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We elaborate on recent results on the transport of interacting particles for both single-species and
binary mixtures subject to an external driving on a ratchetlike asymmetric substrate. Moreover, we
also briefly review motion control without any spatial asymmetric potefiitial, no ratchet Our

results are obtained using an analytical approach based on a nonlinear Fokker—Planck equation as
well as via numerical simulations. By increasing the particle density, the net dc ratchet current in
our alternatingac-driven systems can either increase or decrease depending on the temperature,
the drive amplitude, and the nature of the inter-particle interactions. This provides an effective
control of particle motion by just changing the particle density. At low temperatures, attracting
particles can condense at some potential minima, thus breaking the discrete translational symmetry
of the substrate. Depending on the drive amplitude, an agglomeration or condensation results either
in a drop to zero or in a saturation of the net particle velocity at densities above the condensation
density—the latter case producing a very efficient rectification mechanism. For binary mixtures we
find three ways of controlling the particle motion of ofmassiveé B species by means of another
(activel A species:(i) Dragging the target particleB by driving the auxiliary particlesA, (ii)
rectifying the motion of theB particles on the asymmetric potential created by AkéB interac-

tions, and(iii) dynamically modifying(pulsating this potential by controlling the motion of th&
particles. This allows to easily control the magnitude and direction of the velocity of the target
particles by changing either the frequency, phase and/or amplitude of the applied ds).d@ve
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Stochastic transport on periodic asymmetric substrates
far from equilibrium has raised wide-spread interest in
the recent literature.! Various realizations of ratchet sys-
tems working out of equilibrium have been proposed in-
volving different rectification mechanisms, like time-
dependent temperature oscillations  (temperature
ratchetz), zero-average sinusoidal alternating (ac) forces
(ac tilted or rocked ratchet3), stochastic and deterministic
fluctuations of the ratchet potentials? among others. In-
tense research activity in this field is partly motivated by
the challenge to describe and control some biological pro-
cesses at both the cell level (for instance, transport in ion
channels) and the body level (muscle operatior. More-
over, recent technological advances have allowed the de-
velopment of devices to guide tiny particles on nano- and
micro-scales! e.g., for particle separation technique$,
smoothing of atomic surfaces during electromigration’
and superconducting vortex motion control>* Some of
these devices have been realized experimentally to ma-
nipulate the motion of vortices in superconductorsl,z‘15
particles in asymmetric silicon pores® as well as charged
particles through artificial pores’” and arrays of optical
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tweezers.®22 among others. However, the interaction

among particles is expected to have an important role on
the rectification power of ratchets. Indeed, it has been
found that interactions can result in very unusual trans-

port properties,®*%including spontaneous symmetry
breaking, commensurability effects, unusual negative

mobility, and surprising current inversions.

I. INTRODUCTION

We show thatthe net current can be effectively con-
trolled by changing the density of interacting particldis
dependence can be described using effective poteaﬁtials
which take into account the renormalization of the bare sub-
strate potentiald due to particle interactions. For repelling
particles,U flattens with increasing particle density because
particles repel one another from the potential wells. This
results in an increase of the net current for loweith re-
spect to the potential barrigrglrives and a decrease for
stronger drives.

The effective potential becomes deeper with increasing
particle density of attractive particles resulting in the oppo-
site behavior with respect to the repulsive parti¢le¥
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Moreover, the agglomeration or “condensatidnof attrac- it possible to guide at will both thé and B species
tive particles into the substrate potential wells occur at large  either in the same or in opposite directions.

enough particle densities. This results in twlden drop of . o . o
their drift velocity at the condensation poifdr low drives. These three ways for manipulating tiny particles in mix-
On raising the drive amplitude it can happen that the par;ures allow an unprecedent.ed level of motion control of.dn‘—
ticles pile-up or condense only when the ac force pushef€rent components by tuning the phase and/or amplitude
them against the steeper slope of the asymmetric substra@@d/or frequency of the applied drives

wells, while remaining in the running state as they are driven  SYS{eMS where our two-species transport technique
in the opposite direction. For such a range of large drivem'ght_be implemented with success are the focus of ongoing
amplitudesthe current, versus particle density, saturates atexperlmental worke.g., superconducting samples penetrated

. . . 13,14 . R
a maximal value in the vicinity of the condensation der&ity by topologically different vortice§, ion channel tra

Recent experiments on transport of K and Rb ions in anversed by competing ion spec?é)s

ion channef? particles of different size in asymmetric sili-
con pores? pinned and interstitial vortice®,and two differ-
ent types of vorticeg pose the question of how directed A. Langevin and Fokker—Planck approaches
motion of two or more types or species of particles affect one
another. More interestingly, one might wonder how to induceWith
and control the net transport passiveparticles, which are
insensitive to the applied drives and/or substrates. Away to . _ J(X) D J

II. ONE TYPE OF PARTICLE

Our starting point for a system of identical particlés.,
only one speciesis the set of Langevin equations

tackle this challenging problem is to employ auxiligkypar- ! IX;
ticles that:(i) Interact with the target speciéhe B particles
and (ii) are easy to drive by means of external forces. By 1)
driving A particles one can regulate the motion of otherwisefor interacting particles moving on the one-dimensional
passiveB particles through experimentally accessible sys-asymmetric periodic potenti&l, U(x+1)=U(x), in the pres-
tems, like ion channel®, artificial pores;®'” arrays of opti-  ence of a time-periodic forcE(t) with frequencyr. Here,
cal tweezers® or certain superconducting devic&g9. the Gaussian white noisg”(t) with zero averagd&?y=0

In order to study the influence of the interspecies intersatisfies the fluctuation—dissipation relatiofi’(t)&?(t+ 7))
action on particle transport in a binary mixture, we consider= §(7); whereT is the temperaturekg is the Boltzmann con-
external forces applied either to theparticles only or si-  stant, andW denotes the pair interaction potential. Indides
multaneously to both tha andB types of particles. We have andj run over all particles. For simplicity, we set the viscous
found three ways to control particles in binary coefficient equal to onéSmoluchowski approximation\We
mixtures*H31:32:34.35 integrated the set of equatiofi® for our numerical simula-
tions, while the analytical predictions reported below were
. , . derived by solving the integro-differential equations for the
componente.g.,A) of a binary(A andB particles mix- corresponding many-particle distribution functions. The

ture and there is no sub;trate at- all, the driven Spec.'eléokker—PIanck—type equation for the one-particle distribution
can drag along the passive particles. The ac draggmﬁmction F,(t,x), can be written in the form2

effect can be described as follows: if the driving force
fa(t) acting on the active specidsis zero-averaged but IF(t,x) | U(x)
asymmetric in time, a net motion of both species occurs. a &{(7 B F(t)>F1(t’X)}
This enables control of the motion of both and B
particle species, even when there is no asymmetric sub- + iFl(t,x) f dxF4 (1, %) G(t, X, %)
strate(or no substrate at all X

2. Mediated ratchet effectlf only one species feels an PF4(t,X)
asymmetric substrate, then these “activ&”particles +KgT——5—,
produce an effective asymmetric potential for the other
componentB (due to interspecies interactipiThis po-  where
tential has the same (opposite polarity for ~ ~ ~
attractive (repulsive interaction between different spe- Fa(txX) = Fy(t0)F(tX)GXX.D), 3)
cies and can be used for the rectification of either the aglenotes a binary distribution function. It is apparent that
or random motion of passive particles. particle—particle correlations decay on a scale of the order of

3. Gating effect (flashing effective potential$he motion  either the interaction length for low particle densitiegn
of active particles in the “hard” direction with respect to <1/\) or the inter-particle distance @/for high particle
the asymmetric substrate produces high potential barridensitiesn>1/\). As a consequence, the functi@) which
ers for the passive particles, stopping the motion of thedescribes the particle—particle correlation, differs appreciably
passive species. The time-correlation of the stopping infrom 1 (uncorrelated particle motigrior particle separations
tervals and ac-driving of passive particles creates anx-% =<min{n™%,\}, only. This has been numerically proven
other way to control the motion in the binary mixture. in Ref. 31 and is shown in Fig.(4). Therefore, if each par-
Changing the relative phases of the driving forces makesicle interacts with many neighbors, i.@\> 1, the function

o WO =) + (D) + V2kgTED(H),
j#i OXi

1. Dragging B by AWhen a driving force acts on only one

WX —X)

(2)
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FIG. 1. (a) Correlation functionG expressing the deviatioiG—1) from the
mean-field approximatiofthe mean-field approach assun@s1) vs dis-
tancex—x' between particles, normalized by the interaction lengtfhe
interaction was taken as/(x)=g(\—|x|)/\?, while the substrate potential
U(x/1) is shown in the inseiG substantially differs from one over distance
[x—-x'|~a, when the average distaneebetween particles is much smaller
thanX. In the opposite limita> X\, we obtainG<1, on scale$x—x'|<A\.
This result depends neither on temperature nor the substrate potéritial
the studied range of parametefb) Oscillations of the normalized one-
particle distribution functiorF;(x/l)/n due to nonlocal effects for the po-
tential shown in the inset ofa), Q=1, |,/1,=2/3, I=l;+1,=2; A\=0.2. A
large density of particles in the bottom of potential wedsx,,,, repels other
particles from the nearby region of a scale of aboueffectively shifting
the new energetically favorable positionsxg,+\ and so on—producing
oscillations inF4(x). These results were obtained by numerically solving Eq.

.
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UMF(x) = U(x) + f dx'W(x — x')F4(t,x’). (5)
Hereafter, the one-particle distribution functidn(t,x) is
normalized in terms of the average particle denasity.e.,

[

)

If the spatial scale of the substrate potential is of the
order of the interaction lengtk, the nonlocality can play an
important role, producing, e.g., oscillations of the density
F.(x) [see Fig. Wb)]. In this case, the analytical treatment of
the integro-differential equatio®) is very complicated.

In order to make the problem more tractable, we further
discard nonlocal effects by assuming the interaction leRkgth
to be much smaller than the peribdf the substrate potential
U(x). This allows us to replace the integro-differential equa-
tion (4) by

F.(t,x)dx/I =n. (6)

JF(t, J JU JF
%=&{(%‘F“ﬂﬁ“’”*gﬂi]
PFL(t,%)
+kBT? (7)
with
gEf dX’W(x—x’)=f dyWy). (8

Therefore, Eq(7) is valid under the following restric-
tions:

nl<<l.

9

Note that, even though we assumed locality with respect to
the substrate unit length, the interparticle interaction can still
be regarded as a long-range interaction because of the den-
sity requirement>1/n. These are the approximations un-
der which in the following sections we solve H@) analyti-
cally and compare our analytical results with data from
numerical simulations based on the Langevin equatighs
Although conditiong9) strictly apply to a somewhat limited
class of physical systems, the results obtained below have
much wider applicability. Indeed, numerical simulations per-
formed well outside the parameter regi¢® agree quite
closely with our mean-field description.

B. Close to equilibrium: Effective potentials

G in Eq. (2) can be safely approximated to 1 over the entireand effective temperature

integration domairfof order\) of fdxF,;GdW/dx. It follows
that Eq. (2) can be reduced to itamean-field (MF)

form31,32,34,35
dFy(tx) 9
A X
P JUMF IF4(t,%) ]
=—|Fyt, —F(t) [ + kg T— |.
0)([ 1 X){ X ()} B X

(4)

where the mean-field potentialF(x) is defined as

The starting point of our analysis is the derived nonlin-
ear Fokker—Planck equation for a rocked ratchet

oF4 a( (du
Fi

o\ Ndx
A periodic square-wave force keeps the system out of equi-
librium

F(t) = Asgricoqwt)],

with sgrf---] denoting the sign of the argument and
w=2v the driving frequency.

JF JF
- F(t)) + gFlEl + kgj) . (10

(11
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In the general case, an analytical study of Ed) is too ~ -~
complicated. However, if the period of the force oscillations AR / :
27l w is much shorter than the other characteristic time 61 " a
scales in the problem, &¥(t) is rather wealk, it is reasonable \ T v\
to expect that the system relaxes close to the equilibrium VoglkgT) =1, NS (a)
state corresponding to zero applied force. This equilibrium ke T=1

solution

FLGA=0) = o= olx) (12 W

satisfies the nonlinear equation ’ i~ .

de¢g d¢yo
—— +kgT— = 1
ax kel 0, (13

Teff (X)

U’ (X) o + 9bo

which can be solved in implicit form,

U
c<n>exp<— g) - %(x)exp(%%(x)) = Z(gy) (14

where the constar@(n) is determined by the normalization
condition

|
f dxepg(x) =nl.

0

lleff(x)' ueff(o)

The equilibrium distribution¢y coincides with the usual
Boltzmann distribution if the particle interaction is switched :
Oﬁ, g:O 0.0 0.4

The equation for the perturbation correctigfe (x)
=F,- ¢ from the equilibrium statep, is

FIG. 2. (a) The spatial dependence of the effective temperattifeand(b)
a9 dueft i by the effective potential®™—U®f(0) for repelling particles and for different
= _(lﬁ(_ - F(t)) + kBTeff_ +Qy— values of their densityr. Both the effective temperatui® and the effec-
ot oX dx X X tive potential energyJ®™ are shown in arbitrary units. The bare substrate
potential is chosen as: U(x)=Ufamp(x)Esin(27rx/I)+§ sin(4mx/1)
_ F('[)d) ) (15) +§ sin(6mx/1). The mutual repulsion of particles causes the flattening of the
0] “effective” potential with increasingn. The positions of themaxima of
Uefi(x) coincide with theminima of T¢(x), and vice versa. This indicates

while the effective potential and temperature are defined aghatT*(x) andU*"(x) have opposite asymmetry.
U (x) = U(X) + gebo, (16)

attracting particlegFig. 3(@], meaning that the positions of
their maxima and minima coincide. In this respect, we say
Equation(15) can be solved perturbativelisee, e.g., Ref. thatfor repelling particles, the effective temperature and the
31). This perturbation approach can be qualitatively inter-effective potential have opposite asymmeéHig. 2(a)].

preted if we separate the running particles, a relatively small  Equation(14) always admits a solution if the particles
fraction of about|¥(x)|/¢o(X) at the pointx, from those repel each otherg>0. However, in the case of attracting
trapped at the substrate minima. The moving particles fegbarticles,g<<0, the transcendental E¢l4) has a solution
the potentialU®™ generated by both the substrate and theonly if

trapped particles.

In the case ofepulsiveparticle interaction, such an ef- min(U(x)) kT
fective potential is smoother than the bare substrate potential C(n)exp(— T) m-
[see Fig. Pb)] because the particles occupying the bottom of B g
the potential wells tend to repel the running particles awayHere,eis Euler's numbef2.71..). In other words, more and
from the potential minima. more particles accumulate negy,,, which in turn attract

In contrast to this, when increasing the densityatf  additional particles from even further away. Eventually, the
tracting particles, the wells of the effective potential grow particle attraction wins over the random thermal noise. This
even deeper than the substrate wiig). 3(b)]. Note thatthe occurs at a critical valu@;, of the particle density when
particle—particle interaction also induces a spatial depenZ(¢o(Xmin)) equals the maximum value m,%BZ(%)]
dence of the effective temperatuf€igs. da) and 3a)], =kgT/€|g|. At higher densities, the equilibrium distribution
which implies a spatial dependence of the diffusion constantl4) cannot be sustained any longer; thermal noise cannot
of the running particles. The effective temperature and poprevent thecondensatiorof a finite fraction of the nonideal
tential exhibit the same asymmeffyolarity) for the case of (interacting gas particles into the liquidlike phase at the bot-

ks T*"(x) = kgT + gebo. (17)
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FIG. 3. Same as in Fig. 2, but fattracting particles. The “effective”
potential wells deepen due to particle accumulating near the potential% 6 ) o
minima. The effective temperatufB® has a maximum wher&®" has a Suppressioniofthe«ractiication N
maximum, and vice versa. The sudden agglomeratiarondensatiorof the
attracting particles in the potential minimes Xy, occurs whenTe(x.,)

drops to zero.

tom of the potential wells. This results in a drop of effective

diffusion coefficient

Def‘f o Tef‘f

to zero[see upper panel in Fig(&] and the mobility of the

particles also becomes zero.

C. Far from equilibrium: Rectification enhancement

and particle condensation

Chaos 15, 026112 (2005)
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FIG. 4. Schematics of the density-dependence of the net time-average ve-
locity Vg for a rocked ratchetta) The original potentia(solid red ling and
flatter effective potentia{dashed blue lineU®"(x) due to the repelling in-
teraction among particlegb) The small amplitude of the ac force, which
tilts the effective potential fronJ®—Ax (the upper panglto U¢f+Ax (bot-

tom pane), could not produce a net motion in the bare poter(galid red

In order to understand how to control particle motion byline) at low temperatures because of the potential barriers. However, the

suppressed barriefslashed blue linefor a high density of repelling par-

changing the particle density, we recall that the effective po* o R ;
tential acting on movin articles flattens when increasin ticles can be overcome, resulting in directed particle motionfor large
en g gp gamplitudes, the ac particle motion in the bare potential gets rectified as the

the density of theepelling particles.

This mechanism is illustrated schematically in Figa)4
where a typical effective potential at loggolid red curve
and high densitydotted blue curveis drawn for clarity. If
the temperature and the amplitude of the ac forcelane

tilt is strong enough. Indeed, a parti¢kolid circle moves easily only when
the potential is tilted tdJ™—Ax [upper panel ir(c)]; the suppression of the
barriers also activates a substantial particle flow in the opposite direction,
thus reducing the ratchet rectification power. For attracting particles, the
effective potentialJ®f(x) deepens with increasing the densityThe depen-
dence of the net average velocity, on the densityn for attracting particles

enough, a running particle cannot overcome the potentid$ discussed in the text.

barriers forlow particle densitysolid red curve, Fig. ®b)].
Therefore, the particlésolid circle remains trapped in a
potential minimum during the ac tilting of the potent[anh

barriers of the effective potential corresponding higher

Fig. 4(b), the upper and bottom panels show the effectiveparticle densityn (dotted blue curve when the potential is
potential subject to maximum tilt both to the right and to thetilted [Fig. 4(b), a particle(open circle can move to the left

left]. Thus, the current has to be very small.
However, the particle can overcome the lower potentiation for highern due to flattening effective potential with

The above behavior leads to the “activation” of the net mo-
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increasingn (schematically shown as a transformationtbf Repulsion T-0.05
from the solid red curve to dashed blue priEhus, the dc net \ (@)
current is obviously enhanced when increasing the density of 0.02
particles for small enough amplitudeof the ac force. &5

On the other hand, iA is strong enough, particles can >‘3 ]
easily pass through the potential barriers in the preferable
direction even folow particle density when the potential is 0 . : :
tilted [Fig. 4(c), upper panel, solid red curl:en such a case, 0 6 n 12 18
a particle(solid circle moves easily to the left, while barriers 0.2
prevent the motion in the opposite directifig. 4(c), bot- o |[Attraction (b) w= Q
tom panel, solid red cunjeresulting in an effective rectifi- SO o T-02A-08 s /
cation. The suppression of the barri¢essociated with in- B=T=04 A=1 o I Tooo
creasing the densitp of repelling particles stimulates the 014 o n / A=15

. . . . N . . . oO000_ o A 0.4
undesirable motion in the direction which is opposite to the ] .-"\n condensation
net curren{Fig. 4(c), bottom panel, dotted blue curyéV\ith - R o \:_ 0 20 40
increasingA, this has to result in a change of the dependence 0 . EkE_"""""T”"""""‘""T‘!!"'."'T"""""—
of the net velocityV,. on the particle density, i.e., from an g | A i un@ennnnnnnnnnnnn
increasing to a decreasing functionrfThis change of the > ] (c) o 16 1 easy direction o8
Vydn)-dependence was observed in both simulations and 2 = 5
: - - T=02 * & =

analytical calculation$Fig. 5a)]. i 3 043

For attracting particles, the potential wells deepen with ] .;/ E 2
increasing particle density. In Fig. 4 this corresponds to the 1 At 8

. . . . eff ‘Oo 0.0
modification of the effective potentidl®" from a dashed °°O~oo 0 iy 1
blue (low density to a solid redhigh density profile. Thus, T 2 00000004

4 . , . —o— repulsion 00000000000
particles (open circlg, moving on the bare potentidlow 6

' T r T

d_ensity cas)g_get _trapped by_ the_ deeper_ potential wells at 0 6
higher densitiegFig. 4(b), solid circle, solid red curve at

small A, the net velocity diminishes in the case of attractingFIG. 5. Numerical data from Eqg1) with periodic boundary conditions
particles. For higher driving amplitudes, the deepening effecover two potential unit cellsta) time-average net velocity,. vs repelling

. . . . . - particle densityn for »=0.01,A=0.5,Q=1, 1,=0.9,A=0.1, g\p=0.02, T
tive potential, when '”‘?reas'”@_l results in Increa_.Slng r_at.Chet =0.2 (solid magenta circlgs and T=0.05 (open blue circles The corre-
asymmetry and, thus, increasing the net velocity. This is cONsponding analytical predictions from Eq&2) for g=gyp=0.02 (dashed

sistent with the results displayed in Fig(bh green solid lines andg=gys=0.02/1.5~0.0133(solid line) are reported for compari-
squares; inset in Fig. 5. son (see text (b) Vg4 versus attracting particle densityfor A=0.8 andT

. . . =0.2(red open squargsA=1 andT=0.4 (green solid squargsA=15 and
Moreover, for the case of attractive particles, there IST=0.2 (insef: other parameter values ar&0.01,0=1,1,=0.9,A=0.1, and

another way to control particle motion, including strong en-g=-0.02; (c) V4 vs repelling(blue open circlesand attracting(red solid
hancement of rectification power. Indeed, all our argumentsauares particle densityn for »=0.01, A=6, Q=1, [,=0.9, A=0.1, g=

on the basis of an effective potentlaFﬁ(X) become invalid -0.02, andT=0.2. Inset: Spatial distribution of attracting particles with
=7 and other parameters as in the main pdhkick circle. One snapshot

for particle densitiesn_ higher _than Neri, Where adrive- (distribution=F;/n) of the particles was taken at each drive period with the
dependent condensation transitiaccurs. For rather small external force pushing in the “hardinagenta solid line, the left ajisr the

driving forcesF(t), this results in thesudden drop of their “easy” (green dotted line, the right aislirection, respectively.

drift velocity at the condensation (agglomeration) pdiRig.

5(b), red open squarésWhen raising the drive amplitude it

can happen that the particles condense only when the d@cked ratchet can rectify the oscillatory motion of the par-
force pushes them against the steeper slope of the asymmégles. The stationary solution to E¢4) can be written as

ric substrate wells, while remaining in the running state as . , , ,

they are driven in the opposite directifffig. 5(c), insef. For ~i(F) = (U =F)Fi(X) + keTF; + gFyFy, (18)
such a range of large drive amplitudése ratchet current (' denoting arx derivative. When adopting, for simplicity,
versus the particle density saturates at a maximal value inhe piecewise linear periodic potentid(x+1)=U(x):

the vicinity of the condensation densjfyig. 5(c), solid red
squares

n 12

X
U(x)=Q|— forO<x<ly
1

1. Adiabatic approximation: Quantitative description

far from equilibrium and

In the low frequency limit, for any timg the system can
be regarded as being in the steady state corresponding to an x—1,
applied dc forcé==F(i); hence, the adiabatic expressionfor U=Q-Q |
the ratchet current igy.=v/3"j[F®)]dT, wherej(F) is the 2
stationary current in the presence of the constant dfivéd  the stationary one-particle distribution in E48), F1(x), can
j(F) is not an odd function of [i.e.,j(F) #—j(-F)], then the  be expressed in implicit form as

for I, <x<l +1,=1, (19
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026112-7 Controlling the motion of particles Chaos 15, 026112 (2005)

1(|:—f (F-f)x—g(F,—Pp) numerics and theory reveals a quantitative disagreement
PO(F_fl)_J F< kT + gj/(F — f,) ) (20) [circles versus dashed curves in Figa)3. This apparent
discrepancy points to unavoidable corrections to our mean-
for 0<x<ly, and field scheme, including an appreciable screening of the inter-
_ particle interaction, and nonlocality effects introduced by the
FaE+f) o) ;<(F+f DX =1y) = 9(F, - Pl)), truncated pair potentialV used in the simulation. To make
Py(F +f2) _J keT +Qj/(F + f2) the approximate analytical curves reproduce closer the cor-

(21) responding simulation data, the bare interaction congant
=gup employed in the simulation must be replaced in Egs.
(22) by a rescaled interaction constagfz, namely gyr
=(2/3)gyp [solid curves versus circles in Fig(a].

For the case of attractive particles, the solution of Eq.
(22) has been obtained up to a certain critical point, i.e., for
n<ngy This indicates the condensation phase-transition,
which is now driven by the force amplitud&. Numerical
simulations qualitatively agree with analytical ones: The
ratchet current increases with the densitgf attractive par-
ticles up to the condensation poing;; [Figs. 5b) and 5c)

L (red squareg. For densities above the condensation thresh-
eI|m|nat|ng the two integration constant,%Fl(x)dx and old n.;;, different scenarios can take place. If the amplitAde

Ii it Fix)dx by means of the normalization condition of the ac force is smaller than both substrate restoring forces
fO 1(X)dx=nl. The resulting equations can be convenientlyq|. andQ/I,, then the particles condense in the tilted po-

for I, <x<I. Here,Py andP; are the particle densities at the
potential minima and maxima, respectively, i.Bo=F;(0),
P,=Fi(y); f,=Q/l;, and f,=Q/l, are the two restoring
forces exerted by the substrate.

Two equations for the three unknown quantits P,
and j were derived writing Eqs(20) and (21) for the ex-
tremal pointsx=1, andx=I, respectively, and imposing peri-
odic boundary conditionk4(I)=F;(0)=P,. A third equation
for these variables was obtained by integrating @) over
one unit cell of the piecewise linear potentidx) and then

expressed as tential wells, no matter what the orientation of the drive.
Vv A /T, +GA Since the mobiIiFy of the condensed par'ticles is zero, the
P- F= === W average net particle current drops to z€Fig. 5b)]. Most
[1+gViT] notably, if A takes values between the two substrate forces

o Q/l4, Qlly, i.e., f<A<T,, then potential wells exist only in
P—X— A { /T, —-9A } (22) one tilting configuration(here, U+Ax). Therefore, in our
2[1+gV/fT] simulation the particles condense at the minimaUof Ax
when the ac force pushes them to the left; the instantaneous
"+ (@GP + 1)Aql I, current in such “hard” direction drops to zero. On the con-
= f+qT,—-T) , trary, the particles are almost ballistic when the periodic
force pushes them in the opposite, “easy” directigm
in terms of the dimensionless variabl®s=(Py+P;)/2n, A minima and therefore no condensationUr-Ax). The stro-
=(Py—Py)/n, V=jl/kgTn, and the model parameterg  boscopic spatial distribution of attracting particles subject to
=Q/kgT (activation, f=FI/kgT (drive), g=gn/kgT (density = an ac drive pointing in the hard and the easy direction, re-
or pair coupling, andy=1,/I, (ratchet anisotropy Here, we  spectively, are shown in the inset of Figch When pushed
introduce the auxiliary anisotropy parametdrs=1/1,=1 in the hard direction, almost all particles condense at the
+ytandI,=1/1,=1+v, as well as the total dimensionless bottom of the wells; on the contrary, particles moving to the
forces f"=f—ql'; and f*=f+qI', experienced by a single right in the running state are distributed quite homoge-
particle moving along the relevant sides of a potential well.neously in space. Therefore, motion is allowed in the “easy”
At low densities the net particle velocity can be ex- or natural ratchet direction only; the cur¥g.(n) levels off
panded in powers d, V=V,+gV;+0O(G?%), whereV, andV,;  in correspondence with the condensation density, i.e., it
can be easily given explicit analytical expressions. In ordesaturatesfor n>n.; [Fig. 5(c), red squares For larger ac
to compute the functionaA(g), P(g), andV(G) at higherg,  forces withA>maxf,,f,), no condensation occurs in either
Egs.(22) can be solved numerically by increasiggtepwise  direction andVyJ(n) monotonically approaches a saturation
through a simple iteration procedure. The obtained depenvalue[inset in Fig. %b)] which decreases with increasirg
dence of the net dc velocityy.=(V(A) +V(-A))/ 2 versus the
density n of repelling particles is shown in Fig.(&. The
results are in good qualitative agreement with simulations of!l- SPONTANEOUS SYMMETRY BREAKING
the Langevin equationswith a pair potential

In order to understand more precisely what occurs at the
-1yl condensation transition, we study the particle distributions
(23)  for both equilibrium and nonequilibrium cases.

We plot the particle distribution8; below and above the
Figure 5a) (solid magenta and open blue cirgledearly  condensation poinfFig. 6). Simulating two substrate poten-
shows that, as predicted in our theoretical analysis within théial cells, we found that both cells are equivalently occupied
effective potential approach, the net current for repelling parat low particle densitieésee point 1, below the condensation
ticles increasesdecreaseswith density at high(low) barri-  point). Above condensatioripoints 2 and B the spatial
ersQ with respect to the driving.. The comparison between equivalence of the two cells is spontaneously broken: Par-

W(y) =
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strate wells, with the remaining wells getting completely de-

&./l-l\
0.021 4 pleted. This occurs via the following amplification of
Ve fluctuations: very minor, random differences in particle oc-
cupation of different cells become more and more pro-
0.00 . , nounced as time evolves and finally break the original
0 __ 10_ _ equivalence of all cells. This is somewhat similar to the
N°"'e°'v‘v'r']':;'1‘\"j‘:'(T]':rzu;':’e';on) -Equilibrium “Maxwell demon” mechanism where particles originally
e WHENA =~ B {casy EIFElIOR) distrbetions, A=D equally distributed among cells accumulate in some wells
0.015] symmetric distributions: while depleting other wells. Also, it provides a deep analogy
oot 1 two minima a'efccul"ed : between this nonequilibrium dynamics near the condensation
F /N + \ / point and dynamical instabilities or critical-fluctuations near
\ / symmetry-breaking phase transitiofsge, e.g., Ref. 37For
\ —~ instance, critical fluctuations at the critical temperature pro-
0'15'p0int2 S duce a symmetryjbro_ken ferromagnetic statith _either up
distributions or down magnetization along a ferromagnetic easyjaxis
b /\ f from a fully symmetric paramagnetic phadgg. 6, left bot-
,}g tom sketch. By analogy, if two particles start their motion
0.151 1+ from an unstable equilibrium position, they can move far
) symmetry-broken | point 3 I . - .
point 3 distributions i apart from one another depending on very minor differences
o S : in their initial conditions(Fig. 6, right bottom sketoh Note
I | that such an analogy between equilibrium phase transitions
- . 27 ] ,‘ and ir_15tabi|ity of dyn_am?cal systems has been successfully
' 0 i 1 / 0 XA used in the renormalization group approach.
paramagnet, T>T, @ \ Ugstable node
\ IV. BINARY MIXTURE: CONTROLLING MOTION

OF PASSIVE PARTICLES

lowering T
# ferromagnet, T<T.
critical
fluctuations In this section we consider how to control the motion of
particles in binary mixtures. We consider transport in quasi-
. _ one-dimensional geometries, thus including the wide cat-
FIG. 6. Spontaneous symmetry-breaking destroys the equivalence of twggory of fabricated devices and nano-biological systems ad-
neighboring potential cells at the phase transition. The normalized particle . . Fél_lg 34.35 - .
dressed in recent literatufe: """ Since the dragging

distributionsF,(x/1)/N are shown for three different total numbé¥s 2n of . L o X
particles inside the two cells, corresponding to the net velowjj(N) effect implies “trapping” the target speciBsby another spe-

shown at the top. The normalized equilibrium distributidhgx/1)/N for ciesA, we first need to take into account the local change in
the same particle numbers are also shown in the right column. These resulfﬁe distribution of8 particles near al particle This can be

were obtained by numerically solving the Langevin equatidisThe pa- . . . L. . .
rameters used h}ére apeco_my 0=1 |91:0_9 )\:90.1 g:“_o_o‘;“T:O.sz done Dby considering the binary distribution function
=0.5. Both cells are equally occupied at densities lower than the condensd=ag(X,X’), which describes the probability of finding &k

tion point (e.g., point }; this equivalence is broken at higher densities particle neaix and aB particle nearx’. A partial differential

(points 2 and B Bottom sketches: The mechanism of spontaneous symme?quaﬂon fOfFAB can be constructed by averaging the time

try breaking at the condensation point has counterparts in the theory of "~ = " . . . L .
equilibrium phase transitione.g., the paramagnetic—ferromagnetic transi- d€fivative of the microscopic binary distribution

tion shown in the left sketch at the bottom and certain dynamical instabili- ,
ties of the type sketched in the right sketch at the bottom, as described in the Nag= E X - XA,i(t))5(X - XB,j(t))u

text). i
over different stochastic realizations. Here, the sum has to be
taken over the coordinates,; and xg; of all the A and B
ticles condense either on the right or the left minimum, noparticles at time. As our main goal is to study the behavior
matter if the initial particle distribution was set the same inof one species relative to the other, we further neglect the
both cells. This is the manifestation of very small fluctua-interaction among particles of the same type.
tions getting strongly amplified in time. Note that the trans-  The relevant Langevin equations are
lational symmetry of the substrate may be broken for both

nonequilibrium(at relatively weak drivingand equilibrium dx =- 7 U,+ > Wi(Xaj = Xg jr) | + \;’2kBT§g),
operating conditiongno external drivg alike. This is differ- dt PXaj i’
ent from the essentially nonequilibrium symmetry-breaking (24)

phase transition reported in Ref. 27, that disappears in equi- , A , ,
librium and requires two noise sources. For zero substratehere §g) are white noises With<§g)>:0, <gg)(t)§g>(0)>

potential, the condensation transition is replaced by the trar= 6,5 ;8(t), anda, b=A or B, andW(x, ; —Xg /) denotes the
sition from weakly coupled to clustered particle motion dis-interaction between thgh A particle and thg’th B particle.
cussed in the next section. We assume that thé\ species is driven by the time-
The symmetry-breaking mechanism discussed here comlependent forcé,(t), possibly in the presence of a periodic
sists in the irregular accumulation of particles in some subasymmetric substrate E@19), while the B species isnot
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subject to an asymmetric substrate but only to the external Slio-draqain
force fg(t); namely Upy=U-fA(t)x, and Ug=—fg(t)x. The P 99ing A
Langevin equations can be manipulated to determine the R
time evolution ofF g at B densitiesng much lower than the ._> e e .
A densityna,: .ﬁl B@®»
JF d AUaX) + W(x =X JF
AB:_{FAB (U500 +Woc=x)] AB}
ax x x slowing accelerating
J d[Up(X') + W(x—x")] down region | region
or FAB (?X!
(K = X" p= Clustered-dragging
+ f dX'Faga(X,x",X") ( - ) +kgT A,B},
X X (N4, Ng) =(3, 1) cluster
(25
where Faga(X,X',X") is the three-particle distribution func-
tion related to the probability of finding twA particles near
x andx” and aB particle neax’.

Next, we express the three-particle distributi®gg, in

terms of one-particld-, and binary distributionF,g func- NLNp) [ (LD |22 |2, ]| 3D
tions. In general, a binary function can be written as Clustenng— u 2 ez |2 |n
unclustering -
X+ X' o cri
Fas(%X) = FA(X)FB(X’)G< 5 ’X_X,> (26) phase transition Adc 16 32 24 32

whereF, andFg are the one-particle distributions f@rand  FIG. 7. The upper schematic diagram: The draggin@ ¢blue particle by
B and G defines the deviation of the distribution of tihe  a passing red particle; theB particle feels a larger density étparticles

; ; behind than in front 0B, due to the slowing down ok approachind® and
particles near & particle. In other words, the produBhG acceleratingd moving away fromB. The lower schematic picture shows the

det.ermines the con_ditio.nal prob:_;tbility to find Arparticle at  jystered motion of threa and oneB particles. The bottom table shows the
X giventhat aB particle is atx’. Since we assume zefo-A effective mobility and critical driving amplitude for cluster destruction.

interactions, the conditional probability to find cAgoarticle

at x is approximately independent on the conditional prob-
ability to find anotherA particle atx” (or at least these cor-
relations are relatively weakThus, the three-particle distri-
bution can be expressed as

IG(x.y) _ 149(x)
ay 2 ox

B(x) = f dyWy) (30)

The particle currents, are defined agkF,/dt=-0j,/dx and,

Faga(X',X") = Fg(X")FA(X) in the adiabatic approximation studied below, depend on the
b ! instantaneous value of the driving forcgst). The equation
><G< ,x—x’)FA(x”) for the correcting factoG(x,y) to the mean-fieldMF) ap-
2 proximation withy=x—x" can be easily constructed by im-
N posingly| =\ <! in Eq. (25). For the sake of simplicity, here
XG( > X' X') (27)  we only display the case whan=0, i.e.,
To make the problem analytically tractable we also consider i{e<w - VAB) + kBT&} =0, (31
the interaction rang@ of the A—B interactions to be much xy 9% ay
smaller than. In such a case we can assume long distanceghere
[x=x'|>\ (whereG((x+x")/2,x-x')=1) in order to derive o
F, and FB,_and sho_rt fjistancdx—_x’| <\ to calculateG. In Vg =Va-Vg= Ja_Is (32)
the long distance limit, we obtain the Fokker—Planck equa- Ny nNg

tions for F andFe: is the relative velocity. Therefore, th&®—B interaction pro-

FadUn+KeToFa=—]a, duces:(1) An effective potentiab(x)F, acting on theB par-
ticles, which were originally insensitive to the substrate, and
(2) an effective dragd(x)F, exerted by theAs on theBs.

Fe(d{Ug+gFal+ BFa) +keToFa =~ s (28)
with d,=4d/ dx, the effective interaction constant A. Dragging and time asymmetric driving:
Controlling particle motion without a substrate
g(x) = f dyWy)G(x,y) (29 1. dc-Dragging by auxiliary particles
When no force acts on thB species, the dc-driveA
and dragging coefficient particles can drag along th& particles. WhenU=0 [Eg.
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8 0.8
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024 gl 21g  A=20
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Vortex Pump:

(d)' H,

1.0 00000000000
< |(b) (1,1) o003
< d | ¢
> oy |
ji( O \ \l /54-(/2’2)
. 054 OOOOO@OOOOOOO(@@@@@@ 20000aR
8 e <
<\Em ;\ 2 \‘; I‘JV
>° { T=0.005, (21)5 G1)
I %
j"? A=0.1 \‘\ \ \_ FIG. 9. The net velocitie¥, and Vg, from numerically solving Langevin
0.0 - I S Res TSNP - equation(24), vs driving amplitudeA (panel b or frequenciesv,/ w, (panel
— T T T T T T T T T T T T 1 c¢) for A=0.075. The time-asymmetric signal used(in is shown in(panel
0 4 8 12 16A 20 24 28 32 36 a). Red open and blue solid symbols (h) correspond to repulsive and
dc attractive interactions, respectively. The black line(m and black solid

squares ir(c) represent/g calculated analyticallyd) Vortex pump uses the
time asymmetric electrical curred{t) pushing Josephson vorticédVs),
shown in green, back and forth. Due to the attraction between JVs and
pancake vortex stack®Vs), shown in red, this time asymmetric drive re-
sults in dc motion of both JVs and PVs. The densities of JVs and PVs can be
easily controlled by an externally applied magnetic field having both in-
planeH,, and out-of-planeH, components.

FIG. 8. Dragging particle by auxiliary particlesA in the case ofno
substrate U=0, and interaction strengty=+0.02.[(a), upper panglSym-
bols are from MD simulationgred open and blue solid symbols for repul-
sive and attractiveA—B interactions, respectivelywith time step dt
=0.000 47; black lines are the results of analytical calculatibaslower
panel The green opefmagenta solifcircles and olive opeforange solid
squares are data far,=40, g=+0.02 (g=—-0.02 and nonzero attractive
(repulsive interactions  between the same  particles  with
ga=0g=—0.005(ga=gsg=—-0.01. (b) The mobility of A and B particles vs
dc force Ay obtained from the MD simulations for lower temperature, and nondriven particIeB (blue particle). For repellingA—B inter-
repulsive interactions. The different numbers of particles in a cluster are, .. . . . e .
chosen agN,.Ng)=(1.1) red, (2,2) orange,(2.1) magenta3.1) pink. act|on_s, th_eA p_artlcle is slowing <_jown when it is behind the
B particle(i.e., in the green “slowing down” regiorAs soon
as theA particle overtakes thB particle(i.e., A occurs in the
yellow “accelerating” region in front oB in the upper sketch
in Fig. 7), the B particle pushe#\ forward, accelerating the
motion of A. Because of the faster motion Afin front of B
(the yellow region in the upper sketch of Fig, Zompared
to whenA is behindB (the green region in the same skeich
Vag [© W(2) - W(y) = Vag(z-y)/2 the A particle spends more timer can be found with higher
o | dzex kT : probability) behindB than in front of B. This results in an
y B effective force acting o, i.e., pushing in the direction of
(33)  theA particle motion.
Next, we performed numerical simulations of the Lange-
vin equations for theéd andB particles with interactions de-
EYY, scribed in(23). In spite of the finite interaction length
Vg= nAf dyG(Y)E- (34)  introduced in our simulation, the analytical equation ¥ty
obtained above describes fairly closely our data in the upper
In order to understand the physical picture of this dragspanel of Fig. 8a), showing that the dragging effect attains a
ging effect, let us consider a driven partidlgred particle in ~ maximum for a certain value ofy. Introducing the pair
the upper “slip-dragging” sketch in Fig.) @pproaching a interaction between the particles of the same typ&(y)

(3D)], the dragging problemwith fg=0 and fa=Ay) is
solved analytically. Ifj,=jg=0, the functionG is a simple
Boltzmann distributionG=exp-W/kgT), while if V,>0
one obtains

G=
kT

InsertingG in Eq. (28) yields V=T,
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Active particles (red)
subject to an
asymmetric substrate
repel passive particles
(blue). The active
(red) particles create
an effective substrate
for the passive (blue)
ones.

For repulsive
interspecies
interactions, the
passive (blue) particles

Chaos 15, 026112 (2005)

FIG. 10. Schematic diagram showing the mechanism of
the mediated ratchet effect: The active particles
(shown in red occupy the potential minima and repel
passive(insensitive to the substrat8 particles(shown

in blue) to the maxima of the substrate for the case of
repulsiveA—B interactions. This can be interpreted as
the creation of an effective substrate Bparticles with
opposite polarity with respect to the substrate felt by the
A particles.

feel an effective
potential energy with
opposite polarity from
the potential felt by the
active (red) particles.

=g,(A—|y])/NZif |y|<\ andW,=0 otherwisg, we found a

similar dependence &fg on Ay [see the lower panel in Fig. B 36 ]

8(a)] also for the case when interactions between particles ofith @2=2w,™ or the rectangular waveform of Fig (&,

the same typdi.e., A—A and B—B interaction$ are taken must be applle_zd to one species, say the auxiliary partisles

into account. With decreasing temperature, the solution of"deed, applying the alternate signdlg=-T'A and A=A,

the derived transcendental equation Y6y vanishes, signal- during the time intervalg,=1/(1+I)v and t;=T'/(1+I)w,

ing the occurrence of a dynamical phase transition. Indeed®SPectively, forces time-periodic particle flows with fre-

for weak driving forces, all theA and B particles tend to dueéncyv. The netB current can be written as

cluster togethefsee the lower schematic diagram in Fig. 7 _ _

for a cluster having three drivefred A) particles and one (V) = Ve(fa=TA) + IVp(fa=—A) (39)

(blue B) nondriven particlg In order to estimate both the 1+T

maximum driving forc .Cﬂt for the clusters to be stable and yjth time-asymmetry factoF. The averagéVg), can be eas-

their translational velocit/q,s, we introduce force-balance iy cajculated through our analytical expression for the ther-

equations for clusteretl, particles of typeA, andNg par-  mgajly averagedvy as well as from simulations; data and

ticles of typeB at T=0: analytical results compare very wékig. 9b)]. The rectifi-

cation due to thé—B dragging can also be seensgskesor

resonance$Fig. 9c)] on the dependence of the net veloci-

with interaction forcef;,;<maxa,W|=|g|/\% Thus, we ob- {i€S Vg and V, on the frequencyw,, if the signal fy

tain =fY w1, wp) with two-frequencies is applied. When chang-
ing w,/ w1, the change of the sign of the net velocities allows

Naf o to effectively control the motion of both species.

Vclust: NA+ NB (36)

fa(t) = O w1, wp) = A(COSw;t + COSw,t) (38)

VA = Vclust= fA - NBfint; VB = Vclust= NAfint (35)

B. Mediated ratchet effect

crit

. and

for a dc driving forceAy.<
If the A particles move on an asymmetric substrate, the
equation forG becomes complicated. Thus, we will now
consider a mean-field (MF) approximation when
G=131323435Eyen though dragging is lost in such an ap-
_ proximation (8=0), the effective potential acting upon the
: with (Na,Ns)  targetB particles can be qualitatively reproduced.
=(1,1),(2,2),(2,1),(3,1), respectivelysee the table in Fig. When only one species of particlésay, A) feels the
7). These nl_meers are in good agreement with the simulatiog,ystrate potentiglsee Fig. 10 active particlesh accumu-
results of Fig. &). late in the potential wells and repel passive partiGesvay
from these locations towards the maximum of the substrate
potential. This results in distributions @& and B particles
having different asymmetrjFig. 11(a)] for repulsive A—B
The dragging effect may be used to induce a net motionnteractions. In contrast, for attractive-B interactions, both
of both A and B particlesin the absence of a substratd particles accumulate in the substrate minima as shown in our
=0: As an additional ingredient, #me asymmetric zero- simulations[see Fig. 1lb)]. This can be described using the
average forcelike sinusoidal forces effective potential approach discussed above for the one spe-

St = (Na+ Ng) - ma{a,Wl. (37)

This gives the cluster mobility s Veust! Adc
=1/2,1/2,2/3,3/4 andcritical force Ajl(/g/=0.02\
=0.059=16,32,24,32 for clusters

2. Rectifying the ac dragging
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FIG. 11. Distribution of active A and passive B particles for the repul&ye
or attractive(b) interspecies interactions. The other parameters @rel,
1,=0.9,n,=200,ng=12, A\=0.05.

cies case. Namely, using a perturbation approach tqZ8y,
we derive the effective potentials and temperatures for mo
ing fraction of particles as
Ugﬁ = Ua + gaA(ﬁ,SS ) + gaBd’(O)v kBTgﬁ = I(BT + gaa¢(aO)'
(40)
whereq&;o) are equilibrium distributions. The renormalization

of the diffusion constanfor effective temperatujeand the
potential experienced by the fractialy of moving particles

a) Repelling A-B species

V_

Chaos 15, 026112 (2005)

accounts for their interaction with the remaining particles of

both species. Thus, the effective potentials have the opposite

polarity for repulsiveA—B speciedFig. 12a)] and the same
polarity for attractiveA—B specieq Fig. 12b)].

C. Gating effect: Flashing effective potential

In the adiabatic approximatidrEgs. (28) yield for the
net current of thea-species

1/v
Ja=v f dtja(fa(t), fa(t), (41)

0
with
1 - exd-If /kgT)

| X+
f dx f dzexp([U,(2) - U;(x)1/kgT)
0 X

ja=nalkgT , (42

whereU,=U, and

Ug(X,fA) = gurFa(x fa) = feX,

with gye=/dyWy). The polarity (or asymmetry of gyeFa
coincides with the polarity of the original substrdtk for
attractive interactiong,,=<0, and vice versa for repulsive
A-B potentials,gyr> 0. Therefore, the ac motion & par-
ticles can be rectified on this potentigmediated” ratchet
effecy, i.e., theB particles, which do not originally feel any
substrate, perceive a spatial asymmetry due toAthB in-
teraction. Thus, when the motion Bf particles is governed
by a “mediated” ratchet effect, one expects thandB net
currents flowing in the same directionsgi;=<0, or in the
opposite direction ifyy>0. However, there is an additional
effect controlling theB motion as the effective potential
gueFa changes with time. When the forc&(t) points
against the steeper substrate slofiee “hard-motion direc-
tion”), the A particles tend to accumulate near theninima.

b) Attracting A-B species

n, = 0.005, n, = 0.003 0.64 n, = 0.005, n, = 0.003
01 n, = 0.08, n, = 0.05 N, = 0.09, n, = 0.06
= 0.0+ —— . — 044 FIG. 12. Spatial dependence of the ef-
“’:m o T |7 4 o fective potentialdJ$", UE" at different
-0 =] densities of theA and B particles. In
0.2 both panels, particles of the same type
repel one another; the interaction be-
-0.2 S e tween particles of different species is
. ! ' 0.0 55— e —— = repulsive in(a) and attractive in(b).
12 n,=032,n,=02 1] ——n,=05,n,=04 There is no “bare” potential for thB
n,=11,n,=068 n,=52n,=5 particles,Ug=0, whereas the ratchet
A 7 potential UA(x) is piece-wise linear
& 0.8 / / £ 0.8 g /A (19) and hereQ=1, 1,=0.8. The other
:;f // / 5“ // @ // coupling parameters aregap=0gg
5] /,./‘ / i /, /. =|gagl=1 andkgT=1.
) / // /
0.0 : . : 0.0 T Y T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
X/l X/l
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FIG. 13. How to control the net velocitia,, Vg by ac forcesf, andfg on
an asymmetric substrate potentfgireen profile in(a)] coupled to theA
particles, only. We sek=0.075,n,=50, ng=1, dt=0.000 47,|g/=0.02,Q
=-1, 1,=0.9. (a) The effective MF potentialred dashed and blue solid
landscapesfelt by the B particles when thé\ particles are forced towards
the “hard” (to the righj or to the “easy’(to the lefy directions, respectively.
(b) V5 and Vg vs the ac amplitudé of f, and fg calculated in the MF
approximation Eqs(41), (42) for the repulsive(attractivg A—B interaction
and in-phaséred solid and blue dashgdut-of-phasdpink solid and light
blue dashedand 7/ 2-shifted(orange solid and violet dasheac forces(c)
The MD data ofV for repulsive(attractivg species and in-phageed open
(blue solig triangles and opposite-phaséed open(blue solig circles
driving forces; black symbols mai,. (d) The same as ifc) with red open
(blue solig squares for repulsiv@ttractive interactions andr/2-shifted ac
forces, black symbols ar¥,. () The ac force is applied only to th&
specieqi.e., fg=0). Vg is marked by red opefblue solid up-triangles for
repulsive (attractivg interactions, the corresponding, marked by down-
triangles(circles. (f) The ac force is applied only tB particles(fo=0), Vo

is very weak(black symbolg but the ac motion oB particles is rectified by
an effective asymmetric potenti&V/g is plotted by red operiblue solid
symbols for repulsiveattractive interactions. (g) The dependence of the
net velocitiesV, (black squares from MPand Vg (red open symbols from

MD and green filled circles calculated analytically and linearly scaled to fit

MD datg on the frequency ratiavg/ w, (odd ratios provide peaksor
repulsive interactions anf,=Ag=8, ¢p=g=0.

Thus, due to the repulsiv@ttractive A—B interactions, this
strongly nonuniform distribution oA particles causes high
peaks(deep well in the effective potential acting on thHg
particles[Fig. 13a)]. The ensuing high potential barriers of
UeBff significantly slow down theB particle motion(gating
effect) when theA particles move in their “hard” direction.
In contrast, the relatively faster motion of theparticles as

Chaos 15, 026112 (2005)

fa(t) pushes them in the opposite, “easy” direction, corre-
sponds to shalloweugff barriers [blue solid line in Fig.
13(a)] and, thus, to a higheé® mobility. The time-correlation

of these stopping intervals f@& particles(when theAs move

in the “hard” direction and ac—drivingfg(t) of Bsresults in
another way to control the motion &s.

D. Interplay between gating, mediated-ratchet,
and dragging effects in a rocked ratchet

Let us consider ac drives of the form
fa(t) = Ax Sgricog wat + ¢p)]

and

fa(t) = Ag sgricog wgt + ¢g)]. (43

If the frequencies and amplitudes of both signals coincide
wp=wp=w, Ay=Ag=A, we can restrict the discussion to
three main cases depending on the relative phase of the ac
forces: (i) In-phase drives:¢p,=¢g; (ii) opposite-phase
drives: ¢pp=¢g+; and (iii) w/2-shifted drives: ¢pp= g
+ar/2. In the first two cases the gating effect is dominant and
the direction of theB current does not depend on the polarity
of gueFa, 1.€., the sign oV is insensitive to the sign of the
A-B interactions(attractive or repulsive Indeed, theA par-
ticles, when pushed against the steeper sloped,afreate
the high barriers ol [Fig. 13a)] that lock the motion oB
particles as long af; pushes them to the right or to the left
in the case of in-phase or opposite-phase ac drives. Thus, the
A and B patrticles drift necessarily to the same or opposite
direction for casesi) or (ii), respectively. In contrast, when
fa(t) and fg(t) are phase shifted by/2, theB particle mo-
tion is governed by the asymmetry of the effective potential
oweFa. During the half ac cycle when the effective potential
ug“ develops high(low) barriers, theB particles are being
pushed directly byfg(t) to the right and to the left for the
same amount of time. Thus, thleparticles are driven back
and forth on the asymmetric ratchet potentiglgFa(X,fa
=A) andgyeFa(x,fa=—A), alternately. Since the polarity of
these potential§due to “mediated” ratchet effectiepends
on the sign of the interactiogy,e, attractiveA andB particles
move togethefsgr(Jy)=sgn(Jg)], while repulsive particles
travel in opposite directionssgnJ,)=-sgr(Jg)].

Examples of MF calculations for in-phase, opposite-
phase andr/2-shifted drives are shown in Fig. 8. Our
numerics prove that dragging effects may correct the MF
estimates oWg, so as to break the symmetry with respect to
the interaction sigisee Fig. 1&) for cased(i) and (ii) and
Fig. 13d) for (iii)]. Nevertheless, the main MF picture re-
mains valid. In order to clearly separate dragging and recti-
fication effects, we performed simulations wit # 0, Ag
=0 [Fig. 2e)] and with A,=0, Ag#0. For the first case
(dragging, the A andB particles drift in the same direction,
while in the second cagenediated ratchgthe sign ofVg is
determined by the sign of th&—B interactions. Finally, if
we fix amplitudes and phases, for instandg=Ag and ¢,
=¢g, and change the frequency ratif/ wg, we obtain ve-
locity spikes for commensurate valueswf and wg. Indeed,
in the incommensurate case the gating effect is irrelevant and
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W— Summary S m—
ortex ortex
HC z HL‘ s
2L - y S
Hap E{ A A
n "
= ° Input: ac
Output I: () - - Input: time magnetic
dc in-plane " } e asymmetric ac field:
current - - ® c-axis current hae=hof(V1),
-ﬁ-:- Jovt), <>=0, sty
\_— <J3>20 <f>%0
N N R

: Focusing: . .
i iy 1 g FIG. 14. Three different devicaRef.
current He 11) use time-asymmetric drives to rec-

tify motion of two vortex species: Jo-

ortex H (a) The vortex pump converts the time-asymmetric sephson vortices and pancake vortex
giggﬁ oscillations of the JV's, induced by the time- stacks.
e 4 Hab asymmetric applied ac c-axis current, into a dc drift
Input 2: ac of both PV's and JV's.

(b) The vortex diode uses the spatially asymmetric
ratchet potential generated by the oscillating JV's,

in-plane

current Input 1: high

Jysin(vit),/ ® frequency ac ! o / S
v’::! VI ’ c-axis current which are drlvgn by a hlgh-frequency c-axis
J(vty, </>=0 current, to rectify the applied ac current Jy,

= Josin vt flowing along the in-plane magnetic
field.

Output: dc in-plane current (c) The vortex lens utilizes an applied time-
asymmetric ac magnetic field to increase or
decrease the PV density at the center of the sample.

the net motion is determined by a combination of mediatedJ;, fabricated by using irradiation or lithography. This re-
ratchet and dragging effect. However, if the frequencies osults in the rocking potential for PVs:

the driving signals are commensurate, the modulation of the Upy = Dol (OX/c+ Uy,

effective potentialUS" gets time-correlated with the direct ac PV ovab pin-

drive fg(t), thus resulting in large deviations & from its ~ The mutual interactioWp,,_;, between PVs and JVs is the
incommensurate baseliisee Fig. 18)]. Note that the ve- short-range attraction interactidhThe parameters of vortex
locity spike§8 shown in Fig. 18g) result from spatial asym- interactions and pinning can be easily controlled by tempera-
metries(i.e., they disappear /=0); in contrast, the velocity ture and magnetic fields. Since vortex dynamics is described
spikes[see Fig. &)] for commensurate values af, andw, by overdamped equations, the problem of the mutual PV-JV
in the absence of a substrate, are caused by the residual ndransport is reduced to the one considered in this paper. Thus,
linearity of the symmetric problefdg(fa)=-Vg(=fa). [As a  the binary mixture of PVs and JVs is an experimentally ac-
result, in Fig. 9c) spikes happen at different winding num- cessible system where the effects discussed above can be

bers with respect to Fig. 1§).] observed. For instance, several devices which drag PVs by
JVs using time-asymmetric drives have been disci$¢see

V. CONTROLLING VORTEX MOTION USING EITHER Fig. 14. Recent experiments™® confirm our theoretical

TIME-ASYMMETRIC DRIVE OR SPATIAL- predictionS]E1

ASYMMETRIC SUBSTRATE Another vortex system exhibiting features of binary mix-

As one of the possible experimental realizations of ourtures was studied on a superconducting/magnetic hybrid with

proposal, let us now consider an interesting vortex sytem magnetic t(;u’;ngles anq a supercc;r!ductllng ]f'ﬁﬂ—'he vorti- |
in layered superconductors like Bi2212 placed in an externaf®S: PINN€d by magnetic traps andjumping from one triangle
oblique magnetic fieldFig. 14. Theab-field component,y, to another, play the role of an active species for such system,

generates Josephson vortiqd¥'s) trapped between super- while_ the interstitial vqrtices{moving _outside trapscan be
conducting layer§green vortices in Fig. @)]. JVs are usu- considered as a passive spediese Fig. 15 The mediated

ally very weakly pinned and can be driven by the eIectricaIratChet zﬁegt /produce_s t:eb _(;ecuﬂﬁfanon I in such a
current J,(t) flowing along thec axis. This results in the SuPerconducting/magnetic hybrid. This allows us to
rocked potential mterprei the observed current inversion.

U,y = Dol (tXlc, VI. CONCLUSIONS

with flux quanta®, and light speea. Note, that this prob- The stochastic transport of interacting particles, for
lem can be reduced to one-dimensiofHD) because of the single species and binary mixtures, is described both analyti-
translational invariance alond,,. The c axis magnetic field cally (using Fokker—Planck-type equations for many-particle
component generates pancake vortex stéaBké) [red vor-  distribution functiong and numerically(simulating Langevin
tices in Fig. 9d)], which can be easily driven by an in-plane equations The rectification power of one-species ratchet
ac current],,(t) and subject to a periodic pinning potential devices can be tuned by changing the particle density and
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