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ENTANGLEMENT OF TWO COUPLED CHARGE QUBITS
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We have analyzed the entanglement of a system of two coupled charge qubits. We cal-
culate the amount of entanglement using several different approaches. We show that in
the ideal case the system remains entangled most of the time and the amount of entan-
glement reaches almost unity, i.e. the system becomes maximally entangled at certain
instances.
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1. Introduction

Entanglement is a peculiar, yet natural, nonclassical correlation that is possible
between separated quantum systems. Although entanglement has been known for
many years as a purely theoretical subject, it turned into a practical issue recently
after it was realized that it plays a crucial role in quantum computation and quan-
tum communication.

Entanglement of two quantum systems can be understood by using the following
example. Let us consider two single qubits 4 and B whose states can be presented as
a superposition of the basis states: |¢)4) = a1]|0); +as|1); and [¥B) = b1]0)2+b21)a,
where [0)1(2) and |1)y() are the basis states of the first (second) qubits and a; »
and by o are the corresponding amplitudes. In the unentangled case, the state |¢)
of a composite two-qubit system can be described as a product of two single-qubit
states:

|4y = [Wa)|wg) = ¢1|00) + ¢2|10) + ¢3)01) + c4]11) (1)
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where ¢; (i = 1,2,3,4) are the amplitudes of the two-qubit states that are the
product of the corresponding amplitudes of the single-qubit states (e.g. c1 = aib,
etc.). Here we use the following notations: [00) = [0)1/0)2, [10) = [1)1]0)2, |01) =
|0}1]1)2 and [11) = [1);]1)2. There exist certain two-qubit states for which ly) #
[4)|¢). For example, the state |¢) = 1/v/2(|00) + |11)) cannot be reduced to a
product of two single-qubit states described by Eq. (1). Such a state is called an
entangled state.

For practical purposes, one needs to quantify entanglement. A few measures
of entanglement have been introduced: negativity, concurrence, entanglement of
formation and entropy of entanglement.

Here we consider a system of two coupled charge qubits and calculate the time
evolution of entanglement using these criteria.

2. Measures of Entanglement

Let us note first that there is a simple qualitative test for entanglement provided
by Peres! and Horodecki.? For 2 x 2 systems like the one we consider here, the
necessary and sufficient condition for entanglement is the negativity of the partial
transposition of a state of the system. That is, if the partially transposed density
matrix?®

p= ZP;‘]%)(W’H

has negative eigenvalues then the system is entangled, if the eigenvalues are zero or
positive then the system is unentangled.

Based on the qualitative partial transpose approach, a quantitative entangle-
ment measure, called negativity, can be introduced:

N(p) = max(0, —2Amin) » (2)

where Amin is the smallest eigenvalue of the partial transpose of the state p.
The concept of concurrence originates from Ref. 4 and is defined for a pair of
qubits as®

C(p) = max(0,A\; — A2 — A3 — A4), (3)

where the )\;’s are the square roots of the eigenvalues of pp in descending order.
Here j is the result of applying the spin-flip operation to p: p = (oy®0y)p*(oyR0y),
where p* is a complex conjugate of p.

For a pure state 1)) of a composite system [see Eq. (1)], the concurrence can be
expressed as®

C[’lf}} = 2|(:1C,1 = {.‘2(.'31 .

a(p, are the state probabilities satisfying the normalization condition Tip=1)
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For a pair of qubits, there exists an explicit formula for the entanglement of

formation E; based on the concept of concurrence. For a pure state p, the entan-

glement of formation is related to concurrence as®

E; =£(C(p), (4)

where the function £ is defined by

EC)=h (1+___ “;_CJ) : (5)
h(z) = —zlogez — (1 — ) logy(1 — x) . (6)

This definition can be further extended to the more general case of mixed states.”

The simplest case of an entangled system is a pair of qubits in a pure but
nonfactorizable state. In this case the entanglement can be defined via the von
Neuman entropy of either qubit A or B 8

E. = —Trpalogy pa = —Trpplogs pB . (7)

where pa = |¥a)(¥a| and pp = |[¥B)(¥p]| are the density matrices of subsystem
A and B, respectively. For such a sytem, the entanglement of formation defined in
Eq. (4) coincides with the entropy of entanglement.

3. Circuit and Model

We consider a system of two coupled charge qubits.? Each qubit is a Cooper-pair
box whose charge states are quantized when the charging energy of the box E¢; 2 =
(2e)?/2C 2 exceeds the Josephson energy E 15 of its coupling to a reservoir. Here
C1. is the total capacitance of the corresponding Cooper-pair box and 2e is the
Cooper-pair charge. The qubits are coupled by an on-chip capacitor giving a mutual
coupling energy E,. At low temeperature and in a proper voltage range, each qubit
is reduced to a two-level system and, under condition Ej; 2 ~ Ep,, the whole system
can be described by the two-qubit Hamiltonian

1 1
H= Y Enplmna)mn] - 5 3 (0)(1]+ 1)) @ fn2)(na

Tny.n2 =0 ny =0

B $ jng)ml @ (1031 + 1) 0]) (8)

2
n1=(]
where
Enin, = Ec1(ng, — ny) + Eca(ng, — ng) + Em(ng, — n1)(ng, — n2)

are the electrostatic energies corresponding to different charge configurations, ng,
and ng2, are the normalized gate-induced charges on the corresponding qubit.
The system has double degeneracy of electrostatic energies at ng = ng2 = 0.5:
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Ego = Ey1 and Eyg = Ep;. If the system is driven nonadiabatically from the |00}
state to this point, it evolves coherently as was demonstrated in Ref. 9. The values
of electrostatic energies at the double degeneracy point as well as Josephson ener-
gies were determined from the independent measurements: Eqq = E;; ~ 70.9 GHz,
Eyo = Eo1 = 63.6 GHz and Ej, = Ej9 ~ 9.1 GHz. Josephson energies were made
equal by applying an external magnetic field to suppress E;; from its maximum
value of 13.4 GHz at zero magnetic field.

Then we calculate the evolution of entanglement using the criteria described
above.

4. Results and Discussion

We consider an ideal case of a pure bipartite system. The evolution of the system
starts from the |00) state, pg = |00)(00|. Neglecting decoherence, we calculate the
time dependence of the density matrix using the Hamiltonian given in Eq. (8):

p(t) =UTC poU , (9)

where U = exp(—iHt/h) and UT is a transpose conjugate of U. Then we use p(t)
to check the Peres-Horodecki criteria and to calculate the amount of entanglement
using Eqs. (2)—(4) and (7).

The result of the Peres-Horodecki test is shown in Fig. 1. It is clear that most
of the time the product of eigenvalues is negative,'? therefore our system passes the
test. We then proceed with the calculation of the amount of entanglement.
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Fig. 1. Peres-Horodecki test for a coupled qubit system. Here the product has been normalized
to the interval [0, 1].
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Fig.2.  Amount of entanglement in a system of two coupled charge qubits calculated by negativity,
concurrence, entanglement of formation and entropy of entanglement. Dotted line — negativity
and concurrence; solid line — entanglement of formation and entropy of entanglement.

Dependence of the amount of entanglement on time is presented in Fig. 2. All
four criteria have been used, however, only two curves are seen in Fig. 2. This
is due to the fact that for the considered case of pure states different approaches
give similar results. For example, negativity coincides with concurrence and entan-
glement of formation coincides with the entropy of entanglement. Note that the
results in Fig. 2 are consistent: despite small difference in absolute value the amout
of entanglement basically coinsides and reaches maxima and minima at the same
time instances. The results in Fig. 2 are also consistent with the results in Fig. 1.
Amount of entanglement in Fig. 2 reaches maximum values when the product of
eigenvalues in Fig. 1 reaches minimum values and vice versa.

Comparing the time evolution of the amount of entanglement with the time
evolution of the state probabilities pgg, p19, ete. we can conclude that the amount
of entanglement reaches maximum values when the probabilities poo and pp; are
close to 1/2 while the probabilities of the states [10) and |01) almost vanish. On
the other hand, the amount of entanglement is close to zero, when the probability
of only one state, |00) or |11), approaches unity while the rest three being almost
zero.

We stress finally that entanglement of two qubits is a result of their interaction
described by the Eyn(ng, —n1)(ng, —n2) term in the Hamiltonian given in Eq. (8). If
we switch off the interaction, i.e. set E,, equal to zero, then entanglement vanishes.
With the non-zero interaction between the qubits, entanglement oscillates with the
same frequencies as do other quantities of the system like state probabilities.
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5. Conclusions

Our results show that the ideal coupled two-qubit system remains entangled most
of the time during its coherent evolution. The amount of entanglement oscillates
between zero (completely unentangled qubits) and unity (maximally entangled
qubits). This is an optimistic scenario for entanglement because we considered only
pure states and neglected decoherence. Still these results are basically true at least
for the first 100, ...,200 picoseconds when decoherence is weak. In a more realistic
approach, one should consider mixed states and take into account decoherence and
real pulse shape.
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