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Abstract
We consider relativistic deformations of interfering paraxial waves moving in the transverse direction. Owing to
superluminal transverse phase velocities, noticeable deformations of the interference patterns arise when the
waves move with respect to each other with non-relativistic velocities. Similar distortions also appear on a mutual
tilt of the interfering waves, which causes a phase delay analogous to the relativistic time delay. We illustrate these
observations by the interference between a vortex wave beam and a plane wave, which exhibits a pronounced
deformation of the radial fringes into a fork-like pattern (relativistic Hall effect). Furthermore, we describe an
additional relativistic motion of the interference fringes (a counter-rotation in the vortex case), which becomes
noticeable at the same non-relativistic velocities.
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1. Introduction

Special relativity owes its origin to Maxwell wave equations
and optical interference experiments with moving sources or
observers [1]. Among its most fundamental consequences
are the relativity of time and impossibility of information
transfer faster than the speed of light c. Nonetheless, during
the past century, physicists continuously pursued the speed of
light limit and offered various examples of superluminal wave
motion.

It should be noticed that the phase velocity of a wave
is not related to the information transfer and, hence, is
not limited by c. Indeed, consider an optical plane wave
propagating at an angle π/2− θ to the x-axis. One can easily
see that the wavefronts move with velocity uphx = c/ sin θ > c
along the x-axis, which can be arbitrarily large when θ → 0.
Unlimited superluminal motion can also occur for any phase
structures (e.g., dislocations) and interference fringes [2, 3]:
as Berry pointed out, these are ‘forms and not things, and so
cannot be used as signals’ [2].

6 Author to whom any correspondence should be addressed.

In addition, there are numerous examples of superluminal
group velocities, which appear in dispersive media [4],
special X-shaped solutions of wave equations [5], tunneling
of wavepackets (Hartman paradox) [6], and, locally, in
evanescent waves or complex wave superpositions [7].
However, in all of these cases, the group velocity again
transfers ‘forms’, whereas the signal velocity never exceeds
c [4, 6, 8].

In contrast with the studies [4–8], which tried to construct
objects moving faster than c, the purpose of our work is quite
the opposite. Namely, we are wondering if strong relativistic
effects can appear for an observer moving much slower
than c. For mechanical bodies (i.e., ‘things’), the relativistic
deformations become noticeable when the observer motion
approaches the speed of light: v ∼ c [1]. However, below
we show that, owing to the superluminal phase velocities
of waves, uph � c, the pronounced relativistic distortions
of the interference ‘forms’ might appear for the observer’s
velocities v � c. This offers a new avenue for visualizations
and experimental tests of special relativity using paraxial wave
interference and non-relativistic transverse motion.
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2. Relativistic deformations: Lorentz contraction
and velocity addition

Special relativity is based on the Lorentz transformations of
space–time, which describe transitions from a ‘laboratory’
reference frame to a frame moving with velocity v:

(1)

Here γ = 1/
√

1− v2/c2 is the Lorentz factor, and quantities
in the moving frame are indicated by primes. Importantly,
the r-dependent time delay, shown inside the red box
in equation (1), revises the concept of simultaneity and
causes interesting distortions of objects when observed in a
moving reference frame [1]. Such distortions are absent in
non-relativistic physics based on Galilean transformations and
the invariance of time. As we argue below, one can distinguish
two types of relativistic deformations:

(i) Lorentz length contraction of motionless objects;
(ii) shape distortions of moving objects, related to the

relativistic velocity addition.

Throughout this paper we consider reference frames
moving with respect to each other with velocity v in the
x-direction. Let a material point move with velocity u along
the x-axis of the laboratory frame: x(t) = x0 + ut. Then,
applying the Lorentz transformation (1), one can find that its
coordinate in the moving frame becomes

(2)

For a motionless point, u = 0, the coordinate x′(0) = γ−1x0
indicates the Lorentz contraction, whereas for moving point
the velocity u′ ≡ dx′/dt′ = (u − v)/(1 − uv/c2) yields the
relativistic velocity addition formula. In the general case
u 6= 0, the coordinate x′(0) in equation (2) indicates the
transformation of the x-scale of the object and includes both
the Lorentz contraction (shown inside the green box in (2))
and the velocity-addition effect (shown inside the orange box
in (2)). Although both of these distortions originate from the
same Lorentz transformation of time (1), below we show that
they can occur independently in various situations. Note that
the velocity-addition deformation is a first-order effect in v/c
and also depends on u/c, whereas the Lorentz contraction is a
second-order effect ∼v2/c2.

A nice illustration of the above relativistic deformations
appears when observing a spinning body (flywheel) in a
moving reference frame [9], as shown in figure 1. First,
the circular flywheel experiences the Lorentz x-contraction
with the factor of γ−1, and becomes elliptical. Second,
the rotating radial spokes in the wheel become distorted
and asymmetrically redistributed along the orthogonal y-axis
because of opposite velocity additions on the y > 0 and
y < 0 sides of the wheel. The Lorentz contraction depends
only on the frame motion and becomes noticeable at v ∼ c.
In contrast, the y-deformation is essentially related to the

Figure 1. Virtual snapshots of a relativistic flywheel of radius R
rotating with angular velocity �: (a) in the laboratory frame and
(b) in the frame moving with velocity v in the x-direction. Two
relativistic deformations are seen in (b): (i) the Lorentz
x-contraction squeezing the circle into an ellipse (becomes
noticeable at v ∼ c) and (ii) a characteristic distortion of the radial
spokes along the orthogonal y-direction (relativistic Hall effect) [9,
10]. The latter effect is caused by the relativistic addition of the
rotational velocity u = �R and frame velocity v, so that it becomes
noticeable at �Rv ∼ c2.

rotational velocity of the wheel, u = �R (R and � are the
radius and angular velocity of the wheel, respectively); this
deformation becomes noticeable at uv ∼ c2. Noteworthily, the
y-distortion of a spinning body on a Lorentz boost in the
x-direction is intimately related to the Lorentz transformation
of the angular momentum, and can be regarded as the
relativistic Hall effect [10].

3. Deformations of wave intensity and phase:
superluminal wavefronts

Recently, we found [10] that ‘spinning’ waves carrying
angular momentum (vortex beams) also experience relativistic
deformations resembling those in figure 1. The vortex beams
are well known and widely used in optics [11]. A few years
ago they were also described for quantum electrons [12] and
generated experimentally in electron microscopes [13].

Let us consider a scalar monochromatic vortex beam
propagating along the z-axis. In what follows we are interested
in the wave distributions in the transverse (x, y)-plane and
omit all z-dependences. Then, the vortex beam is described
by the wavefunction

ψ(x, y, t) ∝ A(r) exp(i`ϕ − iω t), (3)

where (r, ϕ) are the polar coordinates in the (x, y)-plane, ` =
0,±1,±2, . . . , is the vortex charge (the quantum number of
the angular momentum along the z-axis), ω is the frequency,
and A(r) is the radial amplitude distribution. Hereafter, we
assume the Laguerre–Gaussian beams [11] with the zero
radial index and A(r) ∝ (κr)|`| exp[−(κr)2], where κ � k
is the characteristic radial wavenumber. Such beams have
an annular intensity distribution with characteristic radius
R ∼ |`|/κ . The phase fronts of the vortex (3) represent |`|
radial lines which rotate in the (x, y)-plane with the angular
velocity �ph = ω/`. Upon transition to the moving reference
frame, the annular intensity distribution I = |ψ |2 = |A(r)|2

experiences the Lorentz x-contraction with the factor γ−1.
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Figure 2. Instant transverse distributions of (a) intensity I = |ψ |2, current j = Im(ψ∗∇ψ) = I∇8, and (b) phase 8 = argψ in the paraxial
vortex beam (with ` = 8 and paraxiality parameter θ = κ/k� 1) propagating along the z-axis. The dimensionless coordinates x̃ = κx′ and
ỹ = κy are used. The distributions are shown in the frames moving in the x-direction with velocities v/c = 0, θ, 2θ � 1. Such
non-relativistic velocities make the Lorentz x-contraction of the intensity distribution negligible, but nonetheless drastically deform
wavefronts, similar to the Hall-effect y-distortion of the flywheel spokes in figure 1. This is explained by the relativistic velocity addition
with the superluminal motion of the radial wavefronts (4): uph/c = �phR/c ' 0.25/θ � 1 (R ' 2κ−1 is the beam radius and �ph = ω/8 is
the angular velocity of the wavefronts rotation).

At the same time, the rotating radial phase fronts of the
vortex undergo relativistic Hall-effect y-deformations entirely
similar to the spokes of a spinning flywheel in figure 1 (see
figure 2(b)) [10].

Thus, there is a correspondence between the relativistic
deformations of mechanical bodies and waves, but there
is also a remarkable difference. Namely, the transverse
velocity of the wavefront motion, i.e., the phase velocity, is
superluminal. Indeed, consider a paraxial wave propagating
mostly along the z-axis, with the longitudinal wavenumber
kz ' k and a characteristic transverse wavenumber k⊥ ∼ κ �
k. To quantify the paraxiality, we will use the small parameter
θ = κ/k� 1. Then, the transverse phase velocity in the (x, y)
plane is estimated as

uph ∼
ω

κ
=

c

θ
� c (4)

(for the sake of simplicity we assume waves with ω = ck). For
instance, in the above optical vortex example, the rotational
velocity of the wavefronts at the beam radius is uph = �phR ∼
c/θ � c. Therefore, the velocity-addition deformations of the
wavefronts become noticeable at

v ∼
c2

uph
∼ θc� c, (5)

i.e., at essentially non-relativistic velocities of the frame
motion. This is demonstrated in figure 2, which displays

the transverse intensity, current, and phase distributions
for the paraxial vortex beam observed in reference frames
moving with small velocities v ∼ θc. One can see no
Lorentz contraction in the vortex intensity distribution but
a pronounced y-distortion of the wavefronts due to the
relativistic velocity addition with uph ∼ c/θ .

Of course, superluminal motion of the wavefronts is
non-observable per se. But the shape of the phase fronts plays
a crucial role in the wave interference. Then the question
arises: can one observe relativistic deformations of the wave
interference patterns at non-relativistic velocities? We address
this question below.

4. Transformations of the wave interference patterns

Let us consider a generic wave interference of two complex
scalar fields:

ψ(r, t) = ψ1(r, t)+ ψ2(r, t). (6)

The interference pattern is described by the resulting intensity
distribution, I(r, t) = |ψ(r, t)|2. Note that interference fringes
can move with arbitrarily large velocities, but, of course, can
be observed only in the case of subluminal motion.

To find transformations of the interference pattern on
transition to the moving reference frame, one should substitute
the Lorentz transformation (1) in the wavefunction (6). One
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Figure 3. Transverse intensity pattern for interference (10) of co-propagating paraxial vortex beam (` = 8) and plane wave. The
dimensionless coordinates x̃ = κx′ and ỹ = κy are used. (a) In the laboratory frame, the radial fringes rotate with angular velocity
�f = (ω1 − ω2)/8 and linear velocity uf ' �fR (R ' 2κ−1 being the vortex radius) which can take on arbitrary values depending on the
wave parameters. (b) In the moving frame with v ∼ c and with the fringe velocity �fR ∼ c, the pattern shows both the Lorentz x-contraction
and velocity-addition y-distortion of the fringes, entirely similar to the mechanical flywheel in figure 1. (c) Choosing parameters
corresponding to a superluminal fringe velocity �fR� c, the velocity-addition distortion (but no Lorentz contraction) occurs for
non-relativistic frame motion, v� c, but cannot be observed.

can distinguish two basic types of relativistic effects in wave
interference:

(i) the observer moves with respect to both waves and
observes the same interference picture but in the moving
frame;

(ii) the observer and the second wave move with respect to
the first wave. In other words, the second wave is used as
a probe attached to the observer and sensing the first wave
in the moving frame.

For these two cases, the wavefunctions in the moving frame
can be written, respectively, as

ψ ′(r′, t′) = ψ1[r(r′, t′), t(r′, t′)] + ψ2[r(r′, t′), t(r′, t′)],

(7a)

ψ ′(r′, t′) = ψ1[r(r′, t′), t(r′, t′)] + ψ2(r′, t′). (7b)

Here r(r′, t′) and t(r′, t′) denote the Lorentz transformation
given by equation (1). In the following sections 4.1 and 4.2,
we analyze the relativistic deformations in the interference
patterns I′(r′, t′) = |ψ ′(r′, t′)|2 for the two cases (7a) and
(7b), respectively.

4.1. Moving interference patterns

First, we examine the frame moving with respect to
both waves. In this case, equation (7a) shows that the
interference intensity pattern is transformed as any material
object, i.e., via the Lorentz transformations (1): I′(r′, t′) =
I[r(r′, t′), t(r′, t′)]. This is quite natural since in quantum
mechanics any matter distribution is associated with the
intensity of the wavefunction.

As the simplest example, let us consider the interference
of two plane waves propagating in the (z, x) plane, with
transverse wavenumbers kx1,2 = κ1,2. As before, we are only

interested in the distributions in the z = 0 plane and omit all
z-dependences. Thus, the two interfering wavefunctions are

ψ1(x, t) = exp(iκ1x− iω1t),

ψ2(x, t) = exp(iκ2x− iω2t).
(8)

The interference pattern for these waves, I(x, t), represents an
array of fringes with period 1 = 2π/|κ1 − κ2| and moving
with velocity uf = (ω1−ω2)/(κ1− κ2) along the x-direction.
Let us now choose one fringe in this interference pattern,
which has a coordinate x(t) = x0 + uft in the laboratory
frame. Then, performing the Lorentz transformation (1) and
(7a), one can readily ascertain that the coordinate of this
fringe in the moving frame is given by equation (2) with
u= uf and the corresponding Lorentz contraction and velocity
addition. The only difference is that the fringe motion
can be superluminal [3], uf � c, and then the relativistic
velocity-addition effects formally occur at v ∼ c2/uf � c.
However, superluminal fringes and, hence, their deformations
remain fundamentally unobservable.

It is worth noticing that the Lorentz transformation (1),
when applied to a plane wave exp(ik · r− iω t), results in the
following transformation of the wave parameters:

(9)

so that the wavefunction becomes exp(ik′ · r′ − iω′ t′) in the
moving frame. The shift of the wavevector in equation (9)
(shown inside the red box) originates from the time delay
in equation (1), and it is this shift that causes deformations
of the interference patterns. In the paraxial geometry kz ' k,
vx = v � c, the transformation (9) represents a tilt of the
wavevector in the (z, x)-plane by the angle α ' v/c. This will
be used in what follows.

For comparison with the examples in sections 2 and 3,
let us consider now an interference pattern which mimics a
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Figure 4. (a) Transverse intensity patterns for interference (10) of a vortex beam (` = 8) and a plane wave propagating along the z-axis in
the moving reference frame. Thus, the vortex beam and the wave move with respect to each other with non-relativistic velocity v/c = 0,
θ, 2θ � 1 in the x-direction. The pronounced y-distortion of the radial fringes visualize the deformed vortex wavefronts shown in figure 2,
although the fringes do not rotate at v = 0, when the beam and plane wave have the same frequency ω1 = ω2 = ω. Alongside the
velocity-addition distortions, the fringes start to rotate with the angular velocity (12) and corresponding linear velocity
uf ' �fR ' −v2/8θc ∼ v, at v/c ∼ θ . This effect originates from the Lorentz-factor scaling of the moving-wave frequency, equation (9).
(b) Experimental pictures of the interference of an optical vortex beam and a plane wave tilted by the angle α = kx/k ∼ θ � 1. The precise
correspondence between patterns (a) and (b) appears because the Lorentz transformation of time for a transversely moving paraxial wave is
equivalent to its tilt (in the approximation γ ' 1).

spinning flywheel in figure 1. Such a pattern appears when
interfering the co-propagating vortex beam (3) and plane wave
(the z-dependences are omitted) [14]:

ψ1(x, y, t) = A(r) exp(i`ϕ − iω1t),

ψ2(t) = exp(−iω2t).
(10)

The intensity distribution of the superposition (10) represents
a circular array of |`| radial ‘spokes’ with vortex radius
R ∼ |`|/κ , rotating with angular velocity �f = (ω1 − ω2)/`

(figure 3(a)). Thus, the velocity of the circular motion of
the radial fringes is uf ∼ (ω1 − ω2)/κ , and it can take on
any values depending on the frequency difference. Figure 3
shows deformations of the interference pattern of waves
(10) in the moving frame. When uf ∼ c and v ∼ c, both
the Lorentz x-contraction of the circle and velocity-addition
y-distortion of the spokes appear (figure 3(b)), entirely similar
to those in figure 1. At the same time, when uf � c and
v ∼ c2/uf� c, the Lorentz contraction is negligible, while the
velocity-addition deformation of the radial fringes is present
(figure 3(c)), akin to the distortion of the vortex wavefronts in
figure 2(b). Still, as we mentioned before, this superluminal
effect cannot be detected.

4.2. Waves moving with respect to each other

Finally, we examine the second type of relativistic inter-
ference, when the two waves move with respect to each
other. Assuming that the observer is attached to the second
wave, the transformation to the moving frame is described
by equation (7b). From here on, we consider non-relativistic
velocities of the frame motion, v � c, so that γ ' 1 in the
main approximation.

Performing the transformation (7b) with (1) in the
simplest case of two interfering plane waves (8), we find that
the interference fringe with the coordinate x(t) = x0 + uft in
the laboratory frame will have the following coordinate in the
moving frame:

(11)

where uph1 = ω1/κ1 is the phase velocity of the first wave.
The Lorentz contraction is absent in equation (11) since
v� c but the velocity-addition effects are present. The most
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important difference in the velocity-addition denominator
of equation (11) as compared to equation (2) is that
it contains the phase velocity of the first wave, and is
independent of the fringe velocity uf. Owing to this, the
velocity-addition distortions can be observed for uph1 � c but
non-relativistically moving (or even motionless) fringes, uf�

c. And this is the desired observable relativistic deformation
at v� c, described by the denominator of equation (11).

In addition, we kept a second-order term ∼v2/c2 (shown
inside the green box in numerator equation (11)), which
originates from the γ -factor increment of the frequency in
equation (9): ω′1 ' (1 + v2/2c2)ω1 − κ1v. Such γ -scaling of
the frequency of a moving wave contributes to the transverse
relativistic Doppler effect—a frequency counterpart of the
Lorentz contraction [1]. Since ω1 = k1c = κ1c/θ , we find
that, in the paraxial approximation, the relativistic Doppler
term in equation (11) can make a noticeable contribution ∼v
at non-relativistic velocities (5): v ∼ θc. Furthermore, when
uf = 0 and κ1 = 0, only this term causes motion of the fringes
in the moving frame.

Let us illustrate these results by considering the
interference of the co-propagating vortex and plane wave,
equation (10). We set ω1 = ω2 ≡ ω so that the fringes
do not rotate in the laboratory frame: uf = 0. Figure 4(a)
shows the deformation of the interference fringes upon motion
with non-relativistic velocities v ∼ θc, equation (5). The
characteristic y-distortions of the non-rotating radial fringes
appear. One can say that they represent deformations of the
superluminal vortex wavefronts in figure 2(b), revealed by the
interference with a plane wave in the moving frame. Thus, we
conclude that non-relativistic motion can produce pronounced
relativistic deformations of the intensity pattern when the
two waves move with respect to each other in the transverse
direction.

Moreover, the γ -factor scaling of the wave frequency in
the moving frame induces rotation of the above interference
pattern (see figure 4(a)). It is easier to describe this rotation in
the reference frame attached to the vortex. In this frame, the
vortex and plane wave frequencies become ω′1 = ω and ω′2 '
(1+ v2/2c2)ω, which yields the following angular velocity of
the rotation of fringes:

�f ' −
v2

2c2

ω

`
= −

v

2c

κv

θ`
. (12)

This equation shows that the pattern rotates in the direction
opposite to the vortex phase-front rotation. Apparently, the
counter-rotation of the fringes can be associated with the
transverse relativistic Doppler effect, as it is equivalent to the
γ−1 red-shift scaling of the vortex frequency. Furthermore,
the linear velocity of the fringe motion becomes noticeable,
uf ' �fR ∼ v, under the same non-relativistic condition (5):
v ∼ θc. Thus, alongside the deformation of fringes caused by
the velocity-addition effect, one can observe the rotation of
fringes induced by the Lorentz-factor scaling.

Recall now that in the problem under consideration, the
Lorentz transformation of a paraxial plane wave is equivalent
(in the approximation γ ' 1) to the tilt of its wavevector
by the angle α ' v/c, equation (9). Therefore, the same

y-deformation of the radial interference fringes will appear
upon a small x-tilt between the interfering vortex and plane
wave. This effect is familiar to experimentalists working
in singular optics. In figure 4(b) we show experimentally
measured deformations of the radial interference pattern upon
a small tilt between the optical vortex beam and a plane wave.
Clearly, figures 4(a) and (b) are in perfect agreement with
each other. This is explained by the fact that the Lorentz
x-dependent time delay in equation (1) is represented (for
waves) by the x-dependent phase delay, i.e., a tilted wavefront.

Another curious and very close analogy with relativistic
velocity-addition deformations occurs in photography, when
making pictures of moving objects. Then, the rolling shutter
of the camera provides a true x-dependent time-delay effect,
and blades of a rotating propeller undergo the y-distortions
shown in figure 1(b) [10, 15]. In both of the above analogies,
with a tilt and with a rolling shutter, the additional rotation
(12) does not occur because it essentially originates from the
γ -factor scaling rather than from the time delay.

5. Conclusion

We have considered relativistic deformations of moving
objects observed in a moving reference frame. There are
two types of such deformations: the Lorentz contraction
and distortions arising from the relativistic velocity addition.
Considering transverse Lorentz transformations of paraxial
waves, we found that the wavefronts experience significant
relativistic velocity-addition deformations at non-relativistic
velocities (figure 2(b)). This is because of the superluminal
phase velocity in the transverse plane. We have shown that
such distortions of the wavefronts reveal themselves in the
interference with a plane wave moving with respect to the
probed wave (figure 4(a)). Furthermore, the Lorentz-factor
scaling of the frequency of the moving wave induces an
additional motion of the interference fringes. One can say
that the velocity addition causes deformation of the fringes,
whereas the Lorentz-factor deformation provides additional
velocity to the fringes.

It should be noticed that an analog of the velocity-
addition deformations appear for a small tilt of the plane
wave (figure 4(b)). Therefore, to observe a truly relativistic
effect, one has to use paraxial waves with a characteristic
propagation angle θ � 1, a relative transverse motion of the
waves with velocity v ∼ θc, while the alignment between the
waves should be kept with an accuracy of |δα| < θ . One can
show that the same conditions are required for the observation
of the relativistic motion of the fringes, equation (12).

Let us estimate the effects described in this paper for
electron vortex beams [12, 13]. Taking the reasonable paraxial
angle θ ∼ 10−6, we find that relativistic effects become
noticeable at transverse velocities v ∼ 10−6c ∼ 3×102 m s−1,
i.e., at the speed of sound in air. Moreover, for slow massive
electrons with momentum p = h̄k � mc and energy E =
h̄ω ' mc2, these conditions can be further relaxed because
the transverse phase velocity (4) acquires additional factor
E/pc � 1. Then, the relativistic deformations appear at
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velocities (5):

v ∼
pc

E
θc� θc. (13)

This suggests that the relativistic distortions can be observed
at velocities v ∼ 1 cm s−1 using low-energy (pc ∼ 10 eV)
electron microscopy.
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