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Electrical current and coupled electron-nuclear spin dynamics in double quantum dots
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We examine electronic transport in a spin-blockaded double quantum dot. We show that by tuning the strength
of the spin-orbit interaction the current flowing through the double dot exhibits a dip at zero magnetic field or a
peak at a magnetic field for which the two-electron energy levels anticross. This behavior is due to the dependence
of the singlet-triplet mixing on the field and spin-orbit amplitude. We derive approximate expressions for the
current as a function of the amplitudes of the states involved in the transport. We also consider an alternative
model that takes into account a finite number of nuclear spins and study the resulting coupled dynamics between
electron and nuclear spins. We show that if the spin ensemble is in a thermal state there are regular oscillations in
the transient current followed by quasichaotic revivals akin to those seen in a thermal Jaynes-Cummings model.
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I. INTRODUCTION

A double quantum dot (DQD) can be used for the detailed
investigation of spin interactions among electron spins and
even between electron and nuclear spins. The interactions can
be probed optically or electrically by monitoring the electrical
current flowing through the DQD as a function of the energy
offset between the two dots and the applied magnetic field.
In a spin-blockaded DQD, the current through the DQD is
large when the two electrons form a singlet state, whereas it
is suppressed when the two electrons form a triplet state.1 The
spin blockade mechanism is due to the Pauli principle and has
been demonstrated in semiconductor heterostructure quantum
dots1 as well as carbon nanotube dots.2 It has also been
shown that the transient behavior of the leakage current can
provide valuable information about the interactions between
electrons in the DQD and nuclear spins in the host material.3

In particular, the electrical transport process can lead to a
coupled electron-nuclear dynamics, nuclear spin polarization,
and hysteresis effects.1,3,4

In the spin blockade regime, the small leakage current
increases when there is a process that leads to singlet-
triplet hybridization (mixing). A non-spin-conserving interdot
tunneling is one such process. This type of tunneling may result
from a spin-orbit interaction (SOI), which in some cases can
be strong enough and thus has to be taken into account.5,6 The
hyperfine interaction (HI) between dot electrons and nuclear
spins can also lead to singlet-triplet hybridization. In a simpli-
fied approach, the nuclear spins create an effective magnetic
field which acts on the electron spins. This field can point in
an arbitrary direction and mixes singlet and triplet states.

The electrical current in a DQD system has been examined
theoretically in the presence of strong SOI and in the regime
where the coupling of the DQD to the leads corresponds to
the largest rate in the system.7 In the first part of this work,
we consider a DQD weakly coupled to the leads and examine
the current in the resonant regime, i.e., when the lowest
singlet and triplet energy levels are almost aligned. Unlike the
approach followed in Ref. 7 we consider explicitly the lowest
one-electron states and derive rate equations that involve the
transition rates between one- and two-electron states. The
SOI is modeled with a non-spin-conserving tunnel coupling
amplitude tso between the two dots7,8 which couples the triplet

states |T+〉, |T−〉 with singlet states. We consider weak SOI,
that is tso < tc, where tc is the spin-conserving interdot tunnel
coupling. The effect of a strong SOI on a spin-blockaded DQD
has been investigated in Ref. 7 with a more general SOI model
in which all triplet states couple to singlet states. Further,
we here give emphasis to the regime where the HI is weak
enough or absent, which might be the case in carbon-based
quantum dots.9,10 The main aim of the first part of this work is
to determine the current as a function of the amplitudes of the
one- and two-electron states which participate in the transport
cycle. Some approximate results which give valuable insight
into the basic behavior of the current are derived. We show that,
depending on the strength of the SOI, the current shows a dip
at zero magnetic field or a peak when the lowest two-electron
energy levels anticross. This behavior occurs because when
tso is large the singlet-triplet mixing near zero field is much
weaker compared to that at high field. This gives rise to a dip at
zero field. However, when tso is small the mixing is strong only
near the anticrossing point leading to a peak in the current.

In the second part of this work we focus mostly on
the interplay between SOI and HI. To properly account for
the HI, we employ a microscopic “toy” model which takes
into account a finite number of nuclear spins. To make this
model tractable, only the two lowest singlet-triplet states are
considered, and we treat the nuclear spins as a single large
spin. We first consider the interplay between the SOI and
HI, and its effect on the steady state transport and nuclear
spin polarization. We find a sharp transition in the current
and polarization as the SOI is increased, consistent with the
topological phase transition investigated in Ref. 11. Second,
we look at the transient dynamics induced by the HI alone,
and find a strong oscillatory contribution depending on the
hyperfine coupling strength and inversely proportional to the
square root of the number of nuclear spins.

II. ELECTRICAL CURRENT IN THE SPIN
BLOCKADE REGIME

A. Physical model

In this section the electrical current through the DQD
is examined when the electron-nuclear spin dynamics are
uncoupled. This section is concerned with the effect of the SOI
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on the electrical current while HI-induced effects due to the
coupled electron-nuclear dynamics are addressed in the next
section. The DQD is modeled with the two-site Hamiltonian

HDQD = Hc +Hso + Hhf +
2∑

i=1

εini + U

2∑
i=1

ni↑ni↓+ �

2

2∑
i=1

σ z
i .

(1)

Here Hc is the tunnel-coupling Hamiltonian that conserves
spin and has the form

Hc = −tc(c†1↑c2↑ + c
†
1↓c2↓) + H.c., (2)

and the Hamiltonian part due to the SOI that allows spin-flip
has the form8

Hso = −tso(c†1↑c2↓ − c
†
1↓c2↑) + H.c. (3)

For the HI we assume the form12

Hhf = + 1
2geμB(BN,1σ 1 + BN,2σ 2). (4)

The operator c
†
iσ (ciσ ) creates (destroys) an electron on dot

i = 1,2 with spin σ = {↑,↓} and orbital energy εi . The number
operator is denoted by ni = ∑

σ niσ = c
†
i↑ci↑ + c

†
i↓ci↓. The

tunnel coupling amplitude between the two dots is tc, the
amplitude due to the SOI is tso, the charging energy is U ,
and � = geμBB is the Zeeman splitting due to the external
magnetic field B in the z direction. Here BN,i is the magnetic
field in the ith dot due to the nuclear spins and σ i are the Pauli
operators.

The quantum states which participate in the transport cycle
in the spin blockade regime are the two lowest one-electron
states and the five lowest two-electron states. For simplicity the
three-electron states are neglected in this study because they
do not change qualitatively the basic results. The one-electron
eigenstates |j ; n = 1〉 can be written in the general form

|j ; 1〉 = αj |↑,0〉 + βj |0,↑〉 + γj |↓,0〉 + δj |0,↓〉, (5)

with j = 1,2 and c
†
1σ |0〉 = |σ,0〉, c

†
2σ |0〉 = |0,σ 〉. Here the

eigenstates are ordered with increasing energy. In the spin-
blockade regime U � tc and further there is an energy offset
between the two dots. In this work we choose for the on-site
energies ε2 = ε1 − U/2 and define the energy detuning as
δ = E(1,1) − E(0,2), where E(n,m) is the energy of the
charge state which has n (m) electrons on dot i = 1 (i = 2). If
Hso = 0 and Hhf = 0 then α1 = β1 = 0 and γ2 = δ2 = 0 and
the nonzero amplitudes satisfy δ1 � γ1 and β2 � α2. When
Hso �= 0 the amplitudes α1, β1, γ2, δ2 are in general nonzero
and satisfy β1 � α1, δ2 � γ2.

Neglecting double occupation on dot 1, a two-electron
eigenstate |j ; n = 2〉 with j = 3,...7 has the general form

|j ; 2〉 = aj |↑,↑〉 + bj |↑,↓〉 + cj |↓,↑〉 + dj |↓,↓〉
+ ej |0,↑↓〉. (6)

Here |T−〉 = |↓,↓〉 = c
†
1↓c

†
2↓|0〉, |T+〉 = |↑,↑〉 = c

†
1↑c

†
2↑|0〉,

|σ,σ ′〉 = c
†
1σ c

†
2σ ′ |0〉, and |S02〉 = |0,↑↓〉 = c

†
2↑c

†
2↓|0〉. The am-

plitudes of the various components depend on the strengths of
the SOI and HI as well as the Zeeman splitting and detuning.

When Hso = 0 and Hhf = 0 the two-electron eigenstates corre-
spond to the triplet states |T+〉, |T−〉, |T0〉 = (|↑↓〉 + |↓↑〉)/√2
and the two singlet states, which consist of the components
|S02〉 = |0,↑↓〉 and |S11〉 = (|↑↓〉 − |↓↑〉)/√2. The effect of
the Hso is to couple the |T+〉, |T−〉 states to singlet components.
As shown below the coupling strength increases with tso and,
for a fixed detuning, is sensitive to the Zeeman splitting.

To calculate the electrical current flowing through the DQD
we employ a density matrix approach within the Born and
Markov approximations.13 The internal parameters of the
DQD and the chemical potentials of the two leads are adjusted
to the spin-blockade regime. This regime can be identified from
the fact that when Hso = 0 and Hhf = 0 the three triplet states
|T+〉, |T−〉, and |T0〉 are equally and almost fully populated
(∼1/3), provided spin decoherence is ignored, and the current
as a function of the source-drain bias is suppressed.

B. Results

When tso is nonzero the |T+〉, |T−〉 states couple to singlet
states and this coupling has a direct effect on the current.
To demonstrate this effect we show in Fig. 1 the current as
a function of the Zeeman splitting � and energy detuning δ

between the two dots when there is no HI. The coupling of
the states is strong near the anticrossing points leading to an
increase in the current (see also below). As a result the curves
of high current map out the points where the energy levels of
the quasi singlet and triplet states anticross. When tso = 0 the
leakage current is approximately constant and no high current
curves occur.

To understand the role of the SOI we show in Fig. 2
the energy diagram of the two-electron states as well as
the current as a function of the Zeeman splitting �, for a
fixed energy detuning δ and different SOI amplitudes with
Hhf = 0. We concentrate on the regime tso < tc and choose
δ < 0, which is experimentally the most interesting case for
spin-qubit applications,1,10,14 because the spin pair can be
described by an effective Heisenberg model. The resonant
current that is defined as the current at the anticrossing point
increases with tso, and the same occurs for the asymptotic
current that is defined as the current at a high magnetic field.
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FIG. 1. Electrical current I as a function of the Zeeman splitting
� and energy detuning δ when there is no hyperfine interaction. The
SOI amplitude is tso = 0.01tc, where tc is the spin-conserving interdot
tunnel coupling.
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FIG. 2. (Color online) The top panel shows the energies E of the
four lowest two-electron states as a function of the Zeeman splitting
� for an energy detuning δ = −25tc and SOI amplitude tso = 0.1tc,
where tc is the spin-conserving interdot tunnel coupling. The notation
of the states is given in the main text in Eq. (6). The bottom panel
shows the electrical current I as a function of the Zeeman splitting �

for an energy detuning δ = −25tc.

Therefore, when tso is large enough the asymptotic current
becomes approximately equal to the resonant current and thus
the peak cannot be distinguished. The same pattern occurs
when the direction of the magnetic field is reversed, thus the
current as a function of the Zeeman splitting shows a dip at
� = 0. To a good approximation this pattern is independent
of the detuning, provided tso is large, and consequently the
anticrossing points of the energy diagram cannot be probed.

To quantify the above results we analyze the rate equations
and calculate analytically the transition rates. Then we derive
the steady-state current for some interesting limits, such as for
example the current at the singlet-triplet anticrossing point, as
well as for B ∼ 0 and B high. We are interested in determining
the current in the steady-state for a DQD that is weakly coupled
to the leads. In this regime we can consider only the diagonal
elements of the density matrix,15 and the dynamics of the
system is described by the rate equations

dρn

dt
= −ρn

∑
m

Rnm +
∑
m

ρmRmn, (7)

where the diagonal elements of the density matrix are denoted
by ρn = ρnn and the normalization condition is

∑7
n=1 ρn = 1.

The transition rate from an eigenstate |n〉 of the DQD with
eigenenergy En to an eigenstate |m〉 with eigenenergy Em is

Rnm = 

∑

σ

[|〈n|c1σ |m〉|2fL(Emn) + |〈m|c1σ |n〉|2f −
L (Enm)

+ |〈n|c2σ |m〉|2fR(Emn) + |〈m|c2σ |n〉|2f −
R (Enm)],

(8)

where 
 = 2π |tr |2Dr/h̄. The tunneling amplitude between
dot and lead is tr , f�(Emn) is the Fermi-Dirac distribution

function at chemical potential μ�, with Emn = Em − En and
f − = 1 − f . Also, Dr is the density of states for the leads,
which we assume to be constant and equal for both leads.

The operator for the electrical current, for example, for the
right lead is

Î = e

h̄
i
∑
kσ

tr (c†2σ dkσ − d
†
kσ c2σ ), (9)

where dkσ denotes a lead operator. Tracing out the leads we
derive the following expression for the average current

I = e

∑
nmσ

ρn[|〈n|c2σ |m〉|2fR(Emn) − |〈m|c2σ |n〉|2f −
R (Enm)].

(10)

Starting with the rate equations and calculating the transition
rates it can be readily derived that the absolute value of
the current for Hhf = 0 is I = e

∑7
n=3(Rn1 + Rn2)ρn. The

simplest regime is when tso = 0 and B = 0. Here, the
occupations of the triplet states satisfy ρ4 = ρ5 = ρ6 = ρT .
From the steady-state condition, dρn/dt = 0, it can be
derived that

3ρT ≈ 1 −
(

R14

R41 + R42
+ R15

R51 + R52
+ R16

R61 + R62

)−1

.

(11)

For weakly coupled dots the second term is typically negligible
and ρT ≈ 1/3. It is easy to prove that this approximation is
excellent when tc is small and δ is large. In this regime the
leakage current is

IT ≈ 2e


(
R14

R41 + R42
+ R15

R51 + R52
+ R16

R61 + R62

)−1

.

(12)

For tso �= 0 we calculate analytically the transition rates and
derive that for low magnetic fields the current is given
approximately by the expression

I0 ≈ 2e

1
2F0 + 1

2E0
, (13)

where

E0 = 1

(γ1d4)2 + (δ1e4)2 + (β2e4)2
+ R15

R51 + R52
, (14)

F0 = 1

(α2a6)2 + (α1a6 − δ1e6)2
+ R25

R51 + R52
. (15)

The transition rates R15, R25 involve the one-electron state
|1; 1〉, |2; 1〉 respectively, and the triplet state |T0〉 = |5; 2〉.
The terms which are proportional to R12, R25 do not affect the
physics we examine here, so for this reason they are not given
explicitly. Also, as seen in Fig. 2, in the small tso regime that
we are interested in I0 is to a good approximation independent
of tso. An approximate expression for the resonant current is

Ir ≈ 2e

2
3Fr + 1

3Er

, (16)
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with the parameters

Er = 1

(γ1d4)2 + (δ1e4)2 + (β2e4)2
+ R15

R51 + R52
, (17)

Fr = 1

(α2a6)2 + (β2e6)2 + (α1a6 − δ1e6)2
+ R25

R51 + R52
.

(18)

The resonant current corresponds to the magnetic field Br

for which the lowest quasi singlet and triplet states anticross
and it is well-defined for tso � tc. The asymptotic current
that corresponds to a high B is given approximately by the
expression

Ia ≈ 2e

1
2Fa + 1

2Ea

, (19)

with

Ea = 1

(γ1d3)2 + (δ1e3)2 + (γ2d3 + β2e3)2
+ R15

R51 + R52
,

(20)

Fa = 1

(α2a6)2 + (β2e6)2 + (α1a6 − δ1e6)2
+ R25

R51 + R52
.

(21)

The asymptotic current is defined at a high magnetic field
where the current varies slowly with B.

Equation (13) can be used to estimate the width of the
current peak that occurs at �r = geμBBr . Specifically, if
we denote by �r − �1 the half width at half maximum of
the peak, then �1 satisfies the relation I0(�1) = Ir/2. In the
same way the width of the � = 0 minimum can be estimated
in the regime Ia ∼ Ir . If �1 corresponds to half of the width
then to a good approximation it has to satisfy the relation
I0(�1) = Ia/2.

The variation of the current as a function of the magnetic
field and SOI strength is mainly due to the change of the first
terms in Ei and Fi . For example, if tso � tc, then as can be seen
in Fig. 3 only the quantities (γ1d4)2, (α2a6)2, and (γ1d3)2 which
contribute to Ei and Fi are important. Because these quantities
are approximately equal we derive that Ea ≈ E0 and Fa ≈ F0,
thus Ia ∼ I0. In the same way, at Br the corresponding
amplitudes in Eqs. (17) and (18) lead to E0 > Er and F0 > Fr .
Thus, Ir > I0 and a peak is formed at Br . On the other hand,
in the range tso < tc the quantities (δ1e3)2, (γ2d3 + β2e3)2,
and (β2e6)2, (α1a6 − δ1e6)2 increase drastically (Fig. 3). As
a result, Ea and Fa decrease significantly, whereas E0 and F0

do not change a lot. Therefore, for intermediate or large tso the
asymptotic current Ia is much larger than the current at very
low fields and it approaches the current Ir . Eventually as tso

increases the current shows a dip for � = 0.
Inspection of the various amplitudes involved in the

transition rates demonstrates that the important amplitudes in
order to understand the current are the e4 (or e3 when B is high)
and e6. These amplitudes express the mixing of the |T+〉 and
|T−〉 states with the |S02〉 component. These amplitudes are
responsible for the behavior of the current when tso is included
in the model. As shown in Fig. 4, when tso is not too small
the mixing of the |T+〉, |T−〉 states with the |S02〉 component
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FIG. 3. (Color online) The figure shows the important quantities
which determine the transition rates through the parameters F0, E0

(top panel), and Fa , Ea (bottom panel) defined in Eqs. (14), (15) and
Eqs. (20), (21) respectively. The energy detuning is δ = −25tc and
the Zeeman splitting is chosen in the low field regime � = 0.02tc
(top) and asymptotic regime � = 0.7tc (bottom).

is stronger in the asymptotic regime than for B ∼ 0. For this
reason the current is more sensitive to tso when B is high but
shows only a small variation with tso for B ∼ 0. Furthermore,
as B increases (in the asymptotic regime) then for a fixed tso and
negative detuning the amplitude e6 for the |T+〉 state increases,
whereas the amplitude e3 for the |T−〉 state decreases. This
behavior can be understood by noticing that the corresponding
anticrossing points move along the detuning axis in opposite
directions. In Eq. (19), Ea + Fa is to a good approximation
constant and the current Ia remains constant as � increases.
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FIG. 4. (Color online) The figure shows the absolute amplitudes
e3, e4, and e6 which express the mixing of the triplets |T+〉 and |T−〉
with the |S02〉 state. The Zeeman splitting is chosen in the low field
regime � = 0.02tc and asymptotic regime � = 0.7tc.
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FIG. 5. (Color online) Electrical current I as a function of the
Zeeman splitting � for the energy detuning δ = −25tc and different
combinations of SOI and HI strengths. Here �σ = geμBσN.

To take into account the hyperfine interaction, we follow a
standard approach and treat the nuclear magnetic fields BN,i

in the two dots as quasistatic classical variables which take
random values.12 In this case the electron and nuclear spin
dynamics are uncoupled. In the next section we develop a
model to look at the coupled dynamics. The distribution for
each random static field is Gaussian with spread σN. The
electrical current is computed as the average over different
random field configurations.12 This is a good approximation
when the nuclear dynamics is much slower than the electron
dynamics. In Fig. 5 we plot the current versus Zeeman
splitting. When tso = 0, a peak is formed at the singlet-triplet
anticrossing point due to the mixing caused now by the HI.
When both tso and σN are nonzero the resonant and the
asymptotic current increase. However, for � = 0 the current
is determined by the HI, consistent with the results in Ref. 7.
As the spread σN increases, the HI results in a peak at � = 0,
though the � = 0 current may have a more complicated form
when σN is large. In the small σN regime that we are interested
in and for tso �= 0, the � = 0 current is typically smaller than
the asymptotic current. Our numerical calculations confirm
that these trends occur for different choices of tso provided
that geμBσN � tso.

III. NUCLEAR SPIN POLARIZATION
AND TRANSIENT DYNAMICS

A. Physical model

The model employed in the previous section provides
insight into the current, but it does not capture the coupled
electron-nuclear spin dynamics. Thus, for example, the nuclear
spin polarization as a result of the transported electrons through
the DQD cannot be examined. In this section we look at the
DQD system from a different perspective. Specifically, we use
an idealized model to study the coupled electron-nuclear spin
dynamics and how this affects the transient behavior of the
current. We will use this model to show two things. First, that
the presence of even a weak spin-orbit coupling can prevent
nuclear spin polarization. Second, if the nuclear spin state
is completely thermalized several interesting features arise
in the transient electron current; regular beating followed by
quasichaotic oscillations.

A true model of the 2N states which describe the N nuclear
spins is computationally intractable, but some insight can
be gained from, e.g., treating the nuclear spins as a “giant”
spin.11,16–18 In addition to reduce the complexity even further,
we restrict ourselves to a small subspace of the two-electron
Hilbert space, spanned by the states |T+〉, |S11〉, and |S02〉.
This is a reasonable approximation under an appropriate
bias, i.e., when only the state |T+〉 is in the voltage bias
window (and neglecting tunneling, from the reservoirs, into
superpositions of the singlet states). In addition we assume
that the rate of tunneling from the left lead to the dot is large,
and that we are at the anticrossing point of the singlet-triplet
states.7 This reduction of the state-space does also neglect
the occupation of the |0,↓〉 state, and trapping in other
single-electron-occupation states. As a test, we included the
single-electron state |0,↓〉 in an extended model, but it had
little impact on the results we present here. Thus hereafter it
will be neglected. In addition, another interesting regime to
investigate would be to assume a larger bias and include all
three triplet states. However, since all the interesting coupled
electron-nuclear effects we discuss here are mediated by the
|T+〉 and |S11〉 dynamics, such a regime may only reduce the
visibility of these effects.

We model the interaction of these three states with a
nonequilibrium master equation. This model allows a flow
of electrons through the DQD, and thus we can estimate
properties like the total polarization of the nuclear spin, and
the transient dynamics of the coupled electron-nuclear spin
system. This is in contrast to treating the spins as a frozen
spin bath,19 as a semiclassical degree of freedom,16,20 or as a
non-Markovian environment.21

The total Hamiltonian of the system is then written as

H = Hc + Hso + Hhf − �|T+〉〈T+| − δ|S02〉〈S02|, (22)

where Hc describes the coupling between the singlet states

Hc = tc[|S11〉〈S02| + |S02〉〈S11|], (23)

and Hso is the Hamiltonian part due to the SOI, which couples
singlet-triplet states, and has the form

Hso = tso[|T+〉〈S02| + |S02〉〈T+|]. (24)

The hyperfine interaction is

Hhf = g

2

N∑
k=1

[
|T+〉〈T+|I k

z + 1√
2
{σ (1)

− I k
+ + σ

(1)
+ I k

−}
]
. (25)

Here δ is the energy detuning and � = geμBB is the Zeeman
splitting caused by the external magnetic field B in the z

direction, tso is the spin-orbit coupling, and tc is the coherent
tunneling amplitude for the singlets. In Hhf we use an effective-
spin notation so that σ

(1)
+ = |T+〉〈S11|. The coupling g is the

nuclear hyperfine coupling term, g = A/N , where N is the
number of nuclear spins and A is in the range of 80 μeV.

For simplicity, we assume the nuclear spins are spin-1/2,
and the hyperfine coupling strength is uniform and homo-
geneous. This implies equal-size dots, and an equal nuclear
hyperfine coupling on each site. We are working in a rotating
frame and the sign difference between couplings on the
left and right dots, due to the antisymmetry of the wave
function, is omitted.11 Thus the nuclear states are in fact the
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difference between nuclear spin states in the left dot and the
right dot. This allows us to use the giant-spin approximation
Ĵi = ∑

k I k
i ,i = z, + ,−. For a large thermal state one should

really describe the spin system as a distribution over giant
spins of differing sizes.11 Here we consider a single giant spin
of length J = √

N/2, which may be valid if the distribution
of spin sizes is strongly peaked (see Ref. 11 for a rigorous
discussion of this assumption). In the final section we discuss
the possible effects of a broader distribution.

To account for electron transport we include a Lindblad
term,

L1[ρ] = 


2
[2μ+ρμ− − μ−μ+ρ − ρμ−μ+], (26)

where the electron transport operator is μ− = |S02〉〈T+|,
and we have omitted the vacuum state which is a good
approximation when the rate of tunneling in from the left lead
is large. Thus, in the results that we show in the following
figures, we solve the master equation for the combined
electron-nuclear spin density matrix ρ,

dρ

dt
= − i

h̄
[H,ρ] + L1[ρ]. (27)

Because of the small Zeeman splitting of the nuclear spins, we
impose an effective infinite temperature for the nuclear system
initial state. Nuclear spin dephasing and thermalization are
not explicitly included here as they can, in principle, break the
large spin approximation, and cannot be written in terms of the
Jz operators alone. Fortunately, the nuclear spins are typically
weakly interacting with each other and the environment. We
assume that the current is dominated by transport into the right
reservoir, and is defined as

I (t) = eTr[JRρ(t)], (28)

where the superoperator is the jump operator JR[·] = 
μ+ ·
μ−. For the polarization of the nuclear spins we calculate the
expectation value of Jz for the large spin.

B. Nuclear spin polarization

Hysteresis in the current measurement, as one sweeps
the external magnetic field through the singlet-triplet level
crossing, is a sign of nuclear spin polarization. In vertical
dots, large polarizations (>40%) have been achieved.22–25 In
lateral dots, the polarizations are significantly smaller, perhaps
due to either the asymmetry in the dots, and thus in the
nuclear hyperfine interaction, or dark states.26 However, even
for small levels of nuclear spin polarization, large hysteresis
has been observed. Further, in several recent studies it has been
shown theoretically that if the spin-orbit coupling is above a
certain threshold, relative to the nuclear hyperfine coupling,
no polarization of the nuclear spin occurs.11 If it is below that
threshold, the nuclear system becomes polarized due to the
spin-flip process during the electron transport. At some critical
value between these two regimes, long-lived dark states can
occur, alongside a topological phase transition.

To investigate this phenomenon in our model we plot, in
Fig. 6, both the steady-state current I and the normalized
nuclear polarization Jz/J as a function of tso for a given nuclear
hyperfine coupling A = 0.1 meV. We use dot parameters
which put us at the singlet-triplet resonance point, and also

omit the first term (the Overhauser term) in Eq. (25). We see
that for

tso < 25A/4
√

N, (29)

the nuclear spin is strongly polarized by the electron transport
process, and the current flow is low. Conversely, as

tso > 25A/4
√

N, (30)

the spin-orbit mediated transport route becomes dominant,
and the nuclear spin is no longer maximally polarized. The
transition between these two regimes is consistent with the
sharp change observed in the “topological phase transition.”11

The factor of 25 arises from the amplitudes C0,2 and C1,1 of the
combined effective singlet state used in that treatment |S〉 =
C0,2|S(0,2)〉 + C1,1|S(1,1)〉. Inspection of the bare eigenstates
of the electron spin Hamiltonian shows that this factor is, in
general,

|(C1,1/C0,2)| = ∣∣(δ −
√

4t2
c + δ2

)
/2tc

∣∣. (31)

Thus the quantum dot system parameters can in practice also be
tuned to sweep the axis of Fig. 6. In the bottom half of Fig. 6
we show the absolute value of the matrix elements (in the
basis of the m ∈ {−J,J } eigenstates of Jz) of the steady-state
nuclear spin density matrix for three choices of spin-orbit
coupling: zero, at the “critical point” and far above the critical
point. One can easily see that at the critical point there are
significant nonzero coherences in the nuclear spin state, which
may be related to the presence of long-lived “dark states.”11

Our results indicate that precursors to this “topological phase
transition” exist even in the presence of a full transport cycle
and noisy environmental effects, akin to the persistence of
quantum phase transitions in nonequilibrium systems.27

C. Transient dynamics

Some evidence23,28 indicates that the low dephasing and
extremely long relaxation time of the nuclear spins, combined
with the fast stochastic electron transport process inducing nu-
clear polarization, leads to a long time instability phenomenon
and fluctuations in the nuclear spin state.16,20 This is typically
observed in the long-time beating seen in the current.23,28 This
is almost certainly a semiclassical effect,3,16,18,20,29 though
some evidence suggests that coherence within the nuclear
spins can survive for millisecond time scales.23 To gain some
insight on what might be observed on shorter time scales, we
now examine the transient behavior of the electron transport
induced by the nuclear spin. In the following we entirely
neglect the spin-orbit coupling.

We assume that at some initial time t = 0 the electronic
system is prepared in the |T+〉 state and the nuclear system is
in an initially maximally-mixed state

ρ(0) = 1

2J + 1

∑
m

|m〉〈m| ⊗ |T+〉〈T+|. (32)

We then solve the dynamics given by this initial state in
the equation of motion. As we will show below, we find
that this produces dynamics akin to the Jaynes-Cummings
Hamiltonian from quantum optics with an initial thermal (or
chaotic) cavity state.30,31 This is a well-studied system, with
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FIG. 6. (Color online) Top: Steady-state current I (solid lines) and nuclear spin polarization Jz (dashed lines) as a function of tso. Three
different sizes of large spin are shown, J = 10 (blue), J = 20 (red), and J = 40 (black), corresponding to N = 200, 400, and 3800 nuclear
spins, respectively. The transition occurs for tso > 25A/4

√
N , where A is the maximum value of the nuclear hyperfine coupling g = A/N .

Because of the inverse scaling of the transition point, as a function of N , these results suggest that a relatively small spin-orbit coupling can
suppress the polarization of the nuclear spin. Bottom: matrix elements (in the m basis of the Jz operator) of the steady-state reduced density
matrix of the nuclear spin, for J = 20. At the critical point the steady-state contains significant nonzero coherences.

so-called “quasichaotic revivals.” In the optical case, studies
have shown that one observes an initial sharp peak31 in the
atomic state on a time-scale t (bosonic)

p ≈ 2πh̄/λ
√

n̄, where λ

is the field-atom coupling in that model, and n̄ is the initial
thermal occupation of the field given by the Bose-Einstein
distribution. This is typically followed by the onset of the
so-called “quasichaotic” oscillations at a time that scales with
the thermal occupation.

In Fig. 7 we show the transient electron current for two
sizes of the nuclear spin system. Again we omit the Overhauser
term. In the figure, one can see the clear onset of quasichaotic
beating and a scaling of the onset of this beating with the
size of the large spin J . Since we are now dealing with an
infinite-temperature large spin, the role played by n̄ in the
optical case is now played by J in the large-spin case. Unlike
in the optical case, however, the collapse of an initial peak is
not seen here. Instead, there is a transition from large steady
oscillations to quasichaotic ones.

To understand the presence of the large steady oscillations
we can make two observations. Firstly, for low thermal
occupation n̄ � J , and large J , the Holstein-Primakoff
transformation tells us that the dynamics would coincide
with that of the bosonic Jaynes-Cummings model, but with
renormalized coupling λ ≈ A/2

√
2N . As n̄ ∝ J , the analogy

should break down. Secondly, the large regular oscillations
can be understood by explicit diagonalization of the Hhf

Hamiltonian (again omitting the first, Overhauser, term),
which gives the following expression for the occupation
probability of the |T+〉 state, assuming that the initial state
is |ψ(0)〉 = |T+〉 ⊗ ∑J

m=−J Cm|m〉,

|〈T+|ψ(0)〉|2 =
J∑

m=−J

|Cm|2 cos2

(
E+t

h̄

)
, (33)

where

E
(m)
+ = A

√
J (J + 1) − m(m + 1)

2
√

2N
. (34)

In the bosonic case, this is an infinite sum whose frequencies
scale as

√
n + 1. One can understand the large regular

oscillations that occur in the large spin case by considering
the contributions to the sum around m = 0. This region
contributes a large number of terms to the sum, with similar
frequencies E

(m≈0)
+ /h̄ ≈ A/4h̄

√
N , which are commensurate

at small times. This gives rise to the frequency of the early-time
oscillations in Fig. 7.

The possibility to observe both the early-time oscillations
and the quasichaotic oscillations in experiment is intriguing.
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FIG. 7. Transient current I (t) with an initially maximally-mixed nuclear spin state for (a) J = 10, and (b) J = 40. The large number of
commensurate frequencies around m = 0 cause the regular oscillations with frequency A/4

√
N , before the onset of quasichaotic dynamics.

One can consider that as N is increased the period of the
oscillations increases. For N ∝ 105–106 this can reach the
order of 100 microseconds. Ultimately, the observation of
these oscillations is limited by two effects. First, electron
spin dephasing will affect these dynamics. We found that,
by including such effects in our model, if these dephasing
rates are much larger than the frequency E+ the oscillations
become damped. However, the oscillations are not strongly
affected by dephasing or decoherence in the charge degree of
freedom. Secondly, in reality, the width of the distribution of
large spins in the thermal ensemble around

√
N/2 will also

cause dephasing, and is the primary cause of the electron spin
dephasing to begin with. One can consider that large spins in
this distribution close to

√
N/2 will contribute “in phase” to

the early-time oscillations and those far away will induce ad-
ditional dephasing. Thus, inevitably the oscillations shown in
Fig. 7 will decay if this distribution is broad. Finally, dephasing
and rethermalization of the nuclear spin states will also affect
the dynamics if these rates become comparable to E+.

In addition, the behavior we show in the dynamics of the
current occurs on a relatively short time scale and strongly de-
pends on the initial state. We also emphasize that the meaning
of this short-time dynamical current we plot in the figures is the
following: it is the ensemble average of detecting the current
of a single electron entering the reservoir based on a specific
initial condition. In other words, in a real experiment, one
would have to repeatedly prepare the nuclear-spin and dot sys-
tem in the same initial state, and measure the resulting single
electron transport events to eventually collate the data shown
in the figure. Obviously this is experimentally challenging. A
more feasible and natural approach would be to detect transient
behavior in the high-frequency current-noise spectrum. How-
ever, given that such transients are “around the steady state” (a
state which may include significant nuclear spin polarization),
some of the features which rely on the nuclear spin state being
in a maximally-mixed state may become less visible.

In practice, it maybe more feasible to consider a closed
system, i.e., disconnected from electronic reservoirs, and
measured by, e.g., a charge detector. In this case there will
be no dynamical nuclear polarization, which is advantageous

for observing the features which rely on the maximally mixed
state. Also, at this stage, it is not clear if there is any
connection between the oscillations we observe here and those
seen in experiments. Even for large N the time scales still
differ greatly. Finally, an alternative system to investigate this
phenomenon could be quantum dots in carbon nanotubes,
or with superconducting qubits/wave guides32 coupled to
ensembles of spins in diamond.

IV. CONCLUSIONS

This work investigated electronic transport in a double
quantum dot for weak spin-orbit interaction, namely, when
the spin-orbit amplitude is smaller than the interdot coupling.
The electrical current was calculated numerically from rate
equations. We derived simple approximate expressions for
the current as a function of the amplitudes of the one- and
two-electron states which participate in the transport cycle.
We found that when the SOI is small the current shows a peak
at a magnetic field for which the lowest two-electron energy
levels anticross, whereas when the SOI is large a dip is formed
at zero magnetic field. Numerical calculations showed that in
a double dot system with a small hyperfine interaction these
characteristics remain valid.

We also considered a model which includes dynamical
behavior of the nuclear spin, and investigated the coupled
dynamics between electron and nuclear spins. We found that
the conflict between the spin-orbit and nuclear hyperfine
couplings results in a transition point between no polarization
and large polarization of the nuclear spin ensemble. We also
considered the transient dynamics, where the nuclear spin
ensemble is initially prepared in a highly thermal state. The
unique characteristics of the large effective-spin model used
to describe the nuclear spin ensemble induces dynamics in the
current which depends on the fundamental nuclear hyperfine
coupling and the ensemble size.
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