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Why macroscopic quantum tunnelling in Josephson junctions
differs from tunnelling of a quantum particle
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Abstract – We show that the macroscopic quantum tunnelling of a fluxon in a Josephson
junction cannot be described, even qualitatively, as the tunnelling of a quantum particle in a
potential U(ϕ), where the phase difference ϕ plays the role of particle position, if the length of
the junction d exceeds a fluxon length. We calculate the probability per unit time of tunnelling
(or escape rate), Γ, which has a form Γ=A exp(−B). In contrast to particles, where the B is
proportional to d, our field-theory predicts a different behavior of B for either usual, 0–π, or
stacks of Josephson junctions, giving rise to a renormalization of Γ by many orders of magnitude.

Copyright c© EPLA, 2007

Macroscopic quantum tunnelling (MQT) is one of the
few manifestations of quantum effects in macroscopic
systems [1]. MQT was experimentally observed [1] in
Josephson junctions (JJs) in 1980s and has been stud-
ied for different Josephson systems. General interest on
MQT is now fuelled not only by its fundamental inter-
est but as a readout mechanism for phase qubits [2].
A new surge of interest on MQT occurred after the
recent discovery of MQT in high-temperature layered
superconductors [3,4]. The observed giant enhancement
of MQT could be attributed to the spatial structure of
the tunnelling fluxon [5]. This is in contrast to the stan-
dard approach, where MQT is associated with a quantum
particle tunnelling through an effective potential barrier.
The latter approach is correct only for very short junc-
tions, when one can ignore the spatial dependence of the
phase difference ϕ across the junction. A naive guess would
be that the spatial dependence of ϕ should suppress the
MQT because of an increase of the potential energy U(ϕ)
from (∇ϕ)2. This is in analogy to the positive energy of a
domain wall in a ferromagnet. However, further analysis
shows that the total potential energy can decrease simi-
larly to the decrease of energy for a ferromagnet having
several domains.
Our work was motivated by the MQT recently observed

in high-temperature layered superconductors. However,

we emphasize that the problem we are considering is
far more general and is also applicable to MQT in long
Josephson junctions (see, e.g., [6]). Moreover, MQT in
long Josephson junctions is of relevance for the so-called
phase qubits which might provide basic elements for future
quantum information processing devices (see ref. [2] for
a review). These phase qubits are current-biased JJs
driven by microwaves, and exhibiting MQT. Controlling
the motion of Josephson vortices is also of interest for the
design of novel types of THz and ratchet devices [7].
Using a field-theory approach, here we show that the

fluxon tunnels through the formation of single nucleus
followed by a classical motion through the contact. For
a long junction this results in a huge renormalization of
the tunnelling escape rate Γ, with respect to the “particle”
approximation. The tunnelling probability differs for the
usual and 0–π junctions: for usual junctions, log Γ(d) is
proportional to d for d� λJ and shows a maximum at
d∼ λJ ; while log Γ(d) for 0–π junctions increases slower
with d for d� λJ and does not exhibit a maximum within
the studied range of parameters. We also demonstrate that
the strong renormalization of Γ for stacks of intrinsic JJs
occurs even for very short junctions of about 1µm, in
agreement with very recent experiments [4]. This offers
potentially useful flexibility when designing readouts for
phase qubits [2].
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General model. – Consider a scalar field ϕ in a finite
volume V with surface S. The field action is given by
(c= 1)

S(t) =
∫ t
−∞
dt

[
L(t)+ ε0

∫
S

dS ϕ(t,x) f(x)

]
,

L(t) = ε0

∫
V

dx

[
1

2

(
∂ϕ

∂t

)2
− 1
2
(∇ϕ)2−U(ϕ)

]
, (1)

where L is the Lagrangian and ε0 is an energy scale.
Hereafter we ignore dissipation, which was shown [8] to
be negligible. The equality δS/δϕ(t,x) = 0 determines
the classical equation of motion for the field ϕ(t,x).
The surface term in eq. (1) corresponds to the external
force acting on the field. It leads to the boundary condi-
tion ∂ϕ/∂n|x∈S = f(x). We assume that the equation
δS/δϕ= 0 has at least two static solutions corresponding
to two energy minima. One of them, ϕ−(x), corresponds
to a global minimum, whereas the second one, ϕ0(x), is
a local energy minimum. We calculate the probability Γ
(per unit time) of transition from the local minimum to
the global one. In the semiclassical limit this probability
can be written as [9] Γ = ω0

√
30B/π exp(−B), where

ω0 is the oscillation frequency of the field near ϕ0(x),
B = iScl(i∞)/�, and Scl is the action eq. (1) calculated
along classical trajectories. Introducing the imaginary
time t= iτ , it was obtained [9]

B =−2
�

∫ ∞
0

dτ

[
L(τ)+ ε0

∫
S

dS ϕ(τ,x) f(x)

]
. (2)

The field ϕ(τ,x) in eq. (2) satisfies the imaginary-
time classical equation of motion (∂2/∂τ2+∇2)ϕ−
∂U(ϕ)/∂ϕ= 0 with the initial conditions ∂ϕ/∂τ |τ=0 = 0,
ϕ(∞,x) =ϕ0(x).
The quantum tunnelling of a macroscopic system occurs

with an appreciable probability only if the barrier is low.
Then, we can use a perturbation approach and seek a
solution of the form ϕ(τ,x) =ϕ0(x)+ψ(τ,x), with |ψ| �
|ϕ0|. Expanding the potential U(ϕ) in a series of ψ and
integrating by parts, we obtain

B =
2ε0
�

∫ ∞
0

dτ

∫
V

dx

[
1

2
ψ

(
L̂− ∂2

∂τ2

)
ψ

+
1

6

∂3U(ϕ0)

∂ϕ30
ψ3+

1

24

∂4U(ϕ0)

∂ϕ40
ψ4+ . . .

]
, (3)

where L̂=−∇2+ ∂2U(ϕ0)/∂ϕ20. The perturbation ψ(τ,x)
satisfies the equation of motion(

∂2

∂τ2
− L̂
)
ψ=
1

2

∂3U(ϕ0)

∂ϕ30
ψ2+

1

6

∂4U(ϕ0)

∂ϕ40
ψ3+ . . . , (4)

with zero boundary and initial conditions.
We consider the system of eigenfunctions ψn of the

operator L̂ corresponding to the eigenvalues µn

L̂ψn = µnψn , ∂ψn/∂n|x∈S = 0. (5)

These functions are orthogonal and normalized∫
V
dxψnψm = δnm. The solution ψ can be expanded

in the basis ψn as ψ(τ,x) =
∑
n cn(τ)ψn(x). Multiplying

eq. (4) by ψn and performing space integration, we get
the system of equations for cn(τ)

c̈n−µncn =−1
2

∑
mk

U
(3)
nmkcmck −

1

6

∑
mkl

U
(4)
nmklcmckcl (6)

with initial conditions ċn(0) = cn(∞) = 0. Here, dot means
imaginary time derivative, and

U
(i)
n ... k =−

∫
V

dx ∂iU(ϕ0)/∂ϕ
i
0 ψn...ψk. (7)

Substituting the series expansion for ψ into eq. (3) and
using eq. (6) we express B in the form

B =
ε0

�

∫ ∞
0

dτ

[∑
nmk

U
(3)
nmk

6
cncmck+

∑
nmkl

U
(4)
nmkl

12
cncmckcl+ . . .

]
.

(8)

We enumerate the eigenvalues of L̂ in ascending order
(µ0 <µ1 <µ2 < . . .). All µn’s are positive since ϕ0(x)
corresponds to an energy minimum. With increasing
external force f(x), the state ϕ0(x) becomes unstable
and B = 0. At this point, several lowest µn’s are zero.
At first, we assume that only the value µ0 vanishes. In
this case, µ0� µn for n> 0 when f(x) is close to the
critical value. According to eq. (8), the condition B→ 0
requires cn→ 0. Thus, we can write a series expansion
cn(τ) = µ0c

(0)
n +µ20c

(1)
n + . . . . Substituting this expansion

into eq. (6), we find that c
(0)
n = 0 for n> 0. In this case, the

characteristic frequency ω0 in the expression for Γ is ω0 ≈√
µ0. We introduce new variables c

(0)
0 (τ) = 3α(ζ)/U

(3)
000,

ζ = ω0τ . In the main approximation with respect to µ0,
the system (6) with its initial conditions reduces to

d2α

dζ2
−α=−3

2
α2, α(∞) = dα(0)

dζ
= 0. (9)

After integration we get
∫ 1
α(ζ)
dα/
(
α
√
1−α)= ζ. Substi-

tuting c
(0)
0 into eq. (8) and performing time integration

with the help of eqs. (9), we derive the expression for B
in the main approximation in µ0

B(0) = 24ε0µ
5/2
0

/[
5�(U

(3)
000)

2
]
. (10)

The equations for c
(1)
n at n> 0 follow from eqs. (6) and

the series expansion of cn(µ0),

c̈(1)n −µnc(1)n =−
1

2
U
(3)
n00

(
c
(0)
0

)2
. (11)

The solution of this equation, with the appropri-

ate initial conditions, can be written as c
(1)
n (τ) =

[9U
(3)
n00/(U

(3)
000)

2]νn(
√
µ0τ), where

νn(ζ) =
e−λnζ

2µ0λn

∫ ∞
0

dζ ′α2(ζ ′)e−λnζ
′

+
1

2µ0

∫ ζ
0

dζ ′eλn(ζ
′−ζ)
∫ ∞
0

dζ ′′α2(ζ ′+ ζ ′′)e−λnζ
′′

(12)
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and λn =
√
µn/µ0� 1. Writing c(1)0 in the form c

(1)
0 (τ) =

[9/(U
(3)
000)

2]γ(
√
µ0τ), we obtain, from eqs. (6), for γ(ζ):

d2γ

dζ2
− γ =−3αγ− 3α

∑
n�=0

υ(3)n νn− 1
2
υ
(4)
0 α3 , (13)

where υ
(3)
n = (U

(3)
n00)

2/U
(3)
000, υ

(4)
0 =U

(4)
000/U

(3)
000. The initial

conditions for eq. (13) are evidently γ(∞) = dγ(0)/dζ = 0.
Substituting the obtained formulas into eq. (8) we derive
the expression for the tunnelling exponent

B ∼= B(0)

{
1+

45µ0

16U
(3)
000

∫ ∞
0

dζ α2

×
[
3γ+3

∑
n�=0

υ(3)n νn+
1

2
υ
(4)
0 α2

]}
. (14)

To compute B, we should first solve the eigenvalue
problem (5), and solve eqs. (9), (12), and (13). Similarly,
higher-order corrections to B could be obtained. The
approach described above can be generalized for the case
when several, m, eigenvalues are small at the critical
external force. In this case, we should solve the system

of m nonlinear equations for c
(0)
n (n�m), and then find

corrections to cn using a perturbation approach. The
existence of m small eigenvalues indicates that there
exists m channels for tunnelling. The case of two small
parameters µ0 and µ1 will be essential for the case
considered below: the quantum tunnelling of a fluxon.

Tunnelling in Josephson junctions. – Here we
apply our approach for the study of a fluxon tunnelling in
a JJ. The geometry of the problem is shown in the inset of
fig. 1. Two superconducting bars overlap a length d in the
x-direction. The length l of the JJ in the y-direction is of
the order of or larger than d. The current per unit y length,
J , flows through the junction in the z-direction. The prop-
erties of a JJ are described in terms of the gauge-invariant
phase difference ϕ, which obeys the sine-Gordon equation.
It can be shown that at l� d, the stationary solution ϕ0,
corresponding to an energy minimum, does not depend
on y, and the y-dependence of ψn contributes only to the
higher-order corrections to B. In the geometry considered
here we can write the sine-Gordon equation for ϕ as

ϕ̈−ϕxx+sinϕ= 0, (15)

where the time t and coordinate x are normalized
by the Josephson frequency ωJ and length λJ . The
current density i(x) is given by the Josephson relation
i(x) = i0sinϕ(x), where i0 is the critical current density.
We define the dimensionless current j = J/di0, potential
U(ϕ) =U0− cosϕ, and ε0 =Φ0i0λJ l/(2πcωJ ), where Φ0
is the flux quantum. The boundary conditions for eq. (15)
are dϕ/dx=±I/2, x=±d/2λJ , where I = jd/λJ .
The stationary solution ϕ0(x) of eq. (15) corre-

sponding to an energy minimum can be written as∫ ϕ0(x)
ϕ̃0

dϕ/
√
cos ϕ̃0− cosϕ=

√
2|x|, where the value

0 2 4 6 8
0.0

0.1

0.2

 

d/2 0 x 

y z 

-d/2 

d/λ
J

Fig. 1: (Color online) The logarithm B of the escape rate
Γ vs. d at I/Ic(d) = 0.99 calculated in zeroth-order (dashed
blue curve) and first-order (solid red curve) approximation.
The dashed green line corresponds to eq. (16), i.e., the
“particle” approximation. The schematics of the JJ is shown in
the inset. The dash-dotted curve is calculated without taking
into account the second small parameter.

ϕ̃0 = arccos
[
cosϕ0(d/2λJ )+ I

2/8
]
is found from the

boundary condition. The solution of this equation exists
if the current I is less than the critical value Ic(d). If
d� 4λJ , the current density is approximately constant in
the JJ and the function Ic(d) increases linearly with d;
if d� λJ , the current flows near the junction edges and
Ic(d) reaches the saturation value 4i0λJ .
First, we compute ϕ0(x) and the set of eigenvalues and

eigenfunctions of the operator L̂=−d2/dx2+cosϕ0(x).
Then, we numerically solve the system (6) by the method
described above, and, finally, calculate B in the main and
first-order approximations. We find that the first-order
correction to B does not exceed a few percent for any d,
if I/Ic > 0.97. Thus, eq. (10) is applied for the calculation
of B with a good accuracy if the current I is close to
the critical value Ic. The dependence of B on the junction
length d at I/Ic(d) = 0.99 is shown in fig. 1. At small d, the
tunnelling exponent linearly increases with d, according to
a well-known result obtained using an analogy with the
quantum tunnelling of a particle [4,10]:

BQM =
Φ0i0ld

2πc�ωJ

24(1− j2)5/4
5j2

. (16)

This formula follows directly from eq. (10). Naturally, if
d� λJ , we get ϕ0(x)≈ arcsin(j)+ jx2/2. Neglecting the
x-dependence of cosϕ0(x), from eq. (5) we obtain

µ0 ≈
√
1− j2, ψ0 ≈ 1/

√
d. (17)

Substituting these values in eq. (10) we obtain eq. (16).
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Fig. 2: (Color online) The shape ψ(0, x) of the nucleus of a
tunnelling fluxon at d= 2λJ (green solid curve) and d= 8λJ
(red and blue dashed curves). At large d, two different functions
ψ(0, x) correspond to two channels of tunnelling: nucleation of
a vortex (on the right sample edge) or an antivortex (on the
left); I/Ic(d) = 0.99. The dependence of µ0 (red solid curve)
and µ1 (green dashed curve) on d/λJ is shown in the inset.

A pronounced departure ofB(d) from the linear law (16)
arises at d� 4λJ . The tunnelling exponent starts to
decrease with the growth of d and tends to a constant when
d→∞. In this case, the eigenvalue µ1 becomes close to µ0
(see the inset in fig. 2) and one should take into account
the existence of two tunnelling channels. The field ψ can

be written as ψ(τ, x) = c
(0)
0 (τ)ψ0(x)+ c

(0)
1 (τ)ψ1(x). For

small d, c
(0)
1 (τ) = 0, whereas for d� λJ we have µ1 ≈ µ0

and c
(0)
1 (τ)≈±c(0)0 (τ). The function ψ(0, x) is shown in

fig. 2 for small and large d. At small d, ψ(0, x)≈ const
and the analogy between field and particle tunnelling is
valid. For larger d, ψ(0, x) is nonzero only near the right
(vortex nucleation) or left (antivortex nucleation) edges
of the junction, depending on the choice of the sign of

c
(0)
1 (0). Thus, for d� λJ the MQT has two stages. First,
the vortex (or antivortex) nucleus tunnels through the
right (or left) edge of the junction. Then, this vortex (or
antivortex) moves classically through the junction. The
tunnelling probability starts to increase with the growth
of d, due to the opening of the second tunnelling channel.
In addition to the usual JJ (0 junction), we calculate

the probability of tunnelling for 0–π junctions. Such a
junction naturally arises at the boundary of d and s-wave
superconductors [11] or can be fabricated using a ferro-
magnetic layer between s-wave superconductors. We
consider the usual current-phase relation to be valid at
−d/2<x< 0, whereas i= i0 sin(φ+π) at 0<x< d/2.
The ground state of a 0–π junction corresponds to a
vortex with one-half of Φ0 confined at the boundary
between “0” and “π” regions.

Fig. 3: (Color online) Tunnelling exponent B vs. d for
0–π junction in the main approximation; I/Ic(d) = 0.99. In
the inset: B vs. d/λc at j = 0.99, γs/λc = 10

−2 (red solid line)
for a stack of JJs. The slope of the asymptote of B(d) at
d� dmin (green dot-dashed line) is twice smaller than the
slope of B(d) at d < dmin (blue dashed line). The value
dmin ≈ 0.033λc.

The distribution of ϕ is non-uniform in the 0–π junction
even at I = 0 [11] and a 0–π JJ cannot be described within
the “particle approximation” for any d. The dependence
of the tunnelling exponent on d for a 0–π junction at
I/Ic(d) = 0.99 is shown in fig. 3. The analysis of the
eigenvalue problem shows that within the considered
range of d, there exists only one small parameter µ0 and
the function ψ(0, x) corresponds to the antivortex nucleus
at the left edge of the junction.

Tunnelling in stacks of junctions. – In layered
superconductors described as a stack of JJs of height D, a
fluxon can tunnel through a certain contact located at D1.
This process can be described by the non-local Lagrangian

L = ε0

2

∫ d
0

dx

[
ψ

∫ d
0

K(x;x′)
∂2ψ

∂x′2
dx′

−
(
∂ψ

∂τ

)2
−
√
1− j2 ψ2+ ψ3

3

]
, (18)

which can be obtained following the approach in ref. [5].
Here ε0 = i0Dλc/(4eωJ ), λc is the out-of-plane penetra-
tion depth,

K(x;x′) = (γs/d)

×
[
χ0+

∞∑
n=1

χn cos(knx) cos(knx
′)(1− j2)1/4/kn

]
,

(19)
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χn = cosh(νnD1) cosh[νn(D−D1)]/ sinh(νnD), (20)

νn =
√
k2n(1− j2)−1/2+1, (21)

kn = πnλc/d, anisotropy γ, and interlayer distance s. Note,
that there are two different characteristic sizes in the
system. The current changes on the scale of λc, whereas
a characteristic size of the fluxon is γs� λc. Following
the numerical procedure described above and taking into
account that the fluxon can tunnel through any junction,
we calculate numerically the dependence of Γ on the size
d of the junction. We also estimate the minimal width of
the junctions,

dmin = 2πγs/5(1− j2)1/4, (22)

when the “particle” approximation becomes invalid and
we should take into account two tunnelling channels. The
dependence of the tunnelling exponent B on d is shown
in the inset of fig. 3 for D1 =D/2. The function B(d)
increases with d both at d< dmin and d> dmin, but at large
d it has a twice smaller slope. Note that recent analytical
results [5] provide good semi-quantitative estimates of the
tunnelling exponent B.

Conclusions. – Here we show that the fluxon tunnels
as a particle only through short JJs. For either longer JJs,
0–π junctions, or JJ’s stacks a field-theory approach is
required to obtain the correct value of the escape rate,
which can be many orders of magnitude higher than the
one predicted without taking into account the spatial
dependence of the phase difference across the contact. We
also demonstrate that the behavior of the MQT escape
rate vs. the junction length is qualitatively different for
usual, 0–π junctions, and JJ’s stacks.
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