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We investigate the quantum dynamics of energy and charge transfer in a wheel-shaped artificial
photosynthetic antenna-reaction center complex. This complex consists of six light-harvesting chro-
mophores and an electron-acceptor fullerene. To describe quantum effects on a femtosecond time
scale, we derive the set of exact non-Markovian equations for the Heisenberg operators of this pho-
tosynthetic complex in contact with a Gaussian heat bath. With these equations we can analyze the
regime of strong system-bath interactions, where reorganization energies are of the order of the in-
tersite exciton couplings. We show that the energy of the initially excited antenna chromophores is
efficiently funneled to the porphyrin-fullerene reaction center, where a charge-separated state is set
up in a few picoseconds, with a quantum yield of the order of 95%. In the single-exciton regime,
with one antenna chromophore being initially excited, we observe quantum beatings of energy be-
tween two resonant antenna chromophores with a decoherence time of ∼100 fs. We also analyze the
double-exciton regime, when two porphyrin molecules involved in the reaction center are initially
excited. In this regime we obtain pronounced quantum oscillations of the charge on the fullerene
molecule with a decoherence time of about 20 fs (at liquid nitrogen temperatures). These results
show a way to directly detect quantum effects in artificial photosynthetic systems. © 2011 American
Institute of Physics. [doi:10.1063/1.3600341]

I. INTRODUCTION

The multistep energy-transduction process in natural
photosystems begins with capturing sunlight photons by
light-absorbing antenna chromophores surrounding a reaction
center.1, 2 The antenna chromophores transfer radiation energy
to the reaction center directly or through a series of accessory
chromophores. The reaction center harnesses the excitation
energy to create a stable charge-separated state.

Energy transfer in natural and artificial photosynthetic
structures has been an intriguing issue in quantum biophysics
due to the conspicuous presence of long-lived quantum
coherence observed with two-dimensional Fourier transform
electronic spectroscopy.3, 4 These experimental achievements
have motivated researchers to investigate the role of quantum
coherence in very efficient energy transmission, which takes
place in natural photosystems.5–9 Quantum coherent effects
surviving up to room temperatures have also been observed
in artificial polymers.10 Artificial photosynthetic elements,
mimicking natural photosystems, might serve as building
blocks for efficient and powerful sources of energy.11, 12

Some of these elements have been created and studied
experimentally in Refs. 13–18. The theoretical modelling
of artificial reaction centers has been recently performed in
Refs. 19 and 20.

Here, we study energy transfer and charge separation in a
wheel-shaped molecular complex (BPF complex, see Fig. 1)
mimicking a natural photosynthetic system. This complex has
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been synthesized and experimentally investigated in Ref. 17.
It has four antennas – two bis(phenylethynyl)anthracene
(BPEA) molecules and two borondipyrromethene (BDPY)
chromophores, as well as two zinc porphyrins (ZnPya and
ZnPyb). These six light-absorbing chromophores are attached
to a central hexaphenylbenzene core. Electrons can tun-
nel from the zinc porphyrin molecules to a fullerene F
(electron acceptor). Thus, two porphyrins and the fullerene
molecule form an artificial reaction center (ZnPya-F-ZnPyb).
The BPEA chromophores strongly absorb around 450 nm (the
blue region), while the BDPY moieties have good absorptions
around 513 nm (green region). Porphyrins have absorption
peaks at both red and orange wavelengths. Therefore, the BPF
complex can utilize most of the rainbow of sunlight – from
blue to red photons. It is shown in Ref. 17 that the absorption
of photons results in the formation of a porphyrin-fullerene
charge-separated state with a lifetime of 230 ps; in doing so,
excitations from the BPEA and BDPY antenna chromophores
are transferred to the porphyrins with a subsequent donation
of an electron from the excited states of the porphyrins to the
fullerene moiety. This process takes a few picoseconds, sug-
gesting that the excitonic coupling between chromophores is
sufficiently strong. The electronic coupling between the por-
phyrins and the fullerene controlling tunneling of electrons
in the artificial reaction center also should be quite strong. It
should be noted, however, that spectroscopic data15–17 show
that the absorption spectrum of the BPF complex is approx-
imately represented as a superposition of contributions from
the individual chromophores with almost no perturbations due
to the links between the chromophores. This means that the
chromophores comprising the light-harvesting complex can

0021-9606/2011/134(24)/244103/13/$30.00 © 2011 American Institute of Physics134, 244103-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3600341
http://dx.doi.org/10.1063/1.3600341
http://dx.doi.org/10.1063/1.3600341
mailto: pulak@riken.jp


244103-2 Ghosh, Smirnov, and Nori J. Chem. Phys. 134, 244103 (2011)

FIG. 1. Schematic diagram of the wheel-shaped artificial antenna-reaction
center complex reported in Ref. 17. We use the short notation, BPF complex,
to denote this photosynthetic device. The antenna-reaction center complex
contains six light-harvesting pigments: (i) two bis(phenylethynyl)anthracene
chromophores, BPEAa and BPEAb , (ii) two borondipyrromethene chro-
mophores, BDPYa and BDPYb , and (iii) two zinc tetraarylporphyrin chro-
mophores, ZnPya and ZnPyb . All the chromophores are attached to a rigid
hexaphenyl benzene core. In addition to the antenna components, the pho-
tosystem contains a fullerene derivative (F) containing two pyridyl groups,
acting as an electron acceptor. The fullerene derivative F is attached to
the both ZnPy chromophores via the coordination of the pyridyl nitrogens
with the zinc atoms. For structural details of the BPF complex, we refer to
Refs. 17 and 28.

be considered as individual interacting units, but not as an
extended single chromophore. We can expect that, at these
conditions, quantum coherence is able to play an important
role in energy and charge-transfer dynamics, manifesting it-
self in quantum beatings of chromophore populations as well
as in quantum oscillations of the charge accumulated on the
fullerene molecule. In principle, these oscillations could be
measured by a sensitive single-electron transistor, thus pro-
viding a direct proof of quantum behavior in the artificial pho-
tosynthetic complex. Since these phenomena occurs at very
short time scales (a few femtoseconds), they could be within
the reach of femtosecond spectroscopy in the near future.
The main goal of this study is to explore quantum features
of the energy and charge transfer in a wheel-shaped antenna-
reaction center complex at subpicosecond time scales.

II. MODEL AND METHODS

A. Hamiltonian

Each chromophore has one ground and one excited state,
whereas the electron-acceptor fullerene F has just one energy
level with energy EF . We introduce creation (annihilation)
operators, a†

k (ak), of an electron on the kth site. The electron
population operators are defined as nk = a†

kak . We assume
that each electron state can be occupied by a single electron,
as spin degrees of freedom are neglected. The basic Hamilto-
nian of the system has the form

H0 =
∑

k

(Eknk + Ek∗nk∗ ) + EF nF + HC

+
∑
k �=l

Vkla
†
k∗ak a†

l al∗ −
∑
σσ ′

�σσ ′a†
σ aσ ′ , (1)

where the first part incorporates the energies of the electron
states (hereafter k, l = BPEAa , BPEAb, BDPYa , BDPYb,
ZnPya , ZnPyb), and the second term is related to a fullerene
energy level EF with a population operator nF = a†

F aF .
The pair (k, k∗) denotes a ground (k) and an excited (k∗)
state of an electron located on the site k with the corre-
sponding energy Ek (Ek∗). The term HC represents the con-
tribution of Coulomb interactions between electron-binding
sites. This term is given in Appendix A. The fourth term of
Eq. (1) describes excitonic couplings between the chro-
mophores k and l. The matrix element Vkl is a measure
of an interchromophoric coupling strength. The last term in
Eq. (1) describes the electron tunneling from excited states of
the porphyrin molecules (ZnPya and ZnPyb) to the electron-
acceptor F characterized by the tunneling amplitudes �σσ ′ ,
where σ, σ ′ = ZnPy∗

a , ZnPy∗
b, F.

The interaction of the system with the environment (heat
bath), represented here by a sum of independent oscillators
with Hamiltonian

Henv =
∑

j

(
p2

j

2m j
+ m jω

2
j x

2
j

2

)
, (2)

is given by the term

He−ph = −
∑

jk

m jω
2
j x jk x j nk, (3)

where x j and p j are the position and momentum of the j th os-
cillator having an effective mass m j and a frequency ω j . The
coefficients x jk define the strength of the coupling between
the electron subsystem and the environment.

The contribution of the energy-quenching mechanisms
responsible for the recombination processes in the system is
given by the Hamiltonian,

Hquen = −
∑

l

(q†
l a†

l∗al + qla
†
l al∗ ). (4)

For the sake of simplicity, we include the radiation damping
of the excited states into the energy-quenching operator ql .
The first term in the Hermitian Hamiltonian Hquen is related
to the excitation of the l-chromophore by the quenching bath,
whereas the second term corresponds to the reverse process,
namely, to the absorption of chromophore energy by the bath.
Both processes are necessary to provide correct conditions for
the thermodynamic equilibrium between the system and the
bath.

The total Hamiltonian of the system is

H = H0 + He-ph + Henv + Hquen. (5)

We omit here the Hamiltonian of the quenching (radiation)
heat bath.

B. Diagonalization of H0

We choose 160 basis states |M〉 of the complex includ-
ing a vacuum state, where all chromophores are in the ground
state and the F site is empty. We diagonalize the Hamiltonian
H0 in Eq. (1) to consider the case where the excitonic cou-
pling between chromophores, described by coefficients Vlm,
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and the porphyrin-fullerene tunneling, which is determined
by amplitudes �σσ ′ , cannot be analyzed within perturbation
theory. In the new basis, |μ〉 =∑M |M〉〈M |μ〉, the Hamilto-
nian H0 is diagonal with the energy spectrum {Eμ}, so that
the total Hamiltonian of the system H has the form

H =
∑

μ

Eμ|μ〉〈μ| −
∑
μν

Aμν |μ〉〈ν| + Henv. (6)

Here

Aμν = Qμν + qμν (7)

is the combined operator for both heat baths with fluctuating
in time variables:

Qμν =
∑

j

m jω
2
j x j [x j F 〈μ|nF |ν〉

+
∑

k

(x jk〈μ|nk |ν〉 + x jk∗ 〈μ|nk∗ |ν〉)], (8)

qμν =
∑

l

〈μ|a†
l al∗ |ν〉 ql + H.c. (9)

To distinguish the processes of energy transfer, where the
number of electrons on each chromophore remains constant,
from the processes of charge transfer, where the total popula-
tion of the site changes, we introduce the following operators:

Sl = nl + nl∗ , Ml = nl − nl∗ , (10)

together with coefficients

x̄ jl = x jl + x jl∗

2
, x̃ jl = x jl − x jl∗

2
. (11)

Thus, the environment operator Qμν can be rewritten as

Qμν =
∑

j

m jω
2
j x j�

μν

j , (12)

with

�
μν

j =
∑

l

{x̄ jl〈μ|Sl |ν〉 + x̃ jl〈μ|Ml |ν〉} + x j F 〈μ|nF |ν〉.

(13)

C. Non-Markovian equations for the system operators

An arbitrary electron operator W can be expressed
in terms of the basic operators ρμν = |μ〉〈ν|; with W
=∑μν Wμν ρμν, and Wμν = 〈μ|W |ν〉. The operator ρμν

denotes a matrix with zero elements, with the exception
of the single element at the crossing of the μ-row and
the ν-column. The matrix elements Wμν of any electron
operator can be easily calculated (see, e.g., Eqs. (S10)
and (S11) in the supplementary material for Ref. 20). For
example, an electron localized in a two-well potential,21

with the right and left states |1〉 and |2〉, is described by
the Pauli matrices {σx , σy, σz} : σz = |1〉〈1| − |2〉〈2|, σx =
|1〉〈2| + |2〉〈1|, and σy = i(|2〉〈1| − |1〉〈2|), which are ex-
pressed in terms of the basic operators |μ〉〈ν| with μ, ν

= 1, 2.

In the Heisenberg picture, the operator W evolves in
time according to the equation: i (∂W/∂t) = [W, H ]−. This
evolution can be described with the time-evolving operators,
ρμν(t) = (|μ〉〈ν|)(t), which satisfy the Heisenberg equation:

i
∂ρμν

∂t
=[ρμν, H ]− = −ωμνρμν −

∑
α

(Aναρμα − Aαμραν),

(14)
where ωμν = Eμ − Eν, and the heat-bath operator Aμν is
defined in Eq. (7). Here, we use the fact that the Hamilto-
nian H in Eq. (6) is also expressed in terms of the opera-
tors ρμν taken at the same moment of time t . For two of
these operators, ρμν(t) and ραβ(t), we have simple multipli-
cation rules: ρμνραβ = δναρμβ. These rules allow to calculate
commutators of basic operators taken at the same moment of
time. We note that at the initial moment of time the operator,
ρμν(0) ≡ |μ〉〈ν|, is represented by the above-mentioned zero
matrix with a single unit at the μ-ν intersection. The matrix el-
ements of the electron operators in Eqs. (9) and (13) are taken
over the time-independent eigenstates of the Hamiltonian H0.
The bath operators Aμν fluctuate in time since they depend
on the environmental variables, {x j (t)}, and on the variables
{ql(t)} of the quenching bath.

It is known that the dissipative evolution of the two-
state system can be described by the Heisenberg equations
for the Pauli matrices {σx , σy, σz} with the spin-boson Hamil-
tonian [see Eq. (1.4) in Ref. 21], which includes environmen-
tal degrees of freedom. The artificial photosynthetic complex
analyzed in the present paper has 160 states. A dissipative
evolution of this complex is described by the Hamiltonian
H in Eq. (6), written in terms of the Heisenberg operators
ρμν(t) = (|μ〉〈ν|)(t) taken at the moment of time t . Instead
of the time-dependent Pauli matrices, the time evolution of
the two-state dissipative system can be described by the basic
operators |1〉〈1|, |1〉〈2|, |2〉〈1|, |2〉〈2|, evolving in time. In a
similar manner,22 the evolution of the multi-state photosyn-
thetic complex is described by the set of the time-dependent
Heisenberg operators ρμν(t), which obey Eq. (14). As its spin-
boson counterpart, the Hamiltonian H in Eq. (6) contains the
Hamiltonian, Henv, of the heat-bath as well as the system-bath
interaction terms. Here, we generalize the spin-boson model
from the case of two states to the case of 160 states. With
a knowledge of the operators ρμν(t), it is possible to find
the time evolution of any Heisenberg operator of the system.
Only at the initial moment of time, t = 0, the operators ρμν(0)
form the basis of the Liouville space. Note that we work in
the Heisenberg representation, without using the description
based on the von Neumann equations for the density matrix.

To obtain functions that can be measured in experiments,
we have to average the operator ρμν(t) and Eq. (14) over the
initial state |�0〉 of the electron subsystem as well as over the
Gaussian distribution, ρT = exp(−H (0)

bath/T ), of the equilib-
rium bath, 〈. . .〉T , with temperature T and with a free Hamil-
tonian H (0)

bath, which comprises the free environment Hamil-
tonian and the free Hamiltonian of the quenching bath. The
notation 〈. . .〉 means double averaging:

〈. . .〉 = 〈〈�0| . . . |�0〉〉T . (15)
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The quantum-mechanical average value of the initial basic
matrix, 〈�0|ρμν(0)|�0〉 = 〈�0|μ〉〈ν|�0〉, is determined by
the product of amplitudes to find the electron subsystem at
the initial moment of time in the eigenstates |μ〉 and |ν〉 of the
Hamiltonian H0.

A standard density matrix, ρ̄ = {ρ̄μν}, of the electron
subsystem is a deterministic function which allows to cal-
culate the average value of an arbitrary operator W with the
formula:

〈W (t)〉 = T r [ρ̄(t) W ] =
∑
μν

Wμν ρ̄νμ(t). (16)

The same average value can be written as 〈W (t)〉 =∑
μν Wμν 〈ρμν(t)〉, which means that the average matrix,

〈ρμν(t)〉 = ρ̄νμ(t), has matrix elements related to the trans-
posed density matrix ρ̄(t).

It should be emphasized that the time evolution of the
heat-bath operators {x j , p j } and {ql}, as well as their linear
combinations Qμν, qμν, and Aμν , are determined by the to-
tal Hamiltonian H in Eq. (6). In the absence of an interac-
tion with the dynamical system (the electron-binding sites),
the free-phonon operators Q(0)

μν , as well as the free operators
of the other baths, q (0)

μν , are described by Gaussian statistics,23

as in the case of an environment comprising independent lin-
ear oscillators with the Hamiltonian Henv in Eq. (2). Using
Gaussian property, Efremov et al.24 derived non-Markovian
Heisenberg–Langevin equations, without using perturbation
theory, that assumes a weak system-bath interaction. Re-
cently, a similar non-perturbative approach has been devel-
oped by Ishizaki and Fleming in Ref. 25. Due to Gaussian
properties of the free bath, the total operator Aμν of the com-
bined dissipative environment is a linear functional of the op-
erators ρμν ,

Aμν(t) = A(0)
μν(t)

+
∑
μ̄ν̄

∫
dt1
〈
i
[
A(0)

μν(t),A(0)
μ̄ν̄(t1)

]
−
〉
θ (t−t1)ρμ̄ν̄(t1),

(17)

where θ (τ ) is the Heaviside step function. We note that this
expansion directly follows from the solution of the Heisen-
berg equations for the positions {x j } and {ql} of the bath os-
cillators. It is shown in Ref. 24 that the average value of the
free operator A(0)

μν(t) multiplied by an arbitrary operator B(t)
is proportional to the functional derivative of the operator B
over the variable A(0)

μν(t):

〈
A(0)

μν(t)B(t)
〉 =∑

μ̄ν̄

∫
dt1
〈
A(0)

μν(t)A(0)
μ̄ν̄(t1)

〉×
〈

δB(t)

δA(0)
μ̄ν̄(t1)

〉
,

(18)
with

δB(t)

δA(0)
μ̄ν̄(t1)

= i [B(t), ρμ̄ν̄(t1)]− θ (t − t1). (19)

Substituting Eqs. (17)–(19) into Eq. (14) we derive the ex-
act non-Markovian equation for the Heisenberg operators ρμν

of the dynamical system (chromomorphic sites + fullerene)

interacting with a Gaussian heat bath,

〈ρ̇μν〉−i ωμν〈ρμν〉=
∑
αμ̄ν̄

∫ t

0
dt1
{〈
A(0)

μ̄ν̄(t1)A(0)
να(t)

〉〈ρμ̄ν̄(t1)ρμα(t)〉

− 〈A(0)
να(t)A(0)

μ̄ν̄(t1)
〉〈ρμα(t)ρμ̄ν̄(t1)〉

+ 〈A(0)
αμ(t)A(0)

μ̄ν̄(t1)
〉〈ραν(t)ρμ̄ν̄(t1)〉

− 〈A(0)
μ̄ν̄(t1)A(0)

αμ(t)
〉〈ρμ̄ν̄(t1)ραν(t)〉}. (20)

The time evolution of the average operator 〈ρμν〉 is deter-
mined by the second-order correlation functions of the sys-
tem operators as well as by the correlation functions of the
free dissipative environment. Here, we do not impose any re-
strictions on the spectrum of the environment. It should be
emphasized that the exact non-Markovian equation (20) goes
far beyond the von Neumann equation, i ˙̄ρ = [H, ρ̄]−, for the
density matrix ρ̄ of the electron subsystem.

D. Beyond the system-bath perturbation theory

We assume that the coupling of the system to the quench-
ing heat bath determined by the Hamiltonian Hquen in Eq. (4)
is weak enough to be analyzed perturbatively. However, an
interaction of the chromophores with the protein environment
cannot be treated entirely within perturbation theory since the
reorganization energies are of the order of the intersite cou-
plings. As in the theory of modified Redfield equations,26, 27

the phonon operator Qμν in Eq. (12) can be represented as a
sum of diagonal Qμ = Qμμ and off-diagonal Q̃μν parts:

Qμν = Qμδμν + (1 − δμν)Q̃μν. (21)

We derive equations for diagonal and off-diagonal elements
of the matrix 〈ρμν(t)〉 (see Appendix B for details about
the derivation), where the interaction with the off-diagonal
elements of the environment operators Q̃μν are considered
within the perturbation theory, and the effects of the diago-
nal elements Qμ are treated exactly.

The time dependence of the electron distribution 〈ρμ〉 (di-
agonal elements) over eigenstates of the Hamiltonian H0 is
governed by the equation

〈ρ̇μ〉 + γμ〈ρμ〉 =
∑

α

γμα〈ρα〉, (22)

where the relaxation matrix γμα contains a contribution, γ̃μα ,
from the non-diagonal environment operators [see Eq. (B22)]
as well as a contribution from the quenching processes, γ

quen
μα

[see Eq. (B30)],

γμα = γ̃μα + γ quen
μα , (23)

with the total relaxation rate γμ =∑α γαμ. The time evolu-
tion of the off-diagonal elements are given by Eq. (B31) in
Appendix B.

Equations (22) and (B31) allow us to determine the time
evolution of an average value for an arbitrary operator W of
the system: 〈W (t)〉 =∑μν〈μ|W |ν〉〈ρμν(t)〉.
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III. ENERGIES AND OTHER PARAMETERS

A. Energy levels and electrochemical potentials

The energies of the excited states of chromophores
BPEA, BDPY, and ZnPy, in the BPF complex are estimated
from the average between the longest wavelength absorption
band and the shortest wavelength emission band of the chro-
mophores. The average excited state energies of the chro-
mophores BPEA, BDPY, and ZnPy are 2610 meV, 2370
meV, and 2030 meV, respectively, if we count from the cor-
responding ground energy levels.16, 17 Cyclic voltammetric
studies17 of reduction potentials with respect to the standard
calomel electrode show that the first reduction potential of the
fullerene derivative, F, is about – 0.62 V and the first oxidation
potential of ZnPy is about 0.75 V. From these data we calcu-
late that the energy of the charge-separated state ZnPy+−F−

is about 1370 meV. This energy is the sum of the energy of
an electron on site F and the Coulomb interaction energy be-
tween a positive charge on ZnPy and a negative charge on
F. The Coulomb energy can be calculated with the formula
u = e2/4πε0εr , where ε0 is the vacuum dielectric constant.
The dielectric constant ε of 1,2-diflurobenzene (a solvent
used in all experimental measurements of Ref. 17) is about
13.8. If the distance r between porphyrin ZnPy and fullerene
F is about 1 nm, the Coulomb interaction energy is about
105 meV. Thus, the estimated energy of the electron on F can
be of the order of 1475 meV.

B. Reorganization energies and coupling strengths

The reorganization energies for exciton and electron
transfer processes and electronic coupling strengths between
the chromophores depend on the mutual distances and
orientations of the components, strengths of chemical bonds,
solvent polarity, and other structural details of the system.
Precise values of these parameters are not available. How-
ever, time constants for energy transfer between different
chromophores in the BPF complex, as well as rates for
transitions of electrons between the fullerene F and porphyrin
chromophores ZnPy, have been reported in Ref. 17. We fit

TABLE II. Comparison between the calculated values of the time constants
(using the parameter sets I and II) to the experimental values reported in
Ref. 17.

Process τ (Set I) τ (Set II) τ (Experimental)

BPEAa → BPEAb,

BPEAb → BPEAa
∼0.4 ps ∼0.2 ps 0.4 ps

BPEAa → BDPYa,

BPEAb → BDPYb
∼5 ps ∼5.4 ps 5–13 ps

BDPYa → ZnPya,

BDPYb → ZnPyb
∼5 ps ∼3.9 ps 2–15 ps

BPEAa → ZnPya,

BPEAb → ZnPyb
∼12 ps ∼12 ps 7 ps

BPEAb → ZnPya,

BPEAa → ZnPyb
∼10 ps ∼12 ps 6 ps

ZnPyb → F,

ZnPya → F
∼3 ps ∼3 ps 3 ps

the experimental values of these time constants with the rates
following from our equations with the goal of extracting
reasonable values for the reorganization energies and the
electronic and excitonic couplings. In principle, many com-
binations of reorganization energies and coupling constants
could be possible. For the sake of simplicity, we consider two
sets of parameters, for two limiting situations. One parameter
set (denoted by set I in Table I) corresponds to a larger exci-
tonic couplings, V , compared to the reorganization energies,
�, whereas another set of parameters (denoted by set II in
Table I) considers the opposite case, where the reorganization
energies are larger than the excitonic couplings. These two
sets of parameters are presented in Table I. In addition to
the parameters listed in Table I, we consider the following
values for the charge-transfer reorganization energies (set
I): λF = 200 meV, λl M = 100 meV, and λF = 230 meV,
λl M = 120 meV (set II), where l = ZnPya, ZnPyb. The
values of the reorganization energies for energy-transfer
processes are much smaller than those for charge transfer.

References 17 and 28 reported a very fast electron
transfer (with a time constant τ ∼ 3 ps) between excited
states of zinc porphyrins (ZnPya ,ZnPyb) and the fullerene
derivative F. This fact indicates a good porphyrin-fullerene

TABLE I. Chosen values of the excitonic couplings (V ) and reorganization energies for energy transfer (�) of the six
antenna chromophores. We choose two sets of parameters, one set (denoted by I) corresponds to V > � and the other
set (II) to the opposite limit V < �. The calculated values of the time constants using both sets of parameters agree with
the experimental values.

Set I Set II

Chromophores Coupling (V) Reorganization energy (�) Coupling (V) Reorganization energy (�)

BPEAa ↔ BPEAb , 50 meV �BPEAa = 20 meV 30 meV �BPEAa = 40meV
BPEAb ↔ BPEAa �BPEAb = 20 meV �BPEAb = 40 meV
BPEAa ↔ BDPYa , 30 meV �BDPYa = 15meV 17 meV �BDPYa = 30meV
BPEAb ↔ BDPYb �BDPYb = 15 meV �BDPYb = 30 meV
BDPYa ↔ ZnPya , 60 meV �ZnPya = 20 meV 25 meV �ZnPya = 40 meV
BDPYb ↔ ZnPyb �ZnPyb = 20 meV �ZnPyb = 40meV
BPEAa ↔ ZnPya , 50 meV . . . 40 meV . . .
BPEAb ↔ ZnPyb

BPEAb ↔ ZnPya , 60 meV . . . 40 meV . . .
BPEAa ↔ ZnPyb
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electronic coupling, which is due to the short covalent linkage
and close spatial arrangement of the components.28 Hereafter,
we assume that the ZnPy-F tunneling amplitudes � are about
100 meV (parameter set I) and 80 meV (parameter set II).
These parameters provide a quite fast electron transfer despite
a significant energy gap between the ZnPy excited states and
the fullerene energy level.

Using the parameter sets I and II we have calculated
time constants for energy and charge processes. A comparison
between the calculated and experimental values of the time
constants has been presented in Table II.

To describe recombination processes, we introduce a
coupling of the lth chromophore to a quenching heat bath
characterized for simplicity by the Ohmic spectral den-
sity: χ ′′

l (ω) = αl ω with a dimensionless constant αl . We
assume that the shifts of the energy levels caused by the
quenching bath are included into the renormalized parame-
ters of the electron subsystem. The experimental values17, 28

of the lifetimes τ e
l for excited states of chromophores BPEA,

BDPY, and ZnPy: τ e
BPEA = 2.82 ns, τ e

BDPY = 0.26 ns, and
τ e

ZnPY = 0.45 ns, respectively, can be achieved with the
following set of coupling constants: αBPEA ∼ 10−7, αBDPY

∼ 10−6, and αZnPy ∼ 7 × 10−7.

IV. RESULTS AND DISCUSSIONS

Using Eqs. (B31) and (22) and two sets of parameters dis-
cussed in Sec. III, here we study electron and energy-transfer
kinetics in the BPF complex with special emphasis on the
femtosecond time range, where the effects of quantum coher-
ence can play an important role. We consider both single- and
double-exciton regimes.

A. Evolution of a single exciton in the BPF complex

In Fig. 2, we show the time evolution of the excited states
populations provided that only the BPEAa chromophore is
excited at t = 0 (single-exciton regime). We use here the pa-
rameter set I, where excitonic couplings are larger than re-
organization energies (see Sec. III). The process starts with
quantum beatings between the resonant BPEAa and BPEAb

chromophores, with a decoherence time of the order of 100 fs
(at T = 300 K). In a few picoseconds, the excitation energy is
subsequently transferred to the adjacent BDPY moieties and
to the ZnPy chromophores. Later on, an electron moves from
the excited energy level of the porphyrins to the fullerene moi-
ety, thus producing a charge-separated state, ZnPy+−F−, with
a quantum yield 95%, which is in agreement with the experi-
mental results.16

It is evident from Fig. 2 that excited state populations of
the BDPY chromophores oscillate with much lower ampli-
tudes and die out within a very short time, t < 10 fs, at both
temperatures: T = 300 K and 77 K. The populations of the
other sites of the BPF complex do not exhibit any oscillatory
behavior. This can be ascribed to incoherent hopping becom-
ing dominant because of significant energy mismatch between
these chromophores.

Figure 3 shows the time dependence of the excited state
populations of chromophores for the parameter set II, where
the reorganization energies are larger than the excitonic cou-
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FIG. 2. Site populations as a function of time for the parameter set I. The
inset plots depict the features of site populations for short time, at two dif-
ferent temperatures: T = 300 K and 77 K. The site populations of the BPEA
moieties oscillate with a considerably large amplitude, while the oscillations
of the other site populations are hardly observable.

plings between chromophores. At t = 0, the BPEAa chro-
mophore is excited (single-exciton regime). Then, after a
few picoseconds, the charge-separated state is formed with
a quantum yield of the order of 97%. However, owing to
a stronger system-environment coupling, quantum beats be-
tween the BPEAa and BPEAb chromophores have a lower
amplitude and shorter decoherence time (∼50 fs) than in the
previous case when we used the parameter set I. We note that
no quantum oscillations of the fullerene population (site F)
are visible in Figs. 2 and 3.

No significant oscillations of the site populations were
observed (not shown here) when the BDPY chromophores
were initially (at t = 0) excited. In this case, due to the consid-
erable energy gaps between the BDPY and the adjacent BPEA
and ZnPy chromophores, incoherent hopping dominates over
the coherent transfer of excitons. Furthermore, the structure
of the BPF complex15, 28 does not allow direct energy transfer
between two BDPY chromophores.

Figures 4 and 5 demonstrate the charge- and energy-
transfer dynamics for two parameter sets, I and II, for the case
when one of the porphyrin chromophores (ZnPya) is excited.
Here, we do not show the time evolution of the BPEA and
BDPY chromophores since these moieties have higher exci-
tation energies than the ZnPy chromophore and they are not
excited in the process. As evident from Figs. 4 and 5, the
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FIG. 3. This figure presents site populations as a function of time for the
parameter set II. The inset plots show the site populations for short time,
at two different temperatures: T = 300 K and 77 K. The amplitudes of the
site-population oscillations are much smaller and die out earlier, compared to
Fig. 2. This figure indicates that even for � > V , the energy transfer between
BPEA chromophores is dominated by wave-like coherent motion.

excited porphyrin molecule rapidly transfers an electron to
fullerene, thus producing a charge-separated state ZnPy+−F−

with a quantum yield of about 98%. The most important fea-
ture here is that the population and charge of the fullerene
molecule oscillates in time due to a quantum superposition of
the porphyrin excited state and the state of an electron on the
fullerene. The amplitude of these quantum beats is very small
and the decoherence time is quite short (∼10 fs at T = 77
K). This fact can be explained by the significant energy mis-
match between the ZnPy∗−F and ZnPy+−F− states as well
as by the strong influence of the environment on the electron
dynamics.

B. Evolution of double excitons in the BPF complex

In Sec. IV A, we consider a single exciton case with just
one chromophore initially being in the upper energy state.
Here we analyze a situation where two porphyrin molecules
(ZnPya and ZnPyb) are excited at t = 0. Figures 6(a) and
6(b) show the coherent dynamics of the fullerene population
(and the fullerene charge) for the parameter sets I (Fig. 6(a))
and II (Fig. 6(b)) at two different temperatures, T = 77 K and
T = 300 K. We also compare the double-exciton case with
the previously analyzed single-exciton case. It is apparent
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FIG. 4. Site populations as a function of time for the parameter set I, when
the ZnPya chromophore is in the excited state and all the other chromophores
are in the ground state at t = 0. The inset plots depict the site populations at
short time for two temperatures: T = 300 K and 77 K. Lowering the temper-
ature enhances the oscillations of the charge density on the fullerene moiety.
Despite the huge energy difference between ZnPy∗-F and ZnPy+-F−, the
charge of the fullerene site exhibits oscillatory behavior for short time, spe-
cially at lower temperatures.

from Fig. 6 that the double excitation significantly enhances
the amplitude of quantum oscillations of the fullerene
charge for both sets of parameters. As one might expect, the
frequency of the quantum beatings and the decoherence time
are not affected by the number of excitons.

C. Amplification of charge oscillations

In the previous discussion we observed that lowering
the temperature and the simultaneous excitation of both por-
phyrins significantly enhances quantum oscillations of the
fullerene charge. In this subsection we show that these os-
cillations can also be controlled by tuning the following
parameters:

1. Electron tunneling amplitude �

The electronic coupling between the fullerene electron
acceptor and zinc porphyrins has a strong effect on the quan-
tum oscillations of the fullerene charge. To explore this effect,
in Fig. 7(a) we plot the electron population of the fullerene
as a function of time, for different values of the coupling �.
Figure 7(a) clearly shows that, with increasing �, the ampli-
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FIG. 5. Time evolution of the site populations for the parameter set II, start-
ing with an exciton on the chromophore ZnPya at t = 0. The inset plots depict
the features of the site populations for a shorter time regime and at two tem-
peratures: T = 300 K and 77 K. Lowering the temperature enhances oscilla-
tions of the charge density on the fullerene derivative. These results indicate
that the population of the site F oscillates for short time, even for � > V .
These oscillations are more pronounced at lower temperatures.

tude of the charge oscillations is significantly enhanced. This
coupling can be increased by attaching the fullerene to por-
phyrins with better ligands which form much stronger cova-
lent bonds.

2. Energy of the charge-separated state Ech

The energy, Ech ∼ 1370 meV, of the charge-separated
state, ZnPy+−F−, is much lower than the energy of the zinc
porphyrin excited state, EZnPy∗ ∼ 2030 meV. It is evident from
Fig. 7(b) that increasing the energy Ech, which leads to a de-
crease of the porpyrin-fullerene energy mismatch, results in a
pronounced amplification of the quantum oscillations of the
fullerene charge. The energy of the fullerene can be changed
by placing nearby a charge residue, electrostatically coupled
to the fullerene.

3. Reorganization energy λF

In Fig. 7(c) we present the time evolution of the fullerene
population for different values of charge-transfer reorganiza-
tion energy λF . This parameter can be decreased by replac-
ing the polar solvent with another one which has a much
lower polarity. As can be seen from Fig. 7(c), the quantum
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FIG. 6. Time evolution of the populations on the site F, for both sets of pa-
rameters, I and II, comparing the double-exciton case (the two ZnPy chro-
mophores are excited) with the single-exciton case. (a) Time evolution of
the populations on the site F for the parameter set I. (b) Time evolution of
the populations on the site F for the parameter set II. Note that the double-
excitation significantly enhances the amplitude of the charge oscillations at
the fullerene site for both sets of parameters, either at low or at high temper-
atures.

oscillations of the fullerene charge survive much longer times
for smaller values of the reorganization energy, which cor-
respond to weaker system-environment couplings. A similar
effect is expected when the porphyrin reorganization energy
is changed.

V. CONCLUSIONS

We theoretically studied the energy and electron-transfer
dynamics in a wheel-shaped artificial antenna-reaction cen-
ter complex. This complex,17 mimicking a natural photosys-
tem, contains six chromophores (BPEAa , BPEAb, BDPYa ,
BDPYb, ZnPya , and ZnPyb) and an electron acceptor
(fullerene, F). Using the methods of dissipative quantum me-
chanics we derive and solve a set of equations for both the
diagonal and off-diagonal elements of the density matrix,
which describe quantum coherent effects in energy and charge
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FIG. 7. Time evolution of the population on the site F for the parameter
set II when both ZnPy chromophores are excited at t = 0. (a) Effects of the
coupling � on the time evolution of the populations on the site F. (b) Effects
of the energy gap between an excited state of a ZnPy chromophore and the
charge-separated state, Ech, on the time evolution of populations on the site F.
(c) Effects of the reorganization energy λ on the time evolution of populations
on the site F. As can be seen from these plots, the contribution of wave-
like coherent motion to electron-transfer dynamics is significantly enhanced
when strengthening the coupling between fullerene and porphyrin, lowering
the energy gap between the fullerene and porphyrin sites, and decreasing the
reorganization energy.

transfer. We consider two sets of parameters, one correspond-
ing to the case where the energy-transfer reorganization en-
ergy � is less than the resonant coupling V between the
chromophores, � < V , and another regime where � > V .
For these two sets of parameters, we examine the electron
and exciton dynamics, with special emphasis on the short-
time regime (∼ femtoseconds). We demonstrate that, in agree-
ment with the experiments performed in Ref. 17, the excita-
tion energy of the BPEA antenna chromophores is efficiently
funneled to porphyrins (ZnPy). The excited ZnPy molecules
rapidly donate an electron to the fullerene electron accep-
tor, thus creating a charge-separated state, ZnPy+−F−, with
a quantum yield of the order of 95%. There is no observable

difference in energy transduction efficiency for these two sets
of parameters. In the limit of strong interchromophoric cou-
pling, coherent dynamics dominates over incoherent-hopping
motion. In the single-exciton regime, when one of the BPEA
chromophores is initially excited, quantum beatings between
two resonant BPEA chromophores occur with decoherence
times of the order of 100 fs. However, here the electron trans-
fer process is dominated by incoherent hopping. For the case
where one porphyrin molecule is excited at the beginning,
we obtain small quantum oscillations of the fullerene charge
characterized by a short decay time scale (∼10 fs). More pro-
nounced quantum oscillations of the fullerene charge (with
an amplitude ∼0.1 electron charge and decoherence time of
about 20 fs at T = 77 K) are predicted for the double-exciton
regime, when both porphyrin molecules are initially excited.
We also show that the contribution of wave-like coherent mo-
tion to electron-transfer dynamics could be enhanced by low-
ering the temperature, strengthening the fullerene-porphyrin
bonds, shrinking the energy gap between the zinc porphyrin
and fullerene moieties (e.g., by attaching a charged residue
to the fullerene), as well as by decreasing the reorganization
energy (by tuning the solvent polarity).
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APPENDIX A: COULOMB INTERACTION ENERGIES

The Coulomb interactions between the electron states are

HC = −uF [(1 − n̄ZnPya
)nF + (1 − n̄ZnPyb

)nF ]

+ uPy(1 − n̄ZnPya
)(1 − n̄ZnPyb

)

+ uZnPya
nZnPya

nZnPy∗
a
+ uZnPyb

nZnPyb
nZnPy∗

b
, (A1)

where

n̄ZnPya
= nZnPya

+ nZnPy∗
a

and n̄ZnPyb
= nZnPyb

+ nZnPy∗
b
.

The first term of Eq. (A1) represents the electrostatic attrac-
tion (so the minus sign) between the positively charged ZnPy
chromophores and the negatively charged fullerene. The sec-
ond term is due to the Coulomb repulsion (so the plus sign)
between two ZnPy chromophores. The last two terms are
the repulsive interaction energies when both the excited and
ground states of the ZnPy chromophores are occupied by
electrons. The coefficients uF , uPy, uZnPya

, and uZnPya
repre-

sent the magnitudes of the electrostatic interactions and these
are calculated using the Coulomb formula. We have assumed
that the empty ZnPy chromophores (nZnPy + nZnPy∗ = 0) have
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positive charges and the acceptor state F becomes negatively
charged when it is occupied by an electron.

APPENDIX B: DERIVATION OF EQUATIONS
FOR THE MATRIX 〈ρμν〉

Our derivation of the equations for the matrix 〈ρμν〉 is
based on the exact solution for the operator ρμν = (|μ〉〈ν|)(t)
of the system influenced only by diagonal fluctuations of the
bath. In this case the “system + bath” Hamiltonian has the
form

Hdiag =
∑

μ

Eμ|μ〉〈μ| +
∑

j

(
p2

j

2m j
+ m jω

2
j x

2
j

2

)

−
∑

μ

∑
j

m jω
2
j�

μ

j x j |μ〉〈μ|, (B1)

where �
μ

j = �
μμ

j [see Eq. (13)]. The time evolution of the
exciton operators ρμν is governed by the Heisenberg equation

i ρ̇μν = −ωμνρμν +
∑

j

m jω
2
j

(
�

μ

j − �ν
j

)
x jρμν. (B2)

It is possible to verify that the solution of Eq. (B2) is given by
the equation

ρμν(t) = exp[i�μν(t − t0)] × exp

⎡
⎣i
∑

j

p j (t)
(
�

μ

j − �ν
j

)⎤⎦

× exp

⎡
⎣−i

∑
j

p j (t0)
(
�

μ

j − �ν
j

)⎤⎦ ρμν(t0), (B3)

where

�μν = ωμν −
∑

j

m jω
2
j

2

[(
�

μ

j

)2 − (�ν
j

)2]
, (B4)

and p j is the Heisenberg operator of the dissipative environ-
ment. The evolution begins at time t = t0. The diagonal oper-
ators ρμ = ρμμ are constant, ρμ(t) = ρμ(t0), in the presence
of a strong interaction with the diagonal operators of the pro-
tein environment.

For uncorrelated diagonal and off-diagonal environment
operators, when 〈Q(0)

α (t)Q̃(0)
μν(t ′)〉 = 0, the contribution of the

environment to the non-Markovian equation (20) consists of
two parts:

〈−i[ρμν, He-ph]−〉 = 〈− i
[
ρμν, H diag

e-ph

]
−
〉

+ 〈− i
[
ρμν, H n-diag

e-ph

]
−
〉
. (B5)

The diagonal elements, Qμ, of the environment contribute to
the first part,〈− i

[
ρμν, H diag

e-ph

]
−
〉

=
∫ t

0
dt1
〈(

Q(0)
μ − Q(0)

ν

)
(t)Q(0)

ν̄ (t1)
〉〈ρμν(t)ρν̄(t1)〉

−
∫ t

0
dt1
〈
Q(0)

ν̄ (t1)
(
Q(0)

μ − Q(0)
ν

)
(t)
〉〈ρν̄(t1)ρμν(t)〉,

(B6)

whereas the second part is due to a contribution of the non-
diagonal (abbreviated as n-diag in the super-index) operators,
Q̃μν , 〈− i

[
ρμν, H n-diag

e-ph

]
−
〉

= −
∫ t

0
dt1
〈
Q̃(0)

να(t)Q̃(0)
μ̄ν̄(t1)

〉〈ρμα(t)ρμ̄ν̄(t1)〉

+
∫ t

0
dt1
〈
Q̃(0)

μ̄ν̄(t1)Q̃(0)
να(t)

〉〈ρμ̄ν̄(t1)ρμα(t)〉

+
∫ t

0
dt1
〈
Q̃(0)

αμ(t)Q̃(0)
μ̄ν̄(t1)

〉〈ραν(t)ρμ̄ν̄(t1)〉

−
∫ t

0
dt1
〈
Q̃(0)

μ̄ν̄(t1)Q̃(0)
αμ(t)

〉〈ρμ̄ν̄(t1)ραν(t)〉. (B7)

We note that the time evolution of the diagonal elements of
the system operator, ρμ = ρμμ, is determined by the non-
diagonal operators Q̃μν as well as by quenching terms. Strong
diagonal fluctuations of the environment have no effect on
the evolution of the diagonal elements of the matrix. Thus, in
Eq. (B6) we assume ρν̄(t1) = ρν̄(t) so that Eq. (B6) can be
rewritten as〈− i

[
ρμν, H diag

e-ph

]
−
〉 = −(�diag

μν + iδ�diag
μν

)
(t)〈ρμν(t)〉, (B8)

where the time-dependent rate, �
diag
μν (t), and the frequency

shift, δ�
diag
μν , can be found from the following expression:

�diag
μν (t) + iδ�diag

μν (t) =
∫ t

0
dt1
{〈

(Q(0)
μ − Q(0)

ν )(t)Q(0)
ν (t1)

〉
− 〈Q(0)

μ (t1)
(
Q(0)

μ − Q(0)
ν

)
(t)
〉}

. (B9)

The rate �
diag
μν (t) determines the fast decay of quantum coher-

ence in our system. For an environment composed of inde-
pendent oscillators, we obtain〈(

Q(0)
μ − Q(0)

ν

)
(t)Q(0)

ν (t1)
〉− 〈Q(0)

μ (t1)
(
Q(0)

μ − Q(0)
ν

)
(t)
〉

= −
∑

j

m jω
3
j

2

(
�

μ

j − �ν
j

)2
coth

(ω j

2T

)
cos ω j (t − t1)

−i
∑

j

m jω
3
j

2

[(
�

μ

j

)2 − (�ν
j

)2]
sin ω j (t − t1). (B10)

The fluctuations of the diagonal operators of the environment
can be described by the set of spectral functions,

Jμ(ω) =
∑

j

m jω
3
j

2

(
�

μ

j

)2
δ(ω − ω j ),

J̄μν(ω) =
∑

j

m jω
3
j

2

(
�

μ

j − �ν
j

)2
δ(ω − ω j ), (B11)

together with the corresponding reorganization energies,

λμ =
∫ ∞

0

dω

ω
Jμ(ω) =

∑
j

m jω
2
j

2

(
�

μ

j

)2
,

λ̄μν =
∫ ∞

0

dω

ω
J̄μν(ω) =

∑
j

m jω
2
j

2

(
�

μ

j − �ν
j

)2
. (B12)
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We also introduce a spectral function, J̃μν(ω), which charac-
terizes the non-diagonal (μ �= ν) environment fluctuations,

J̃μν(ω) =
∑

j

m jω
3
j

2

∣∣�̃μν

j

∣∣2δ(ω − ω j ), (B13)

where �̃
μν

j = �
μν

j [see Eq. (13)] taken at μ �= ν. With
Eq. (B10) we calculate the contributions of the diagonal en-
vironment fluctuations into the decoherence rate and the fre-
quency shift of the off-diagonal elements of the system matrix
〈ρμν〉 in Eq. (B8),

�diag
μν (t) =

∫ ∞

0

dω

ω
J̄μν(ω) coth

( ω

2T

)
sin ωt,

δ�diag
μν (t) =

∫ ∞

0

dω

ω
[Jμ(ω) − Jν(ω)](1 − cos ωt). (B14)

The contribution of the non-diagonal fluctuations of the
environment to the evolution of the electron operators 〈ρμν〉
is defined by Eq. (B7). To calculate the products of exciton
variables taken at different moments of time, for example,
ρμα(t)ρμ̄ν̄(t1), we use Eq. (B3), which describes the evolution
of exciton operators in the presence of strong coupling to the
diagonal operators, Qμ, of the environment. We assume that
the interaction with the non-diagonal environment operators,
Q̃μν , is weak. With Eq. (B3) we express the operators at time
t1 in terms of operators taken at time t :

ρμ̄ν̄(t1) = exp[−i�μ̄ν̄τ ]

× exp[iuμ̄ν̄(τ )] exp[−ivμ̄ν̄(t, t1)]ρμν(t), ρμ̄ν̄(t1)

= ρμν(t) exp[−i�μ̄ν̄τ ] exp[−iuμ̄ν̄(τ )]

× exp[−ivμ̄ν̄(t, t1)], (B15)

where τ = t − t1, and

uμν(τ ) =
∫ ∞

0

dω

ω
J̄μν(ω) sin ωτ,

vμν(t, t1) =
∑

j

(
�

μ

j − �ν
j

)
[p j (t) − p j (t1)]. (B16)

Here, we assume that p j (t), p j (t1) are free-evolving momen-
tum operators of the environment, which are described by
Gaussian statistics with a correlation function〈

1

2
[ p j (t), p j (t1)]+

〉
= ¯m jω j

2
coth

(
¯ω j

2T

)
cos ω j (t − t1).

(B17)
The operator function vμν(t, t1) does not commute with the
exciton matrix ρμν(t), and, therefore, we need two expres-
sions for the operator ρμν(t1), which are distinguished by the
order of the operators ρμν(t) and exp[−ivμν(t, t1)]. For the
average value of the operator exp[−ivμν(t, t1)], we obtain

〈exp[−ivμν(t, t1)]〉

= exp

{
−
∫ ∞

0

dω

ω2
J̄μν(ω) coth

(
¯ω

2T

)
[1− cos ω(t − t1)]

}
.

(B18)

Substituting Eq. (B15) into Eq. (B7) and using the secular
approximation, we obtain a contribution of the non-diagonal

environment operators, Q̃μν , to the evolution of diagonal ex-
citon operators 〈ρμ〉,〈− i

[
ρμ, H n-diag

e-ph

]
−
〉 = −

∑
α

γ̃αμ(t)〈ρμ〉 +
∑

α

γ̃μα(t)〈ρα〉,

(B19)

characterized by the following relaxation matrix:

γ̃μα(t)

=
∫ t

0
dt1
〈
Q̃(0)

αμ(t)Q̃(0)
μα(t1)

〉
e−i�μα (t−t1)e−iuμα (t−t1)〈e−ivμα (t,t1)〉

+
∫ t

0
dt1
〈
Q̃(0)

αμ(t1)Q̃(0)
μα(t)

〉
e−i�αμ(t−t1)eiuαμ(t−t1)〈e−ivαμ(t,t1)〉,

(B20)

where

〈
Q̃(0)

αμ(t)Q̃(0)
μα(t1)

〉 = (1/2)
∫ ∞

0
J̃αμ(ω)

×
{[

coth

(
ω

2T

)
− 1

]
eiω(t−t1)

+
[

coth

(
ω

2T

)
+ 1

]
e−iω(t−t1)

}
. (B21)

When the environment is at high temperatures (2T � ω) and
at low frequencies of the diagonal fluctuations (ωτ  1), we
have

uμν(τ ) � λ̄μντ,

and

〈exp[−ivμν(t, t1)]〉 � exp[−λ̄μνT (t − t1)2].

With these assumptions the relaxation matrix has a simple
form

γ̃μα =
√

π

λ̄αμ

∫ ∞

0
dω J̃αμ(ω) n(ω)

×
{

exp

[
− (ω + �αμ − λ̄αμ)2

4λ̄αμT

]

+ exp

(
ω

T

)
exp

[
− (ω − �αμ + λ̄αμ)2

4λ̄αμT

]}
,

(B22)

where n(ω) = [exp(ω/T ) − 1]−1 is the Bose distribution
function at the temperature T . The moment of time t in the ex-
pression (B20) for the relaxation matrix is usually higher than
the effective retardation time, τc ∼ (λ̄αμT )−1/2, of the inte-
grand in Eq. (B20): t � τc. Therefore, we assume that t � ∞
so that γ̃μα(t) � γ̃μα(∞) = γ̃μα.

It follows from Eq. (B7) that a contribution of the non-
diagonal environment operators Q̃μν to the evolution of the
off-diagonal elements ρμν is given by the formula〈− i

[
ρμν, H n-diag

e-ph

]
−
〉 = −(�̃μν + iδ�̃μν)(t)〈ρμν(t)〉,

(B23)
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where

�̃μν(t) + iδ�̃μν(t)

=
∫ t

0
dt1
〈
Q̃(0)

να(t)Q̃(0)
αν (t1)

〉
e−i�αν (t−t1)e−iuαν (t−t1)〈e−ivαν (t,t1)〉

+
∫ t

0
dt1
〈
Q̃(0)

μα(t)Q̃(0)
αμ(t1)

〉
e−i�μα (t−t1)eiuμα(t−t1)〈e−ivμα (t,t1)〉.

(B24)

A small frequency shift, δ�̃μν, can be hereafter ignored. The
dephasing rate, �̃μν , has two parts, �̃μν = �̃μ + �̃ν, where

�̃μ = 1

2

∑
α

√
π

λ̄μαT

∫ ∞

0
dω J̃μα(ω)n(ω)

×
{

exp

[
− (ω + �μα − λ̄μα)2

4λ̄μαT

]

+ exp

(
ω

T

)
exp

[
− (ω − �μα + λ̄μα)2

4λ̄μαT

]}
.

(B25)

We note that �̃μ = (1/2)
∑

α γ̃αμ, and �μν = ωμν − λμ + λν

from Eqs. (B4) and (B12).
Assuming that the environment fluctuations acting on

each electron-binding site are independent and using Eq. (13)
for the coefficients �

μν

j , we obtain

J̃μν(ω) =
∑

l

[JlS(ω)|〈μ|Sl |ν〉|2 + Jl M (ω)|〈μ|Ml |ν〉|2]

+ JF (ω)|〈μ|nF |ν〉|2, (B26)

where

JlS(ω) =
∑

j

m jω
3
j

2
x̄2

jlδ(ω − ω j ),

Jl M (ω) =
∑

j

m jω
3
j

2
x̃2

jlδ(ω − ω j ),

JF (ω) =
∑

j

m jω
3
j

2
x2

j Fδ(ω − ω j ). (B27)

The results obtained above are valid for an arbi-
trary frequency dependence of the spectral densities
JlS(ω), Jl M (ω), and JF (ω). Hereafter we assume that these
functions are described by the Lorentz–Drude formula char-
acterized by a common inverse correlation time, γc = τ−1

c ,
and by a corresponding reorganization energy λl S, λl M , or
λF , e.g.,

JlS(ω) = 2
λl S

π

ωγc

ω2 + γ 2
c

. (B28)

Quenching processes also contribute to the decay of the
off-diagonal elements, 〈ρμν〉, with the following decoherence

rates: �
quen
μν = �

quen
μ + �

quen
ν , where

�quen
μ =

∑
lα

|〈μ|a†
l al∗ |α〉|2χ ′′

l (ωμα)
[
coth

(ωμα

2T

)
+ 1
]
.

(B29)

Here, we consider an Ohmic quenching heat bath with the
spectral density χ ′′

l (ω) = αlω, which is determined by a set of
site-dependent dimensionless coupling constants αl  1. The
contribution of quenching to the relaxation of the diagonal
elements of the electron matrix, 〈ρμ〉, is determined by the
standard Redfield term

γ quen
μν =

∑
l

(|〈μ|a†
l al∗ |ν〉|2 + |〈ν|a†

l al∗ |μ〉|2)χ ′′
l (ωμν)

×
[
coth

(ωμν

2T

)
− 1
]
. (B30)

As a result, we find that the time evolution of the off-
diagonal elements of the electron matrix is determined by the
expression

〈ρμν〉(t) = exp ( i ωμν t − λ̄μν T t2 ) × exp ( −�μν t ) ρμν(0),

(B31)

with the decoherence rates �μν = �μ + �ν , where the
coefficient �μ contains contributions of the off-diagonal
fluctuations of the environment (Eq. (B25)) as well as quench-
ing processes �

quen
μ (Eq. (B29)): �μ = �̃μ + �

quen
μ . The evo-

lution starts at the moment t = 0 with the initial matrix
ρμν(0). An effect of diagonal environment fluctuations is de-
termined by the rate

√
λ̄μν T , where λ̄μν is the reorganization

energy defined by Eq. (B12) and T is the temperature of the
environment.
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