case of
strong qubit–cavity coupling, the two peaks of the vacuum Rabi splitting are nearly symmetric
about ω =1, almost coinciding with the results obtained under RWA. When the qubit–cavity
coupling increases, the height and position asymmetry (about the qubit energy spacing 1) of
the two peaks becomes more apparent, in sharp contrast to the symmetric SE peaks obtained
under RWA (see figures 3(a)–(d)).
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If RWA is used, the qubit–cavity coupling term
∑

k gk,2(a
†
k,2 + ak,2)(σ+ + σ−) in the

Hamiltonian H becomes
∑

k gk,2(a
†
k,2σ− + ak,2σ+). The energy spectral densities in the regions

lower and higher than the central frequency of the cavity ωcav (related to absorbing and emitting
a single photon in the cavity) are identical. Therefore, when the qubit energy spacing 1 is
resonant with the cavity central frequency ωcav, the coupling strength for the absorption and
emission processes is symmetric about the qubit energy spacing 1.

While taking into account the anti-rotating terms, the coupling term becomes∑
k g̃k,2(a

†
k,2σ− + ak,2σ+) in the transformed Hamiltonian H ′, with a renormalized coupling

strength g̃k,2 = 2η21gk,2/(ωk,2 + η21). Obviously, the renormalized coupling strength g̃k,2

induces the SE spectral asymmetry: for a symmetric spectral density of the cavity bath, in the
region ωk,2 <1, due to 2η21/(ωk,2 + η21) > 1, the renormalized interaction g̃k,2 is larger than
gk,2. However, in the region ωk,2 >1, owing to 2η21/(ωk,2 + η21) < 1, the effective coupling
strength g̃k,2 is smaller than gk,2.

These results (with and without the RWA) indicate that the RWA cannot be used in the
range of ultra-strong qubit–cavity coupling. The general tendency observed here is that the RWA
overestimates the frequency shift in the low-energy regime ω ∼ −g, while it underestimates
the frequency shift in the higher-energy regime ω ∼ g. Our results are consistent with the
results in [20].

3.2. Combined effect of both intrinsic and cavity baths on the SE spectrum

Although a high Q seems plausible for minimizing the loss of the cavity, it limits the
measurement speed. Here, we consider a cavity with the quality factor [8, 14] Q = 104 in the
presence of a qubit (see figure 4). We also plot the SE spectrum for Q = 103 in figure 5, and
show how the quality factor affects the results. If Q = 104, the dissipation rate of the cavity
bath is about 1 MHz (of the same order of magnitude as the bath dissipation rate). Figures 4(a)
and (b) show the spectra of the qubit coupled with a low-frequency and an Ohmic intrinsic
bath, respectively. From figure 4(a), we see that in the case of weak qubit–cavity coupling
(g = 10−51= 0.1 MHz), the SE spectrum is a single peak with the central frequency larger
than the energy spacing 1 of the bare qubit, which corresponds to a blue shift [18]. In the case
of strong qubit–cavity coupling, g = 2 × 10−21= 2 × 102 MHz, the SE spectrum shows the
vacuum Rabi splitting, with the two height asymmetric peaks, just as shown in [14]. With further
increasing the qubit–cavity coupling to the ultra-strong regime (e.g. g = 10−11= 1 GHz), not
only the height of the SE peaks but also their positions demonstrate a strong asymmetry about
ω =1.

Figure 4(b) shows the SE spectrum of a qubit in the Ohmic intrinsic bath. For a weak
qubit–cavity coupling, the central frequency of the SE spectrum shifts to an energy slightly
lower than the energy spacing1 of the bare qubit (with the peak located atω−1∼ −2.9 MHz),
which corresponds to a red shift. This energy-shift direction is opposite to the case when the
qubit is in a low-frequency intrinsic bath (see figure 4(a)). For a strong qubit–cavity coupling,
the two SE peaks also show a weak asymmetry, with the left peak higher than the right peak.
This peak asymmetry is inverted from the corresponding case in figure 4(a). As the qubit–cavity
coupling increases to the ultra-strong regime, the height asymmetry of the left and right SE
spectrum is inverted (see figure 4(b)). This inversion of the asymmetry of SE spectra shows the
competition between the Ohmic bath and the cavity bath. The SE spectra of the qubit in a cavity
with the quality factor Q = 103 are shown in figure 5, which present nearly the same features as
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Figure 4. The SE spectra of the qubit in resonance with the central frequency of
the cavity for weak, strong and ultra-strong qubit–cavity interactions. The quality
factor of the cavity is Q = 104. (a) Coupling strength to the low-frequency
intrinsic bath of the qubit αlow = 10−4; (b) coupling strength to the Ohmic
intrinsic bath of the qubit αOhm = 10−4. To see the height asymmetry of the peaks
clearly, the horizontal grid lines are plotted as a reference. Note that panel (a)
demonstrates an obvious height asymmetry in the case of strong and ultra-strong
qubit–cavity coupling and the asymmetry increases as the qubit–cavity coupling
grows. Panel (b) shows the very small inverted height asymmetry of two peaks
from panel (a) in the strong qubit–cavity coupling case, but as the qubit–cavity
coupling increases to the ultra-strong regime, the height asymmetry of the right
and left spectral peaks becomes inverted.

those in figure 4, in addition to the broader SE peaks in figure 5. This is because of an increased
dissipation rate of the qubit induced by a larger cavity dissipation rate. These results are briefly
summarized in table 1.

Figures 4 and 5 show that the two SE peaks of the qubit in both low-frequency and Ohmic
intrinsic baths show very different behavior; the right SE peak is higher than the left SE peak in
both strong and ultra-strong qubit–cavity coupling regimes, whereas the right SE peak is lower
than the left SE peak in the strong qubit–cavity coupling regime; in the ultra-strong qubit–cavity
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Figure 5. The SE spectra of the qubit in resonance with the central frequency of
the cavity for weak, strong and ultra-strong qubit–cavity interactions. The quality
factor of the cavity is Q = 103. (a) Coupling strength to the low-frequency
intrinsic bath of the qubit αlow = 10−4; (b) coupling strength to the Ohmic
intrinsic bath of the qubit αOhm = 10−4. To see the height asymmetry of the peaks
clearly, the horizontal grid lines are plotted as a reference. Note that panel (a)
demonstrates obvious height asymmetry in the case of strong and ultra-strong
qubit–cavity coupling and the asymmetry increases as the qubit–cavity coupling
grows. Panel (b) shows inverted height asymmetry of two peaks from panel (a) in
the strong qubit–cavity coupling case, but as the qubit–cavity coupling increases
to the ultra-strong regime, the height asymmetry of the right and left spectral
peaks is inverted.

coupling regime, the left SE peak is slightly lower than the right peak. In subsection 3.1, we have
shown that in the Lorentzian cavity bath, the interaction in the region ωk,2 <1, due to the anti-
rotating terms, is increased, and yet the coupling in the opposite direction is reduced. In the
low-frequency intrinsic bath, dissipation of the qubit energy primarily occurs for energies lower
than the energy spacing 1. Therefore, the energy shift and the asymmetry in the SE spectrum
are constructively strengthened when both low-frequency and cavity baths coexist. However,
energy dissipation in the Ohmic intrinsic bath mainly occurs for energies higher than the energy
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Table 1. A summary of our main results for the SE spectra in the case
of strong and ultra-strong qubit–cavity couplings. The spectra with height
asymmetric peaks and very asymmetric peaks are denoted by AS and VAS.
The asterisks indicate the inverted peak height asymmetry from the AS in the
low-frequency bath case. These results are described in detail in the main text.

Bath Cavity Qubit–cavity coupling

Quality factor Weak Strong Ultra-strong

High Q Single peak AS VAS
Low-frequency

Low Q Single peak AS VAS

High Q Single peak AS∗ AS
Ohmic

Low Q Single peak AS∗ AS

spacing 1, and this energy regime is opposite to that for the cavity bath. Therefore, the effects
on the SE spectrum produced by the Ohmic intrinsic bath and the cavity bath compete with each
other.

Therefore, the different asymmetric behavior of the SE spectrum of the qubit in the
low-frequency and Ohmic baths may be used to identify the intrinsic noise of the qubit. In the
experiment in [14], the height asymmetric SE spectrum of the qubit in the strong qubit–cavity
coupling regime shows that the right SE peak is higher than the left SE peak. This reveals that
the low-frequency intrinsic noise is dominant in the superconducting qubit in [14].

4. Conclusion

In conclusion, we have discussed the SE spectrum of a qubit in the environment described by
two baths: an intrinsic bath and a cavity bath. We only considered that the central frequency of
the cavity mode is resonant with the qubit energy spacing (ωcav =1). We analyzed in detail the
qubit’s SE spectrum in the weak, strong and ultra-strong coupling regimes, and compare the SE
spectra in two kinds of qubit baths: low-frequency and Ohmic baths. In the low-frequency bath,
the height asymmetry of the vacuum Rabi splitting peaks increases as the coupling strength
grows. However, for the Ohmic bath, the height asymmetry of the SE spectrum is reduced
and the height asymmetry of the left and right peaks is inverted, when the coupling strength
is increased. Our results show that for strong qubit–cavity coupling, the combination of the
anti-rotating terms and the properties of the baths can cause different types of asymmetries of
the splitting peaks in the SE spectrum.
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Appendix A. Two unitary transformations on two baths

This appendix offers a detailed derivation of the transformed Hamiltonian (2) from the original
Hamiltonian (1) through unitary transformations. To deal with the anti-rotating terms in
equation (1), we apply the first canonical transformation to the Hamiltonian H

H̃ = exp(S1)H exp(−S1), (A.1)

with

S1 =

∑
k

gk,1

ωk,1
ξk,1(a

†
k,1 − ak,1)σx . (A.2)

Here a k-dependent variable ξk1 = ωk,1/(ωk,1 + η11) is introduced into the transformation. The
transformed Hamiltonian H̃ can be decomposed into three parts:

H̃ = H̃ 0 + H̃ 1 + H̃ 2, (A.3)

with

H̃ 0 =
1

2
η11σz +

∑
k,i

ωk,ia
†
k,iak,i −

∑
k

g2
k,1

ωk,1
ξk,1(2 − ξk,1), (A.4)

H̃ 1 =

∑
k

2η11
gk,1ξk,1

ωk,1
(a†

k,1σ− + ak,1σ+)+
∑

k

gk,2(a
†
k,2 + ak,2)σx , (A.5)

H̃ 2 =
1

2
1σz

[
cosh

(∑
k

2gk,1

ωk,1
ξk(a

†
k,1 − ak,1)

)
− η1

]

+ i
1

2
σy

[
sinh

(∑
k

2gk,1

ωk,1
ξk(a

†
k,1 − ak,1)

)
− η1

∑
k

2gk,1

ωk,1
ξk(a

†
k,1 − ak,1)

]
, (A.6)

where η1 = exp[−
∑

k(2gk,1)
2ξk,1

2/2ω2
k,1]. The parameter η1 is determined by 〈0k,1|H̃ 2|0k,1〉.

Then η1 contains the contribution from zero-boson transition and is regarded as a
renormalization factor of the qubit energy spacing 1. H̃ 1 contains the terms of single-boson
transition, whose contribution to the physical quantities is of order O(g2

k,1). The terms in H̃ 2

are related to the double- and multiboson nondiagonal transitions such as a†
k,1a†

k′,1 and ak,1ak′,1,
whose contributions to the physical quantities are of orderO(g4

k,1). In the zero-temperature case,
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the contribution from these multiboson nondiagonal transitions may be dropped safely. So, in
the following calculation, we dropped all the higher-order terms in H̃ 2. Thus, the effective
transformed Hamiltonian can be derived as

H̃ ≈
1

2
η11σz +

∑
k,i

ωk,ia
†
k,iak,i +

∑
k

gk,2(a
†
k,2 + ak,2)σx +

∑
k

g̃k,1(a
†
k,1σ− + a−

k,1σ+), (A.7)

with g̃k,1 = 2η11gk,1/(ωk,1 + η11).
Then, we apply a second similar transformation to the transformed Hamiltonian H̃ :

H ′
= exp(S2)H̃ exp(−S2), with S2 =

∑
k

gk,2

ωk,2
ξk,2(a

†
k,2 − ak,2)σx and ξk,2 = ωk,2/(ωk,2 + η21),

and obtain

H ′
= H ′

0 + H ′

1 + H ′

2, (A.8)

with

H ′

0 =
1

2
η1η21σz +

∑
k,i

ωk,ia
†
k,iak,i −

∑
k,i

g2
k,i

ωk,i
ξk,i(2 − ξk,i), (A.9)

H ′

1 =

∑
k,i

2ηi1
gk,iξk,i

ωk,i
(a†

k,iσ− + ak,iσ+), (A.10)

H ′

2 =
1

2
1σz

[
cosh

(∑
k

2gk,2

ωk,2
ξk,2(a

†
k,2 − ak,2)

)
− η2

]

+ i
1

2
σy

[
sinh

(∑
k

2gk,2

ωk,2
ξk,2(a

†
k,2 − ak,2)

)
− η2

∑
k

2gk,2

ωk,2
ξk,2(a

†
k,2 − ak,2)

]
,

(A.11)

where η2 = exp[−
∑

k(2gk,2)
2ξk,2

2/2ω2
k,2]. This η2 is one more renormalization factor of 1

from the second bath. Because the constant term
∑

k,i g2
k,iξk,i(2 − ξk,i)/ωk,i has no effect on the

dynamics evolution, we neglect it. As in the same approximation of the first transformation, we
drop the higher-order terms in H ′

2 and the mixed effect of two baths, whose contributions to the
physical quantities areO(g4

k,2) orO(g2
k,1g2

k,2). At last, we obtain the transformed Hamiltonian H ′

H ′
≈

1

2
η1η21σz +

∑
k,i

ωk,ia
†
k,iak,i +

∑
k,i

g̃k,i(a
†
k,iσ− + a−

k,iσ+), (A.12)

with g̃k,i = 2ηi1gk,i/(ωk,i + ηi1).

Appendix B. Solution of the equation of motion for the density matrix

This appendix offers detailed calculations for solving the master equation in equation (18). We
use the basis |1〉 = |↓〉 and |2〉 = |↑〉, where σz|↓〉 = |↓〉, σz|↑〉 = −|↑〉, to define the reduced
density matrices of the qubit. Using the Laplace transform

ρ̃(p)= L [ρ(t)] =

∫
∞

0
dtρ(t) exp (−pt) (B.1)
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and the convolution theorem

L
[∫ t

0
dt ′ f1(t

′) f2(t − t ′)

]
= L [ f1(t)]L [ f2(t)] , (B.2)

the master equation (18) for the qubit system can be solved as

pρ̃I′
S (p)− ρ

′

S(0)= −A−σ+σ−ρ̃
I ′

S (p)+ (A+ + A−) σ−ρ̃
I ′

S (p)σ+ − A+ρ̃
I ′

S (p)σ+σ−, (B.3)

where

A± =

2∑
k,i

g̃2
k,i

/
[p ± i(ωk,i − η1)]. (B.4)

Equation (18) is a Lyapunov matrix equation.
The Kronecker product property in matrix theory shows that

Vec(M1ρM2)= M1 ⊗ MT
2 Vec(ρ), (B.5)

where Vec(ρ) represents the vector expanding matrix ρ along rows, and the superscript T
denotes the transpose of the matrix. We expand the matrix equation in equation (B.3) into
vectors along rows

U (p) Vec[ρ̃I′
S (p)] = Vec[ρ ′

S(0)], (B.6)

where

U (p)= pI4 + A+ I2 ⊗ (σ+σ−)
T
− (A− + A+)σ− ⊗ σ T

+ + A−(σ+σ−)⊗ I2, (B.7)

where In is the n × n identity matrix. Thus, the 2 × 2 matrix equation (B.3) is transformed to
the 4 × 4 vector equation (B.6). The solution of equation (B.6) can be formally written as

Vec
[
ρ̃ I ′

S (p)
]

= U (p)−1 Vec[ρ ′

S(0)], (B.8)

with

U (p)−1
=


1

p+A++A−

0 0 0

0 1
p+A−

0 0

0 0 1
p+A+

0
1
p −

1
p+A++A−

0 0 1
p

 . (B.9)

Using the inverse Laplace transform

α(t)= L−1[α̃(p)] =
1

2π i

∫ σ+i∞

σ−i∞
dp α̃(p) exp (pt) , (B.10)

we obtain

Vec[ρ I ′

S (t)] = L−1U (p)−1 Vec[ρ ′

S(0)]. (B.11)
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Then, ρ
I ′

S (t) is given by

ρ I ′

S (t)= L−1


[

ρ11(0)
p+A++A−

] [
ρ12(0)
p+A+

]
[
ρ21(0)
p+A−

] [
ρ11(0)

p −
ρ11(0)

p+A++A−

+ ρ22(0)
p

]
 . (B.12)

Below we calculate the inverse Laplace transform L−1( 1
p+A±

) and L−1( 1
p+A++A−

). From
equation (B.10), we have

L−1

(
1

p + A−

)
=

1

2π i

∫ σ+i∞

σ−i∞

exp(pt)

p +
∑
k,i

g̃2
k,i/[p − i(ωk,i − η1)]

dp. (B.13)

With p replaced by iω + 0+ [37], the above expression becomes

L−1

(
1

p + A−

)
=

1

2π i

∫ +∞

−∞

exp(iωt)

ω−
∑
k,i

g̃2
k,i/[(ω + η1)−ωk,i − i0+]

dω. (B.14)

For the term
∑

k g̃2
k,i/(ω−ωk,i − i0+), we denote the real and imaginary parts as Ri(ω) and

0i(ω), where i = 1 for the intrinsic bath and i = 2 for the cavity bath. Explicitly, we can write

Ri(ω)= ℘

(∑
k

g̃2
k,1

ω−ωk,1

)

= ℘

[∫
∞

0
dω′

(
2η11

ω′ + η11

)2 J1(ω
′)

(ω−ω′)

]
, (B.15)

and

0i(ω)= π
∑

k

g̃2
k,iδ(ω−ωk,1)

= π

(
2ηi 1

ω + ηi 1

)2

Ji(ω), (B.16)

where ℘ stands for the Cauchy principal value. Let R(ω)= R1(ω)+ R2(ω) and 0(ω)= 01(ω)+
02(ω); then we have

L−1

(
1

p + A−

)
=

1

2π i

∫ +∞

−∞

exp(iωt)

ω− R(ω + η1)− i0(ω + η1)
dω. (B.17)

Similarly, L−1 1
p+A+

and L−1 1
p+A++A−

can also be derived as

L−1

(
1

p + A+

)
=

[
L−1

(
1

p + A−

)]∗

(B.18)

and

L−1

(
1

p + A+ + A−

)
=

1

2π i

∫ +∞

−∞

exp(iωt)

ω− R(ω +1η)+ R(1η−ω)− i [0(ω +1η)+0(1η−ω)]
dω.

(B.19)
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Appendix C. Derivation of equation (25)

Below, we prove that equation (25) is established through solving the Schrödinger equation
beyond the RWA in the transformed Hamiltonian (2). Since the total excitation number operator
of the qubit–cavity system, N =

∑
k,i a†

k,iak,i + (1 + σz) /2, in the transformed Hamiltonian is a
conserved observable, i.e. [N , H ′] = 0, it is reasonable to restrict our discussion to the single-
particle excitation subspace. A general state in this subspace can be written as

|8(t)〉 = χ(t) |s2〉

∏
k

∣∣0k,10k,2

〉
+
∑
k,i

βk,i(t) |s1〉

∏
k

∣∣0k,i 1k,i

〉
, (C.1)

where the state
∣∣0k,i 1k,i

〉
means either a cavity bath or a qubit intrinsic bath with one quantum

excitation. Substituting |8(t)〉 into the Schrödinger equation, we have

i
dχ(t)

dt
=
η1

2
χ(t)+

∑
k,i

g̃2
k,iβk,i(t), (C.2)

i
dβk,i(t)

dt
=

(
ωk,i −

η1

2

)
βk,i(t)+

∑
k,i

g̃2
k,iχ(t). (C.3)

Applying the transformation

χ(t)= χ̃(t) exp

(
−i
η1

2
t

)
, (C.4)

βk,i(t)= β̃k,i(t) exp

[
−i

(
ωk,i −

η1

2

)
t

]
, (C.5)

equations (C.2) and (C.3) are simplified to

dχ̃(t)

dt
= −i

∑
k,i

g̃2
k,i β̃k,i(t) exp

[
−i(ωk,i − η1)t

]
, (C.6)

dβ̃k,i(t)

dt
= −ig̃2

k,i χ̃(t) exp
[
i(ωk,i − η1)t

]
. (C.7)

Integrating equation (C.7) and substituting it into equation (C.6), we obtain

dχ̃(t)

dt
= −

∫ t

0

∑
k,i

g̃2
k,i exp[−i(ωk,i − η1)(t − t ′)]χ̃(t ′)dt ′. (C.8)

This integro-differential equation (C.8) is solved exactly by Laplace transformation:

χ̃(p)=
1

p + A+
=

χ̃(0)

p +
∑

k,i g̃2
k,i/[p − i(η1−ωk,i)]

. (C.9)

When the initial state is an excited state, |ψ ′(0)〉 = |↑〉 ⊗
∏

k

∣∣0k,1, 0k,2

〉
, i.e. χ̃(0)= 1. Applying

the inverse Laplace transformation, we obtain

χ̃(t)=

(
L−1 1

p + A+

)
t

. (C.10)
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Combining equation (B.18), the dynamic evolution of the density matrix element ρ ′

11 is
expressed as

ρ ′

11(t)= χ∗(t)×χ(t)

=

(
L−1 1

p + A+

)
t

×

(
L−1 1

p + A−

)
t

. (C.11)
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