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ABSTRACT: Here we briefly review a renormalization
group theory derived from a real space decimation tech-
nique. A new result regarding the wave function scaling
is presented, and some applications are discussed.

The spectral and wave function properties of one-dimensional quasicrys-
talline lattices have been extensively studied in recent years. While most
work has been done numerically, analytical approaches based on trace maps”
and real space decimation techniqueszl have played the central role in our un-
derstanding of such systems. In 1986, we proposed a renormalization group
(RG) theory based on a decimation scheme derived from degenerate pertur-
bation calculations.2] While it is exact only in a certain limit, it offers us a
simple and intuitive picture about the physics of the system. Here we give

a brief review of our work and the applications of this RG made by others

(*) Permanent address
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later on. A new result on the wave function scaling will also be mentioned.

The basic idea of our RG theory is quite simple. Consider a tight-
binding lattice with constant site energies, and nearest-neighbor (nn) hop-
ping amplitudes {Ty,Ts} arranged in a Fibonacci sequence (Figure 1a). We
assume [Ty, /T,| < 1. In the first step of the RG, we diagonalize the strong
bonds. If the weak bonds are ignored, then the spectrum will consist of three
degenerate levels, corresponding to states on the isolated sites (atoms) and
the bonding or anti-bonding states on the pairs of sites (molecules) originally
connected by the strong bonds. These levels are separated by the energy |Ts|,
which is, by assumption, much larger than the ignored weak bonds. When
the leading corrections of the weak bonds are taken into account, the differ-
ent states in a degenerate level are connected, but the states belonging to
different levels are decoupled. The result is three independent sub-lattices:
1) bonding molecular chain, 2) atomic chain and 3) anti-bonding chain. They

have renormalized nearest-neighbor bonds
{ Tt%/ZT&’ Tw/2 } s { TE)/TE» ~T3,/T,} s { TE,/2T,, _Tw/2}’

respectively, all arranged in a Fibonacci sequence as {T,,Ts} was in the
original lattice. In the subsequent steps of the RG, each of the sublattices

are renormalized again into three sub-sublattices, and so on.

A direct consequence of this RG analysis is that the spectrum should
have a hierarchical pattern: three major clusters, each of which is trifurcated
into three subclusters, and so on. The middle subclusters correspond to the
atomic sublattices, and they are narrower by a factor of |T,/T;| than the side
subclusters sharing the same parent cluster. The relative spectral weights of

the three subclusters from a given parent cluster is

1 1 1
:2_1 :r?s :i 9

as can be obtained by counting the relative number of sites involved in a

sublattice.

These results have provided a simple analytic basis for a global scaling
analysis of the spectrum by Zheug,3] His result compares qualitatively well

with the numerical result of ref. 1 and is exact in the limit of |Ty/Ts| < 1.
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Figure 1: Schematic representation of the renormalization-group decima-
tion technique for the central subbands (“atomic-type”) of the energy spec-
trum of a tight-binding Fibonacci lattice. This decimation procedure favors
the atomic (i.e., weakly coupled or isolated) sites and is useful in order to
study the central part of the nth-furcation of the spectra. The double lines
denote the strong effective bonds, i.e. large overlap integrals or hopping am-
plitudes. The single lines represent the weak effective bonds. The atoms
in (a) are represented by open circles. The strongest bonds between atoms
form bound states (molecules). The molecules in (a) are eliminated, pro-
ducing the renormalized chain in (b). The larger circles represent the new
(renormalized) atoms. Again, the short distances between the atoms corre-
spond to the strong bonds (double lines) which define the new molecules of
the chain. Eliminating the new molecules, we obtain the renormalized chain

in (c), where the only circle represents the new renormalized isolated site.
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Figure 2: Probability density, Pn = )_, |¢$f)|2 summed over the states
belonging to a given cluster, versus site position, n, along the chain. In (a)-
(d) the probability densities have contributions from the states belonging
respectively to (a’)—(d’), where (a’) denotes the central main cluster of states
around E = 0 in the energy spectra, (b’) the central subcluster of (a’), (¢’)
the central subcluster of (b’), and (d’) the central subcluster of (¢’). It is
important to note that the lattices of figures 1(a), 1(b), and 1(c) correspond
to the probability densities (b), (c), and (d) respectively.
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Figure 3: Schematic representation of the decimation procedure f avoring
the bonding (i.e., strongly coupled) molecular states. This procedure is use-
ful in order to study the edge states of the nth-furcation of the spectra. The
double (single) lines denote the strong (weak) effective bonds. The atorms are
represented by open circles. The strong bonds between atoms form bound
states (molecules). The weakly coupled atoms in (a) are decimated, pro-
ducing the renormalized chain in (b). The black circles represent the new
weakly—coupled sites. Eliminating these isolated atoms we obtain the renor-
malized chain in (c), where the larger black dots represent the new atoms

(molecules according to the lattice (b), and supermolecule - or cluster of

molecules — according to (a)).
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Figure 4: Probability density, Py, versus site position, n , along the chain.

In (a)-(e) the probability densities have contributions from the states be-

longing respectively to (a”)-(e”), where (a”) denotes the top main cluster
of states in the energy spectra, (b”) the top subcluster of (a”), (¢”) t.he tOP:
subcluster of (b”), and so on. It is remarkable to note that t.he lattlcesdol
figures 3(a), 3(b), and 3(c) correspond to the probability densities of (c), (d),

and (e) respectively.
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Another consequence of the RG analysis is that certain wave functions
icale with distances. Consider the state with an energy in the center of the
ipectrum. This state is coded by the symbolic string cccc...., meaning that
he energy belongs to the central cluster, the central subcluster of the central
luster, and so on. According to the RG analysis, in each step of specializing
nto a sublattice, the wave function gets enhanced by a factor of |Ts/Tw|,
vhile the average distance between the sites, L, gets enlarged by a factor of
3. We therefore have

[$(L)| ~ L®IT/Tul/ nr®

there L is a distance along the chain. Next we consider a state at the edge of
he spectrum. This state is coded as sss..., meaning that the energy belongs
o the side cluster, a side subcluster of side cluster, and so on. In this case,
he average distance betweer - sites gets enlarged by a factor of 72 by
enormalization. Therefore

(D)| ~ LRIT/Tl/lar

'hese results have also been obtainedll using trace map formulas. Finally,
‘e consider a state coded by a string of mixed s and ¢’s. If the concentration

f the c’s is p. and that of the s’s is p,, then we should have

[W(L)| ~ LITe/Tul/nrteets00)

his is, up to our knowledge, a new result.

Our RG theory has also been applied to an analysis of the roughening
" two-dimensional quasicrystal interfaces by Ga.rg4]. In particular, he com-
utes the leading low-temperature behavior of the roughness exponent. In
1 appendix of his article, he obtains, and also rederives in slightly different

rms, some basic results of the RG theory.

Finally, we should mention that our RG theory can be very naturally
>plied to lattices with hierarchical couplings.sl
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