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Three-wave mixing in second-order nonlinear optical processes cannot occur in atomic systems due to the
electric-dipole selection rules. In contrast, we demonstrate that second-order nonlinear processes can occur
in a superconducting quantum circuit (i.e., a superconducting artificial atom) when the inversion symmetry
of the potential energy is broken by simply changing the applied magnetic flux. In particular, we show that
difference- and sum-frequencies (and second harmonics) can be generated in the microwave regime in a
controllable manner by using a single three-level superconducting flux quantum circuit (SFQC). For our
proposed parameters, the frequency tunability of this circuit can be achieved in the range of about 17 GHz
for the sum-frequency generation, and around 42 GHz (or 26 GHz) for the difference-frequency
generation. Our proposal provides a simple method to generate second-order nonlinear processes within
current experimental parameters of SFQCs.

N
Onlinear optical effects have many fundamental applications in quantum electronics, atom optics,
spectroscopy, signal processing, communication, chemistry, medicine, and even criminology. These
phenomena include optical Raman scattering, frequency conversion, parametric amplification, the

Pockels and Kerr effects (i.e., linear and nonlinear electro-optical effects), optical bistability, phase conjugation,
and optical solitons1,2. Three-wave mixing (including the generations of the sum-frequency, difference-fre-
quency, and second harmonics) and four-wave mixing are important methods to study nonlinear optics. It is
well-known that materials without inversion symmetry can exhibit both second- and third-order nonlinearities.
However, materials with inversion symmetry usually exhibit only third-order nonlinearities. Thus, three-wave
mixing (which requires the second-order nonlinearity) cannot occur in atomic systems with well-defined inver-
sion symmetry, because the electric-dipole transition selection rules produce a zero signal1 with mixed frequen-
cies. Although chiral molecular three-level systems without inversion symmetry can be used to generate three-
wave mixing in the microwave domain3–6, such wave mixing cannot be tuned because the energy structure of the
systems is fixed by nature.

Recently, superconducting charge, flux, and phase quantum circuits based on Josephson junctions have been
extensively explored as basic building blocks for solid-state quantum information processing7–10. These circuits
can also be considered as artificial atoms9,11. In contrast to natural atoms, the quantum energy structure and the
potential energy of these artificial atoms can usually be tuned by external parameters. Thus, they can possess new
features and can be used to demonstrate fundamentally new phenomena which cannot be found in natural three-
level atoms. For example, with the tunable potential energy of superconducting flux quantum circuits (SFQCs) by
varying the bias magnetic flux, three-level (qutrit) SFQCs can have a D-type (cyclic) transition12. Two-level
SFQCs are also known as superconducting flux qubits13. Three-level SFQCs (i.e., superconducting flux qutrits)
can be used to demonstrate the coexistence of single- and two-photons12,14, which does not occur in natural three-
level atomic systems with electric-dipole interaction. Such D-type atoms can also be used to cool quantum
systems15, or generate microwave single-photons16.

In solid-state quantum information processing, microwave signals are usually employed for measuring and
controlling the qubits. Moreover, these signals can also be used to detect the motion of nanomechanical reso-
nators17 and to read out the spin information in nitrogen-vacancy centers in diamonds18. Therefore, the con-
trollable generation, conversion and amplification of microwave signals play a very important role in solid-state
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quantum information processing. The generation of microwave
Fock’s states19–21, superpositions of different Fock’s states22, squeezed
states23, nonclassical microwave24 and giant Kerr nonlinearities25,26

have been studied in the microwave domain via circuit quantum
electrodynamics (QED)7–9. Microwave parametric amplification27

has also been studied by using three-wave mixing28 in superconduct-
ing circuits with four Josephson junctions. Different from Ref. 28,
here we propose another method to generate microwave three-wave
mixing, including the generation of the sum- and difference-frequen-
cies in a controllable way via a tunable single SFQC. This method also
applies for phase29–31 and transmon32 qutrits. In our proposal, such
three-wave mixing can be switched off at the optimal point by the
bias magnetic flux. We also discuss the possibility for the generations
of second harmonics and zero-frequency using SFQCs.

Model
To be specific, our study below will focus on three-level SFQCs, also
called a qutrit or three-level qudit. However, our results can also be
applied to phase and transmon qutrits. As shown in Fig. 1(a), a SFQC
consists of a superconducting loop interrupted by three Josephson
junctions and controlled by a bias magnetic flux We. The Josephson
energies (capacitances) of the two identical junctions and the smaller
one are EJ (CJ) and aEJ (aCJ) with 0.5 , a , 1, respectively. If we
assume that the SFQC is driven by the external time-dependent
magnetic flux W tð Þ~

X
l

W vlð Þexp {ivl tð Þ with frequencies vl,

then we can describe the system by this Hamiltonian

H~{
�h2

2Mp

L2

LQ2
p

{
�h2

2Mm

L2

Ly2
m

zU Qp,Qm,f
� �

zV tð Þ ð1Þ

with Mp 5 2CJ[W0/(2p)]2 and Mm 5 Mp(1 1 2a). The potential
energy is

U Qp,Qm,f
� �

~2EJ 1{cosQp cosQm

� �
zaEJ 1{cos 2pf z2Qmð Þ½ �,

ð2Þ

with phases Qp 5 (w1 1 w2)/2 and

Qm~
1
2

w2{w1ð Þz 2pa

2az1
W tð Þ
W0

, ð3Þ

where w1 and w2 are the gauge-invariant phases of the two identical
junctions (see Fig. 1). Here f 5 We/W0 is the reduced magnetic flux,
and W0 5 h/(2e) is the flux quantum. The interaction between the

SFQC and the time-dependent magnetic flux is described by V(t) 5

I(Qp, Qm, f)W(t), with the supercurrent

I Qp,Qm,f
� �

~
a I0

2az1
sin 2pf z2Qmð Þ{2 sin Qm cos Qp

h i
ð4Þ

inside the superconducting loop33,34 and I0 5 2pEJ/W0. The super-
current I ; I(Qp, Qm, f) and the external magnetic flux W(t) are
equivalent to the electric dipole moment operator and time-depend-
ent electric field of the electric dipole interaction in atomic systems. It
is obvious that U(Qp, Qm, f) in Eq. (1) can be tuned by the bias
magnetic flux We. We have shown that one of two flux quits cannot
work at the optimal point when both qubits are directly coupled
through their mutual inductance34, because of its selection rules12,33.
Such problem can be solved by introducing a coupler (e.g., see, Refs.
35–37).

We have shown12 that three-level SFQCs have D-type (cyclic)
transitions among the three lowest energy levels jiæ when the inver-
sion symmetry of the potential energy is broken, otherwise it has a
cascade transition. Under the three-level approximation of SFQCs,
Eq. (1) becomes

HT~
X3

i~1

Ei ij i ih jzVT tð Þ, ð5Þ

where Ei (i 5 1, 2, 3) are three eigenvalues corresponding to the three
lowest eigenstates jiæ of Eq. (1) with V(t) 5 0. With this three-level
approximation of SFQCs, the interaction Hamiltonian VT(t) in Eq.
(5) can be generally written as

VT tð Þ~
X3

i,j~1,ivj

Iij fð ÞsijzH:c:

" #
W tð Þ, ð6Þ

with operators sij 5 jiæ Æjj and matrix elements Iij(f) ; ÆijI(Qp, Qm, f)jjæ
dipole-like moment operator. Here, the longitudinal couplingX3

i~1
Iii fð ÞsiiW tð Þ between the three-level SFQC and the time-

dependent magnetic flux is neglected even though the reduced mag-
netic flux is not at the optimal point, i.e., f ? 0.5. We note that f 5 0.5
is called as the optimal point or the symmetry point13, where the
influence of flux noise is minimal. When the relaxation and dephas-
ing of the three-level SFQC are included, the dynamics can be
described by the master equation

_r tð Þ~ 1
i�h

HT ,r½ �z 1
2

X3

i~2

cii 2siirsii{siir{rsii{�riið Þ

{
1
2

X3

l~1

X
ivj

cij sjjr{�rjlsjl

� �
{ rsjj{�rljslj

� �h i

z
X
ivj

cijsij r{�rjj

� �
sji,

ð7Þ

with r(t) ; r. Here, different energy levels are assumed to have
different dissipation channels. The operator r(t) is the reduced den-
sity matrix of the three-level SFQC. We will study the steady-state
response; thus, the thermal equilibrium state �r for V(t) 5 0 with
matrix elements �rlj is added to the master equation. Also, cii is the
pure dephasing rate of the energy level jiæ, while cij 5 cji (with i ? j)
are the off-diagonal decay rates.

Sum- and difference-frequency generations
We assume that the SFQC is in the thermal equilibrium state �r when
V(t) 5 0. To study the steady-state response of the three-level SFQC
to weak external fields, we have to obtain the solution of the reduced
density matrix r for the three-level SFQC in Eq. (7) by solving the
following equations:

Figure 1 | (a) Schematic diagram for a SFQC with three Josephson

junctions biased by a magnetic flux We and also driven by the magnetic flux

W tð Þ~
X

l

W vlð Þ exp {ivl tð Þ with different frequencies vl, which are

specified in panels (b,c); EJ is the Josephson energy, and 0.5 , a , 1. (b) A

three-level (qutrit) SFQC, which can be considered as an artificial atom

with D-type (cyclic) transitions driven by the external magnetic flux W(v1)

[W(v2)] with frequency v1 (v2) to induce the transition between the

energy levels | 1æ and | 2æ ( | 2æ and | 3æ), results in the generation of the

output signal with the sum-frequency v1; (c) Same as in panel (b) but for

the flux W(v1) inducing the transition between the energy levels | 1æ and

| 3æ, leads to the generation of the output signal with the difference-

frequency v2.
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_rij tð Þ~ 1
i�h

HT ,r tð Þ½ �ij{
1
2
Cij~rij tð Þ, i=j,

_r11 tð Þ~ 1
i�h

HT ,r tð Þ½ �11zc12~r22 tð Þzc13~r33 tð Þ,

_r22 tð Þ~ 1
i�h

HT ,r tð Þ½ �22{c12~r22 tð Þzc23~r33 tð Þ,

_r33 tð Þ~ 1
i�h

HT ,r tð Þ½ �33{ c13zc23ð Þ~r23 tð Þ

ð8Þ

with the parametersC12 5 c12,C13 5 c13 1 c23 1 c33 andC23 5 c12 1

c13 1 c23 1 c22 1 c33, derived from Eq. (7). Note that Cij 5 Cji. Here
we define ~rij tð Þ~rij tð Þ{�rij. Because the external fields are weak, the
solution of r(t) can be obtained by expressing r(t) in the form of a
perturbation series in VT(t), i.e.,

r tð Þ~r0zr1 tð Þzr2 tð Þz � � � , ð9Þ

with the density matrix operator r0~�r in the zeroth-order
approximation. We define the magnetic polarization P due to
the external field as P 5 Tr[r(t)I], in analogy to the electric polar-
ization1, then the second-order magnetic polarization can be given
as P(2) 5 Tr[r2(t)I], and then the second-order magnetic suscept-
ibility can be given by

x 2ð Þ vð Þ~ P 2ð Þ vð Þ
W v1ð ÞW v2ð Þ

: ð10Þ

In our study, since the condition Ei{Ej

�� ��?kBT (with i ? j) is
satisfied, then the system is in its ground state j1æ in the thermal
equilibrium state, i.e., r0~�r~ 1j i 1h j.

Sum-frequency generation. To study the microwave generation of
the sum-frequency, we now assume that the two external magnetic
fluxes are applied to the three-level SFQC. As schematically shown in
Fig. 1(b), one magnetic flux with frequency v1 (v2) induces the
transition between the energy levels j1æ and j2æ (j2æ and j3æ). In
this case, the interaction Hamiltonian VT(t) between the three-
level SFQC and the two external fields is given by

V1 tð Þ~
X

i~1,2

Ii,iz1 fð Þsi,iz1W við Þexp ivitð ÞzH:c: ð11Þ

under the rotating-wave approximation. On replacing VT(t) in Eq.
(7) by V1(t), and using the perturbation theory discussed above, we
can obtain the reduced density matrix of the three-level SFQC, up to
second order in V1(t), and find the second-order magnetic
susceptibility as

x 2ð Þ vzð Þ~ I12 fð ÞI23 fð ÞI31 fð Þ
iv1{iv21zC21ð Þ ivz{iv31zC31ð Þ ð12Þ

for the sum-frequency generation with v1 5 v1 1 v2, and
vij~ Ei{Ej

� ��
�h, with i . j. Equation (12) obviously shows that

the second-order magnetic susceptibility is proportional to the
product of the three different electric dipole-like matrix elements
(or transition matrix elements) Iij(f), with i ? j. Therefore, for a
given reduced magnetic flux f, the maximum value of the
susceptibility in Eq. (12) is x 2ð Þ

max vzð Þ~I12I23I31= C21C31ð Þ when
v1 5 v31 and v1 5 v21.

Difference-frequency generation. Similarly, the difference-
frequency can also be generated by using a three-level SFQC. We
assume that a magnetic flux with frequency v1 (v2) is applied
between the energy levels j1æ and j3æ (j2æ and j3æ) as shown in
Fig. 1(c). In this case, the interaction between the three-level SFQC
and the external magnetic fields can be described by

V2 tð Þ~
X

i~1,2

Ii,3 fð Þsi,3W við Þexp ivitð ÞzH:c: ð13Þ

under the rotating-wave approximation.
Using the same calculation as for Eq. (12), we can also obtain the

second-order magnetic susceptibility of the difference-frequency v2

5 v2 2 v1 as

x 2ð Þ v{ð Þ~ I13 fð ÞI21 fð ÞI32 fð Þ
iv{{iv21zC21ð Þ iv1{iv31zC31ð Þ : ð14Þ

For a given reduced magnetic flux f, the maximum amplitude
x 2ð Þ

max v{ð Þ~I13I21I32= C21C31ð Þ of the susceptibility in Eq. (14) for
the difference-frequency can be obtained under the resonant driving
conditions: v2 5 v21 and v1 5 v31.

Numerical simulation. Both Eqs. (12) and (14) show that the
susceptibilities of the sum- and difference-frequencies can be
controlled by the bias magnetic flux We. According to the analysis
of the inversion symmetry for flux quantum circuits12, we know that
the three-level SFQC has a well-defined symmetry at the optimal
point f 5 0.5 and it behaves as natural three-level atoms with the
J-type (or ladder-type) transition. In this case, the transition matrix
elements between the energy levels j1æ and j3æ is zero, i.e., I13(f 5 0.5)
5 I31(f 5 0.5) 5 0, and both susceptibilities, x(2)(v1) in Eq. (12) and
x(2)(v2) in Eq. (14), are zero. Thus, the microwave sum- or
difference-frequencies cannot be generated at the optimal point as
for natural three-level atoms with the electric-dipole selection rule.
Equations (12) and (14) also tell us that the amplitudes of the
susceptibilities for both the sum- and difference-frequencies are
proportional to the modulus R(f) of the product of the three
different transition matrix elements, i.e.,

R fð Þ: I12 fð ÞI23 fð ÞI31 fð Þj j~ I21 fð ÞI32 fð ÞI13 fð Þj j: ð15Þ

Thus, the maximum value R(max)(f) of R(f) corresponds to the
maximal susceptibilities under the resonant driving condition. To
show clearly how the bias magnetic flux We can be used to control the
sum- and difference-frequency generations, the three transition
elements jI12j, jI23j and jI13j versus the reduced magnetic flux f are
plotted in Fig. 2(a). Also, the f-dependent product jI12I23I31j is plotted
in Fig. 2(b). Here, we take experimentally accessible parameters, for
example, a 5 0.8, EJ/h 5 192 GHz, and EJ/Ec 5 48, where Ec is the
charging energy and h is the Planck constant. These data are taken
from the RIKEN-NEC group for their most recent, unpublished,
experimental setup. Figures 2(a) and 2(b) clearly show that the
bias magnetic flux W. i.e., f 5 W/W0, can be used to tune the
transition elements, and then R(f) is also tunable. We find that R(f)
is zero, at the optimal point corresponding to the zero signal for the
sum- and difference-frequency generations, because the transition
selection rule at this point makes the transition element I13 5 0, as
shown in Fig. 2(a). That is, the transition between the energy levels
j1æ and j3æ is forbidden. However, the sum- and difference-
frequencies can be generated when f ? 0.5, and the maximum
R(max)(f) corresponds to two symmetric points with f 5 0.4992 and
f 5 0.5008. To show the tunability of the frequency generation, we

now define a maximum variation d
maxð Þ

ij iwjð Þ of the sum- and
difference-frequency generation as

d
maxð Þ

ij ~
1

2p
vij{v

optð Þ
ij

� �
ð16Þ

for a given range of the reduced magnetic flux f. Here, v
optð Þ

ij denotes
the transition frequency between the energy levels jiæ and jjæ at the
optimal point.

Figure 2(c) shows that the maximum variation d
maxð Þ

31 of the sum-

frequency is d
maxð Þ

31 ~ v31{v
optð Þ

31

� �.
2pð Þ<17 GHz for 0.5 , f ,
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0.53. However, the maximum variation d
maxð Þ

21 or d
maxð Þ

32 of the

difference-frequency is d
maxð Þ

21 ~ v21{v
optð Þ

21

� �.
2pð Þ<42 GHz or

d
maxð Þ

32 ~ v32{v
optð Þ

32

� �.
2pð Þ<26 GHz for 0.5 , f , 0.53. Thus,

the tunability for the sum- and difference-frequency generations
can be, in principle, over a very wide GHz range, by using the bias
magnetic flux We.

Second-harmonic generation
From Eqs. (12) and (14), we find that the second-harmonic and zero-
frequency signals can also be generated in three-level SFQCs when
two applied external fields have the same frequency and satisfy the
condition

v1~v2~
1
2

v31~�v: ð17Þ

Let us now discuss second-harmonic generation. As shown in
Fig. 3(a), we can find two values of the reduced magnetic flux, f 5

0.4878 or f 5 0.5122, such that v31 5 2v21 5 2v32. In this case, the
susceptibility of the second harmonic reaches its maximum, when an
external field with the same frequency as v21 5 v32 is applied to the
three-level SFQC. However, the second-order susceptibility becomes
small when the magnetic field deviates from the points f 5 0.4878 or
f 5 0.5122 because of the anharmonicity of the energy-level structure
for the SFQC. If we assume that the anharmonicity is characterized
by

d fð Þ~�v fð Þ{v21 fð Þ~ v31 fð Þ
2

~v21 fð Þ, ð18Þ

then the second-order susceptibility for the second-harmonic gen-
eration can be approximately written as

x 2ð Þ 2�vð Þ~ I12 fð ÞI23 fð ÞI31 fð Þ
id fð ÞzC12½ �C13

: ð19Þ

We note that this equation for the second-order susceptibility
x 2ð Þ 2�vð Þ is a rough approximation when �v fð Þ~v21 fð Þ, i.e., d 5

0. Because the independent-environment assumption for the decays
of different energy levels might not always hold and the dissipation
rates C12 and C13 should be modified. However, the main physics is
not changed. In Fig. 3(b), as an example, the amplitude of x 2ð Þ 2�vð Þ,
which is given by

x 2ð Þ 2�vð Þ
�� ��~ I12 fð ÞI23 fð ÞI31 fð Þj j

C13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2zC2

12

q , ð20Þ

is plotted as a function of f for given parameters, e.g., C12/2p 5

50 MHz and C13/2p 5 30 MHz. It clearly shows that the maximum
amplitude of the susceptibility x 2ð Þ 2�vð Þ corresponds to the reduced
magnetic flux f 5 0.4878 or f 5 0.5122, in which the three energy
levels have a harmonic structure. It should be noted that we take C21

and C31 as the f-independent parameters for convenience when
Fig. 3(b) is plotted. In practice, they should also depend on f.

Measurements
We now take the sum-frequency generation as an example to show
how to measure the frequency generation by coupling the three-level
SFQC to the continuum of electromagnetic modes confined in a 1D
transmission line as for measuring the resonance fluorescence of
single artificial atoms38,39. As discussed in Ref. 40, if the three trans-
ition frequencies of the three-level SFQC are much larger than the
decay rates, then we can consider that the decays of different energy
levels occur via different dissipation channels. In this case, the inter-

Figure 2 | (a) Modulus of the renormalized transition elements i12 5 I12/I0, i23 5 I23/I0, and i13 5 I13/I0 versus the reduced magnetic flux f. The modulus

R(f), given by Eq. (15), and the detuning dij fð Þ~vij fð Þ{v
optð Þ

ij , versus f, are plotted in panels (b) and (c), respectively. Here, vij fð Þ v
optð Þ

ij

� �
are the f-dependent transition frequencies (transition frequencies at the optimal point with f 5 0.5) between two different energy levels | iæ and | jæ (i . j).

The SFQC parameters are here taken as EJ/h 5 192 GHz, EJ/Ec 5 48, and a 5 0.8 with h being the Planck constant.

Figure 3 | (a) Three transition frequency vij (i . j) versus the reduced magnetic flux f is plotted. The crossing points for the curves of v21 and v32

correspond to v21 5 v32. (b) The amplitude x 2ð Þ 2�vð Þ
�� �� of the susceptibility in Eq. (20) versus f is plotted with, e.g., C21/2p 5 50 MHz and C31/2p 5

30 MHz. The same SFQC parameters as in Fig. 2 are used in both panels.
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action Hamiltonian between the three-level SFQC and the con-
tinuum modes in the transmission line can be modeled as

Hin~

ð?
{?

dvffiffiffiffiffi
2p
p ffiffiffiffiffiffi

c12
p

a{ vð Þs12z
ffiffiffiffiffiffi
c23
p

b{ vð Þs23
	

z
ffiffiffiffiffiffi
c13
p

c{ vð Þs13



zH:c:

ð21Þ

under the Markovian approximation with the bosonic commutation
relation [a(v), b{(v9)] 5 da,bd(v 2 v9) with a, b 5 a, b, c for the
three kinds of different continuum mode operators. According to the
input-output theory41, the output field centered at the sum-frequency
v1 1 v2 5 v1 can be given as

cout tð Þh i~ cin tð Þh iz ffiffiffiffiffiffi
c13
p

s13 tð Þh i, ð22Þ

since Tr[rs13(t)] 5 Tr[r(t)s13] 5 r31(t). Therefore, up to second
order in V1(t) for the sum-frequency generation, we can approxi-
mately obtain the output of the sum-frequency generation as

cout tð Þh i~
ffiffiffiffiffiffi
c13
p

�h2

I21 fð ÞI32 fð ÞW v1ð ÞW v2ð Þexp {ivztð Þ
iv21{iv1zC21ð Þ iv31{ivzzC31ð Þ , ð23Þ

where the input field for the continuum mode c(v) is in the vacuum.
Equation (23) shows that the amplitude of the output field is pro-
portional to the intensities jW(v1)j and jW(v2)j of the two external
magnetic fields, the modulus of the product of two transition matrix
elements I21(f) and I32(f), and the square root of the decay rate c13. It
is obvious that the intensity of the output field can be tuned by the
bias magnetic flux We. Similarly, the amplitude of the output field for
the difference-frequency generation described in Eq. (14) is propor-
tional to the modulus of the product of two transition matrix ele-
ments I13(f) and I32(f). The moduli R1(f) ; jI21(f)I32(f)j and R2(f) ;
jI13(f)I32(f)j versus f are plotted in Figs. 4(a) and (b), which show that
the amplitude of the output fields for the sum- and difference-fre-
quency generations can also be tuned by f. However, the maximum
value, corresponding to maximum second-order susceptibility under
resonant condition, of R(max)(f) does not correspond to the maximum
value of R1(f) for the sum-frequency, or R2(f) for the difference-
frequency.

Conclusions
We have proposed and studied a controllable method for generating
sum- and difference- frequencies by using three-wave mixing in a
single three-level SFQC driven by two weak external fields. Thus, in
perturbation theory, the noise and frequency shifts introduced by the
driving fields can be neglected and we can obtain all the response
functions of different frequencies. We point out that the three-wave-
mixing signal can only be generated when the inversion symmetry of
the potential energy for the SFQC is broken, that is, the SFQC cannot
work at the optimal point. Otherwise, the transition between the
ground state and the second-excited state is forbidden, so three-wave
mixing cannot be generated as in natural-atom systems. We have
shown that the generated microwave signal can be tuned in a very

large GHz range. We have also discussed how to generate second-
harmonics in the single SFQC. We note that three-wave mixing can
also occur in superconducting phase29–31 and transmon32 qutrits,
when the inversion symmetry of their potential energies is broken.
In particular, the phase qutrits might be better for second-harmonic
generation because of their small anharmonicity. It should be poin-
ted out that the microwave signal with the sum-frequency might
exceed the high-frequency cutoff of the cryogenic amplifier38.
Thus, the difference-frequency generation should be easier to be
experimentally accessed.

In contrast to Ref. 28, with a frequency tunability of about
500 MHz, we show that the tunability of the output frequency using
single flux qubit circuits can be a few GHz. Our proposal is valid not
only for nondegenerate three-wave mixing, but it can also be applied
for second-harmonic generation by changing the bias magnetic flux.
Also, contrary to Ref. 28, where the circuit itself is in the classical
regime, in our study, the three-wave mixing is generated using exci-
tations of real quantized energy levels of the artificial atoms. Such
excitation will result in a strong nonlinearity. Thus, the three-wave
mixing in single artificial atoms can be used to generate entangled
microwave photons and act as entanglement amplifier or correlated
lasing. These could be important toward future quantum networks.

In summary, our study could help generating three- or multi-wave
mixing using single artificial atoms. The proposed method is simple
and could be used for manipulating second-order and other non-
linear processes in the microwave regime by using single supercon-
ducting artificial atoms. Our proposal is realizable using current
experimental parameters of superconducting flux qubit circuits.
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