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Spectrometric reconstruction of mechanical-motional states in optomechanics
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We propose a spectrometric method to reconstruct the motional states of mechanical modes in optomechanics.
This is achieved by detecting the single-photon emission and scattering spectra of the optomechanical cavity.
Owing to an optomechanical coupling, the a priori phonon-state distributions contribute to the spectral magnitude,
and hence we can infer information on the phonon states from the measured spectral data. When the single-
photon optomechanical-coupling strength is moderately larger than the mechanical frequency, then our method
works well for a wide range of cavity-field decay rates, irrespective of whether or not the system is in the
resolved-sideband regime.
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I. INTRODUCTION

Quantum states carry complete information of a physical
system. To obtain the statistical properties of the system,
one needs to know its state vector or density operator when
it is in a pure or mixed state, respectively [1]. Quantum-
state tomography (QST) is a procedure for reconstructing
the state of quantum systems by measuring a complete
set of observables [2–4]. In the past two decades, many
advances have been made in QST for both continuous-
variable [4] and discrete-variable [5–7] states. For example,
the QST of a harmonic oscillator has been analyzed in
both quadrature and Fock-state representations. Moreover,
quantum-state reconstruction has also been studied on optical
[8–12] and microwave [13–19] photon fields, as well as the
motional states of matter systems, such as atoms [20–22],
molecules [23,24], and micro- or nanomechanical resonators
[25–27].

Generally, it is a difficult task to directly reconstruct the
quantum state of a massive mechanical resonator because one
cannot access the mechanical excitation directly. Usually, other
auxiliary systems, such as optical modes [28,29] or atoms [26]
are needed to transduce the states of mechanical modes. In this
sense, optomechanical systems [30,31] can provide a natural
platform to perform this task because there is an inherent inter-
face between mechanical and optical modes. Even though peo-
ple have noticed the means for controlling mechanical motion
(e.g., cooling [32–35] and quantum-state engineering [36–43])
by designing proper driving fields, the method for monitoring
the mechanical motion in the nonlinear quantum optomechan-
ics via the optical means remains mostly unexplored. We note
that QST in optomechanics has recently been studied in the
short-pulse case [28,29] and in optically-levitating-dielectrics
systems [44].

In this paper, we propose a reliable method for reconstruct-
ing the mechanical motional state of the moving mirror in
cavity optomechanics. Our approach is based on spectrometric
measurement of the emission or scattering of a single photon
interacting with the mechanical motion. Owing to the optome-
chanical coupling, the mechanical oscillation will modulate
the behavior of the single photon (which will show in its
spectrum), and hence one can infer the state information of
the mechanical mode from the measured spectral data.

II. THE SYSTEM

We start by considering an open optomechanical cavity,
which is formed by a fixed end mirror and a moving end
mirror, as shown in Fig. 1. Assuming that the moving mirror
is perfect and the fixed mirror is partially transparent, then
the cavity fields couple with the continuous fields outside
the cavity through photon-hopping interactions. In a rotating
frame with respect to H0 = ωca

†a + ωc

∫ ∞
0 c

†
kckdk (� = 1),

the Hamiltonian of the total system including the cavity and
the environment fields is [45,46]

Hs = Hopc +
∫ ∞

0
�kc

†
kckdk +

∫ ∞

0
ξk(a†ck + c

†
ka)dk, (1)

with Hopc = ωMb†b − g0a
†a(b† + b). Here, a(a†) and b(b†)

are, respectively, the annihilation (creation) operators of the
optical and mechanical modes, with respective frequencies ωc

and ωM . The second term in Hopc describes the radiation-
pressure coupling, and g0 is the single-photon optomechanical
coupling strength [47]. The annihilation and creation operators
ck and c

†
k describe the kth mode of the outside fields with

resonant frequency ωk . The parameter �k = ωk − ωc is the
detuning between the frequencies of the kth mode and the
cavity mode. The coupling between the cavity field and the
outside fields is described by the photon-hopping interaction
with coupling strength ξk . Under the framework of the Wigner–
Weisskopf theory, the parameter ξk is related to the photon
decay rate by γc = 2πξ 2

c , where ξc is the strength at the cavity
resonance frequency. We note that the Hamiltonian of the total
system in the Schrödinger picture can be written as H = H0 +
Hs because of [H0,Hs] = 0.

Because the mechanical decay rate γM is much smaller than
the optical decay rate γc (γM/γc ∼ 10−3 to 10−7 in typical
optomechanical systems [31]), in this paper we will merely
take the photon decay into account and neglect the mechanical
dissipation. This treatment is justified because the photon
emission and scattering processes are completed in a time scale
1/γc during which the mechanical dissipation is negligible.

III. SINGLE-PHOTON SPECTRA

In this system, the total photon-number operator Tp =
a†a + ∫ ∞

0 c
†
kck dk is a conserved quantity, due to [Tp,H ] = 0,
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FIG. 1. (Color online) Schematic diagram of a Fabry–Perot-type
optomechanical cavity formed by a fixed end mirror and a moving
end mirror. The cavity fields couple with the continuous fields outside
the cavity through photon-hopping interactions.

then we can restrict the system within a subspace with a definite
photon number. In the single-photon subspace, a general pure
state of the total system can be written as

|ϕ(t)〉 =
∞∑
l=0

Al(t)|1〉a|l̃〉b|∅〉

+
∞∑
l=0

∫ ∞

0
Bl,k(t)|0〉a|l〉b|1k〉dk, (2)

where |l̃〉b = exp[β0(b† − b)]|l〉b are single-photon-displaced
phonon-number states [48] with β0 = g0/ωM . The states |l̃〉b
are defined by the eigenequation

[ωMb†b − g0(b† + b)]|l̃〉b = (lωM − δ)|l̃〉b, (3)

with δ = g2
0/ωM . Here the Hamiltonian operator at the left-

hand side of Eq. (3) is Hopc when the photon number is limited
to one. In Eq. (2), |1k〉 = c

†
k|∅〉 is the single-photon state of

mode ck , and |∅〉 is the vacuum state. The first and second
components in |ϕ(t)〉 denote the basis states for the single
photon in the cavity mode and the kth mode outside the cavity,
respectively. The variables Al(t) and Bl,k(t) are probability
amplitudes.

In the long-time limit t � 1/γc, the single photon com-
pletely leaks out of the cavity, regardless of its initial state,
then Al(∞) = 0 and the long-time state becomes

|ϕ(∞)〉 =
∞∑
l=0

∫ ∞

0
Bl,k(∞)|0〉a|l〉b|1k〉dk. (4)

The form of Bl,k(∞) depends on the initial state of the system.
Here, the single photon could be initially in either the cavity
or the outside fields. These two cases correspond to the single-
photon emission and scattering processes.

Below, we derive the single-photon emission and scattering
spectra when the mechanical resonator is in an arbitrary
initial state. This is achieved by first calculating the spectra
corresponding to the mirror initially in a Fock state |n0〉b,
and then we obtain the spectra for a general initial state by
superposition. When the mirror is initially in the number state
|n0〉b, the initial state of the total system is

|ϕn0 (0)〉 = |n0〉b|φ〉photon. (5)

In the single-photon-emission case, the single photon is
initially in the cavity, and we have |φ〉photon = |1〉a|∅〉. In the
scattering case, the cavity is initially in a vacuum and the single

photon is in a Lorentzian wave packet in the continuous fields.
Then the initial state of the photon is

|φ〉photon = |0〉a ⊗
√

ε

π

∫ ∞

0

1

(�k − �0 + iε)
|1k〉dk, (6)

where �0 and ε are the wave-packet center and width, respec-
tively. At time t , the state of the system can be expressed as
Eq. (2), with the replacements |ϕ(∞)〉 → |ϕn0 (∞)〉, Al(t) →
An0,l(t), and Bl,k(t) → Bn0,l,k(t). Here the subscript n0 in
state |ϕn0 (t)〉 and probability amplitudes An0,l(t) and Bn0,l,k(t)
refers to the initial state |n0〉b of the mirror. The expressions
of An0,l(t) and Bn0,l,k(t) for the single-photon-emission and
-scattering cases have been given in Ref. [45]. In the single-
photon-emission and -scattering cases, we can check that the
state of the system is normalized, i.e., 〈ϕn0 (t)|ϕn0 (t)〉 = 1.
Since we treat the optomechanical system and the continuous
fields outside the cavity as a whole closed system, the
evolution of the total system is unitary. We should point out
that, in the derivation of the analytical expression of these
probability amplitudes, we have made the Wigner–Weisskopf
approximation.

Based on the above discussions, we denote the relation

|ϕn0 (t)〉 = U (t)|ϕn0 (0)〉 = U (t)|n0〉b|φ〉photon, (7)

where U (t) is the unitary evolution operator associated with
the Hamiltonian Hs of the total system. Therefore, when the
mirror is initially in a general density matrix

ρ(b)(0) =
∞∑

m,n=0

ρ(b)
m,n(0)|m〉b b〈n|, (8)

with ρ(b)
m,n(0) = b〈m|ρ(b)(0)|n〉b, the state of the total system at

time t would be

ρ(t) = U (t)[ρ(b)(0) ⊗ |φ〉photon photon〈φ|]U †(t)

=
∞∑

m,n=0

ρ(b)
m,n(0)U (t)|m〉b|φ〉photon photon〈φ| b〈n|U †(t)

=
∞∑

m,n=0

ρ(b)
m,n(0)|ϕm(t)〉〈ϕn(t)|. (9)

Correspondingly, the long-time state of the total system is

ρ(∞) =
∞∑

m,n=0

ρ(b)
m,n(0)|ϕm(∞)〉〈ϕn(∞)|, (10)

where |ϕm(n)(∞)〉 = ∑∞
l=0

∫ ∞
0 Bm(n),l,k(∞)|0〉a|l〉b|1k〉dk.

From ρ(∞) we obtain the single-photon spectra

S(�k) ≡ Tr[
kρ(∞)] =
∞∑

m,n=0

ρ(b)
m,n(0)�n,m(�k), (11)

where 
k = |1k〉〈1k| is the single-photon projective operator
and

�n,m(�k) =
∞∑
l=0

B∗
n,l,k(∞)Bm,l,k(∞). (12)

The relation (11) is important in this work and provides
the connection between the spectra and the density-matrix
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elements of the mirror. This result motivates us to reconstruct
the initial state of the mirror by measuring the spectra of the
outgoing photon.

IV. QUANTUM-STATE RECONSTRUCTION

A. Diagonal density-matrix case

To better see this procedure, we first consider the diagonal
density-matrix case, where the density matrix is diagonal
in the basis of number states. In this case, the initial state
of the mirror is assumed to be ρ(b)(0) = ∑∞

n=0 Pn|n〉b b〈n|,
with the phonon-number distribution Pn. Then, the single-
photon spectra become S(�k) = ∑∞

n=0 PnS|n〉b (�k), where
S|n〉b (�k) = �n,n(�k) are the spectra corresponding to the
component of the Fock state |n〉b. Once we know the three
parameters g0, γc, and ωM , then S|n〉b (�k) can be obtained.
In realistic reconstructions, we approximately truncate the
Hilbert space of the mirror into the lowest N -dimensional
subspace. Here the dimension parameter N should be chosen
to be sufficiently large such that the probabilities outside
this subspace are negligible. In this case, the spectra can be
approximated by

S(�k) ≈
N−1∑
n=0

PnS|n〉b (�k). (13)

Inspired by this relation, we construct a system of linear
equations for the variables Pn by choosing N sample points
(with the coordinates �kj

, j = 1,2,3, . . . ,N) from the spectra.
The compact form of these equations is

KP = Q, (14)

where P = (P0,P1, . . . ,PN−1)T . The elements of K and Q are
defined by

Kj,j ′ = S|j ′−1〉b (�kj
), Qj = S(�kj

), (15)

for j,j ′ = 1,2,3, . . . ,N . The square matrix K can be calcu-
lated based on the parameters g0, γc, and ωM , and the vector
Q can be measured in experiments. Therefore, if the square
matrix K is full rank, then the phonon-number distribution can
be obtained as

P = K−1Q, (16)

where K−1 is the inverse matrix of K (see the appendix for an
example).

One crucial factor in our method is to keep the validity of
the truncation approximation in Eq. (13); namely, we need to
choose a proper truncation dimension N . A natural question
arises: for a unknown initial state of the mirror, how to choose a
proper N? In a realistic simulation, we need to choose tentative
values of N many times by increasing N step by step. For an
insufficiently large N , the reconstructed elements are incorrect
and hence do not converge. We keep on increasing N step by
step until the reconstructed data converge. Then this value of
N will be good enough to satisfy Eq. (13). If the N used
is larger than the dimension of the exact space; namely, the
number of nonzero probabilities, then the additional phonon
probabilities will be zero in the solution. In this case, K is still
a square matrix.

FIG. 2. (Color online) Reconstructed phonon-number distribu-
tions Pn, based on the emission spectrum, for various values of
the dimension parameter N ; the exact distribution is presented for
reference. Here the initial state of the mirror is (a) the thermal
state ρ

(b)
th = ∑∞

n=0[n̄n
th/(n̄th + 1)n+1]|n〉b b〈n|, with n̄th = 1, (b) the

maximally mixed state ρ(b)
mms = 1√

ns

∑ns−1
l=0 |l〉b b〈l| in a subspace

of dimension ns = 5. Other parameters are γc/ωM = 0.1 and
g0/ωM = 2.

As examples, below we demonstrate our method by
considering two typical mixed states: the thermal state

ρ
(b)
th =

∞∑
n=0

n̄n
th

(n̄th + 1)n+1
|n〉b b〈n|, (17)

and the maximally mixed state

ρ(b)
mms = 1

ns

ns−1∑
n=0

|n〉b b〈n| (18)

in a subspace of dimension ns (with Pn = 1/ns for n =
0,1,2, . . . ,ns − 1, and Pn = 0 for others). The reconstructed
phonon distributions are shown in Fig. 2, which are compared
with the exact phonon distributions. It can be seen from
Fig. 2(a) that the reconstructed distributions become more
stable and eventually converge with increasing N . The stable
data correspond to a good truncation approximation in Eq.
(13). The fidelities between the reconstructed and exact
phonon-number distributions are F = 0.841, 0.980, 0.993 for
N = 3, 6, 8 in Fig. 2(a). This truncation effect is more obvious
for the state ρ(b)

mms. As shown in Fig. 2(b), the reconstructed
distributions become stable as long as N � ns . For this state,
when N � ns , the relation (13) is exact because the Hilbert
space is truncated automatically.

Equation (13) indicates that, once the dimension parameter
N is large enough to satisfy the truncation approximation,
the reconstructed distributions should be independent of the
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choice of the sample points. Nevertheless, we should choose
the sample points such that the vector Q can capture the
spectral feature as much as possible; mathematically, making
sure the matrix K is full rank. In Fig. 2, the sample points are
located at

�kj
= −δ + jωM, j = �−N/2, . . . ,N/2�, (19)

where δ = g2
0/ωM . These locations correspond to the phonon

sideband peaks and can hence mostly capture the spectral
feature. In Fig. 3(a), we reconstruct the phonon distributions
using three groups of random sample points in the region
�kj

/ωM ∈ [−5,5]. The results show that the reconstructed
results are well consistent with the exact results (with fidelities
F > 0.994), and that our approach is almost independent of
the choice of sample points.

Two inherent dimensionless parameters in this sys-
tem are the scaled single-photon optomechanical coupling
strength g0/ωM and the scaled cavity-field decay rate γc/ωM

[49–52]. In order to see how our approach depends on these
parameters, we show the reconstructed phonon distributions
for various values of the two ratios. As shown in Fig. 3(b),
we can see that our approach works well for a moderately
large coupling strength. Our numerical results show that
the optomechanical-coupling strength should be on the scale
of g0/ωM ∼ 2. A too-weak optomechanical coupling cannot
capture the information regarding the phonon distribution from
the spectra and cannot make sure M becomes full rank. On the
contrary, a large g0 will increase the computational difficulties
because the involved Hilbert space for phonons is large. In
addition, for the cavity-field decay rate γc, there is a wide
range to choose. Figure 3(c) proves that our approach works
well over a wide parameter range, irrespective of whether the
system is in the resolved-sideband regime.

Our method can also be realized based on the scattering
spectrum. In the scattering case, in addition to the param-
eters g0, γc, and ωM , there are two additional controllable
parameters: the wave-packet center �0 and the width ε of the
incident photon. In Fig. 3(d), we plot the reconstructed phonon
distributions for various parameters based on the scattering
spectrum. We can see that our method works well in both
the narrow-wave-packet (ε/ωM � 1) and wide-wave-packet
(ε/ωM > 1) cases. In addition, it also works well for a wide
range of driving frequencies, which correspond to different
phonon sideband resonant transitions [45].

B. General density-matrix case

We now consider the general density-matrix case, in which
the density matrix contains nonzero off-diagonal elements
in the number-state representation. By truncating the Hilbert
space, the single-photon spectra in Eq. (11) can be approxi-
mated by

S(�k) ≈
N−1∑

m,n=0

ρ(b)
m,n(0)�n,m(�k). (20)

By choosing N2 sample points (with locations �kj
, j =

1,2,3, . . . ,N2) in the spectra, we can construct a system of

FIG. 3. (Color online) Reconstructed thermal phonon-number
distributions Pn based on (a)–(c) emission and (d) scattering spectra in
various cases. (a) The sample points are chosen randomly in the region
�kj

/ωM ∈ [−5,5]. The reconstructed distributions for various values
of (b) the single-photon optomechanical coupling strength g0 or of (c)
the cavity-field decay rate γc. (d) The distributions are reconstructed
based on the scattering spectrum for various values of the parameters
ε and �0. Here we choose n̄th = 1, and other parameters are shown
in the panels.

linear equations of these density-matrix elements as

MC = R, (21)
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where the coefficient matrix M and the column vector R are
defined by

Mj,j ′ = �n,m(�kj
), Rj = S(�kj

), (22)

for j,j ′ = 1,2,3, . . . ,N2. The relationship between the vari-
ables m,n and j ′ is

m = Floor[(j ′ − 1)/N], n = (j ′ − 1) − mN, (23)

where the function Floor(x) gives the greatest integers less than
or equal to x. The vector C is the variable to be determined,
its elements

Cl = ρ(b)
m,n(0), l = 1,2,3, . . . ,N2, (24)

are the density-matrix elements for the initial state of the
moving mirror, where the relationship between the variables
m, n, and l is m = Floor[(l − 1)/N] and n = (l − 1) − mN .

If the square matrix M is full rank, then the unique solution
of these density-matrix elements can be obtained as

C = M−1R, (25)

where M−1 is the inverse matrix of M. The vector R can
be obtained by experimentally detecting the single-photon
spectra, and the coefficient matrix M can be determined from
the expression of �n,m(�k) for special values �k = �kj

; then
we can reconstruct the initial density matrix of the mechanical
mode (see the appendix for an example). As additional
examples, we consider the density-matrix reconstruction for
Fock states and superposed Fock states based on the emission
spectrum. The reconstructed density-matrix elements are
shown in Fig. 4 for states |0〉b, |1〉b, |2〉b, (|0〉b ± |1〉b)/

√
2,

and (|0〉b + |1〉b + |2〉b)/
√

3. The data obtained is consistent
with the exact result with high fidelities F > 0.999.

V. DISCUSSIONS AND CONCLUSIONS

There are two important factors in the experimental imple-
mentation of our method: (i) The single-photon optomechan-
ical coupling strength g0 should be moderately larger than
the resonant frequency ωM of the mechanical resonator, i.e.,
g0/ωM ∼ 2. An optomechanical coupling at this scale can
be realized in ultracold atoms. In Ref. [50], a coupling of
g0/ωM > 10 has been realized. In particular, our method does
not require the resolved-sideband condition g0 > γc, making
this proposal experimentally feasible. However, in most
optomechanical systems [31], the optomechanical coupling
strengths are much smaller than the mechanical frequencies.
Recently, two theoretical proposals have been proposed to
enhance the optomechanical couplings (the estimated g0 is
several MHz) in electromechanics [53,54]. Moreover, the ratio
g0/ωM can also be increased by introducing either modulated
optomechanical couplings [55], mechanical normal modes
[56], or collective mechanical modes in a transmissive scatter
array [57]. (ii) How to measure the single-photon emission
and scattering spectra is a key step for the realization of this
method. In experiments, to profile the pattern of single-photon
spectra, the single photon needs to be detected by sweeping
the frequency [58].

We note that there is no postselection in our method. This
is because we do not need to condition a probability space. In
our system, the total photon number is a conserved quantity,
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FIG. 4. (Color online) Reconstructed density-matrix elements
ρ(b)

m,n(0) based on the emission spectrum for various states: (a)–(c)
Fock states |0〉b, |1〉b, and |2〉b, (d), (e) superposed Fock states
(|0〉b ± |1〉b)/

√
2, and (f) (|0〉b + |1〉b + |2〉b)/

√
3. Other parameters

are γc/ωM = 0.1 and g0/ωM = 2.

and hence we can restrict the system within the single-photon
subspace. Namely, a single photon is initially prepared in the
cavity (emission) or the continuous field outside the cavity
(scattering), after the interaction with the mechanical motion,
the single photon will leak out of the cavity due to the photon
decay channel. Finally, we measure the spectrum of the single
photon, i.e., the reservoir photon occupation distribution.
During these processes, there is one and only one photon.
Hence, the states of the mechanical motions are completely
obtained by measuring the spectrum of the single photon,
without postselection.

To conclude, we have proposed a spectrometric approach
for reconstructing the mechanical motional state in
optomechanics by detecting single-photon spectra. We
considered two different situations: single-photon emission
and scattering, which correspond to the cases where the single
photon is initially in the cavity field or in a wave packet in
the continuous fields outside the cavity. In our considerations,
the mechanical dissipation was safely neglected, because the
mechanical dissipation is negligible during the time interval
for the single-photon emission and scattering to be finished.
However, our studies included the photon dissipation by
modeling the optical environment as a harmonic-oscillator
bath, under the framework of the Wigner–Weisskopf
approximation. Our method has a mild constraint in the
cavity-field decay rate: it works well in both the sideband-
resolved and unresolved regimes. However, the single-photon
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coupling strength g0 should satisfy g0/ωM ∼ 2, such that
the single-photon spectra can capture the phonon-state
information. In the single-photon strong-coupling regime, the
non-Gaussian effects are observable. Much recent attention
has been paid to explore the non-Gaussian physics in this
parameter regime. Nevertheless, quantum-state tomography
in this regime remains mostly unexplored and here we have
proposed a method for tomography in this regime. Moreover,
our method is general and can be potentially realized in
various optomechanical systems [31]. And the idea of
spectrometric reconstruction of quantum states can be applied
to quadratic optomechanics [59] and cavity QED [60].
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APPENDIX: EXAMPLES FOR QUANTUM-STATE
RECONSTRUCTION BASED ON

SINGLE-PHOTON-EMISSION SPECTRUM

In this Appendix, we present two examples to show how
to simulate quantum-state reconstruction of a diagonal or
a general density matrix in the number-state representation,
based on the single-photon emission spectrum.

1. Single-photon-emission solution

In the single-photon-emission case, the probability ampli-
tude Bn0,l,k(∞) has been given in Ref. [45]. In a realistic
simulation, we need to truncate the summation dimension
up to a definite value nd ; namely, up to a phase factor
exp[−i(lωM + �k)t],

B
nd

n0,l,k
(∞) =

nd−1∑
n=0

√
γc

2π b〈l|ñ〉b b〈ñ|n0〉b[
�k + δ − (n − l)ωM + i

γc

2

] , (A1)

where we add the superscript nd to mark the summation
dimension nd .

To describe these Franck–Condon factors b〈l|ñ〉b and
b〈ñ|n0〉b, we introduce a function

F[m,n,β] = b〈m|Db(β)|n〉b

=
√

(min[m,n])!

(max[m,n])!
e−β2/2

× (sgn[m − n − 1/2]β)abs[m−n]

× LaguerreL[min[m,n],abs[m − n],β2], (A2)

where max[x,y] and min[x,y] give the larger and smaller
one between x and y, respectively; sgn[x] gives −1, 0, or 1
depending on whether x is negative, zero, or positive, respec-
tively; abs[x] gives the absolute value of x, LaguerreL[n,a,x]
gives the generalized Laguerre polynomial La

n(x). In terms of
Eq. (A2), we can express these Franck–Condon factors as

b〈l|ñ〉b = b〈l|Db(β0)|n〉b = F[l,n,β0], (A3a)

b〈ñ|n0〉b = b〈n|D†
b(β0)|n0〉b = F[n,n0, − β0]. (A3b)

With the emission solution, we can reconstruct the density
matrix of the mechanical mode.

2. Diagonal-density-matrix case

In the diagonal-density-matrix case, we consider the ther-
mal state ρ

(b)
th = ∑∞

n=0 Pn|n〉〈n|, with Pn = n̄n
th/(n̄th + 1)n+1.

The matrix K and the vector Q can be determined by

Kj,j ′ =
nd1 −1∑
l=0

∣∣Bnd1
j ′−1,l,kj

(∞)
∣∣2

, (A4a)

Qj =
nd2 −1∑
n,l=0

n̄n
th

(n̄th + 1)n+1

∣∣Bnd2
n,l,kj

(∞)
∣∣2

, (A4b)

for j,j ′ = 1,2, . . . ,N . The vector Q is determined by exper-
iments. Hence, in a realistic simulation, we need to choose a
very large summation dimension nd2 , which should be larger
than the summation dimension nd1 used in obtaining the matrix
K. Once we know the three system parameters g0, γc, and ωM ,
so the matrix K can be obtained.

We randomly generate a group of sample points in the region �kj
/ωM ∈ [−5,5] (eight sample points, the truncation dimension

N = 8). The locations of these points are

�kj
/ωM = [−0.238 903,−4.152 71,−2.181 12, 4.7646,−4.457 49,−3.345 87, 4.921 28,−0.3611 81]. (A5)

Using the parameters nd1 = 48, nd2 = 60, g0/ωM = 2, γc/ωM = 0.1, and n̄th = 1, we numerically obtain the matrix

K ≈ 10−2

ωM

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.47341 1.00608 1.11404 0.68844 1.09823 0.88438 0.68566 0.85648

3.65773 4.03497 2.57462 2.59686 1.30956 2.41597 3.19158 2.85843

3.41250 1.63790 1.47325 1.71805 1.63361 1.60156 1.29623 1.45646

0.06990 0.07098 0.40837 1.06732 1.02115 0.63968 0.65275 0.74980

0.89358 0.83841 0.42001 0.63426 0.46637 0.64601 0.76208 0.63524

1.26672 0.81926 0.54281 0.61829 0.87052 0.58272 0.45410 0.68421

0.09186 0.85753 3.79587 6.18143 4.41536 3.26403 4.17912 4.42602

0.71383 0.72236 0.57617 0.36789 0.74751 0.44229 0.36831 0.56118

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)
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and the vector

Q ≈ 10−2

ωM

(1.230 94, 3.445 40, 2.505 07, 0.222 98, 0.783 67, 0.990 37, 1.374 27, 0.669 94)T . (A7)

By numerically solving the equation KP = Q, we obtain the solution

P ≈ (0.501 06, 0.249 44, 0.125 06, 0.063 58, 0.031 05, 0.015 92, 0.005 66, 0.007 66)T , (A8)

which has a fidelity F = 0.995 with the exact phonon-number distribution

Pexact = (0.5, 0.25, 0.125, 0.0625, 0.031 25, 0.0156 25, 0.007 812 5, 0.003 906 25)T . (A9)

3. General density-matrix case

In the general density-matrix case, the elements of M are
defined by

Mj,j ′ =
nd1 −1∑
l=0

[
B

nd1
n,l,kj

(∞)
]∗

B
nd1
m,l,kj

(∞), (A10)

for j,j ′ ∈ [1,2, . . . ,N2], where m = Floor[(j ′ − 1)/N ] and
n = (j ′ − 1) − mN . The elements of the vector S are defined
by

Sj =
nd2 −1∑

m,n,l=0

ρ(b)
m,n(0)

[
B

nd2
n,l,kj

(∞)
]∗

B
nd2
m,l,kj

(∞), (A11)

for j ∈ [1,2, . . . ,N2]. In Eqs. (A10) and (A11), the
probability amplitudes B

nd1(2)

m(n),l,kj
(∞) have been given in

Eq. (A1).

As an example, we assume that the initial state of the mirror
is (|0〉b + i|1〉b − |2〉b)/

√
3, which has the density matrix

ρ
(b)
exact(0) = 1

3

⎛
⎜⎝

1 −i −1

i 1 −i

−1 i 1

⎞
⎟⎠ . (A12)

We choose a group of sample points which are located at the
phonon-sideband peaks, with the locations �kj

= −δ + nωM

for n ∈ [−4,4]. Here we use the truncation dimension N = 3,
and then choose nine sample points. Using the parameters
nd1 = 48, nd2 = 60, g0/ωM = 2, and γc/ωM = 0.1, then the
locations of these sample points are

�kj
/ωM = [−8,−7,−6,−5,−4,−3,−2,−1, 0].

(A13)

Based on Eqs. (A1), (A10), and (A11), we can numerically obtain the matrix

M ≈ 10−1

ωM

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.65078 0.72701 + 0.06619i 0.31389 + 0.04904i � 2.73543 0.92622 + 0.09507i � � 3.47639

2.68039 0.78019 + 0.06690i 0.50595 + 0.05111i � 3.01083 1.1303 + 0.10038i � � 2.86101

2.79261 0.84290 + 0.06965i 0.53053 + 0.05412i � 3.12871 1.48178 + 0.10416i � � 3.40431

2.98886 1.00804 + 0.07440i 0.57164 + 0.02008i � 3.30036 1.37987 + 0.02789i � � 3.50278

3.26298 1.15702 + 0.05181i 0.57538 − 0.10663i � 3.49535 1.26968 − 0.08778i � � 2.89283

3.59519 1.17639 − 0.02772i 0.24166 − 0.25788i � 3.33098 0.76202 − 0.12633i � � 2.43629

3.86136 0.87698 − 0.13806i −0.43399 − 0.29357i � 2.78533 −0.16378 − 0.10401i � � 1.68726

3.85851 0.08117 − 0.21613i −1.30234 − 0.18395i � 1.95965 −0.72898 − 0.11875i � � 1.76493

3.38095 −1.0129 − 0.22813i −1.67703 − 0.02836i � 1.51133 −0.61621 − 0.17913i � � 2.29425

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A14)

and the vector

S ≈ 10−1

ωM

(2.852 46, 2.624 96, 2.870 73, 2.9511, 2.809 48, 2.857 02, 2.905 94, 3.172 67, 3.242 02)T . (A15)

In the matrix M, the elements denoted by “�” can be determined by the following rule: In the same row, the elements with the
column pairs (2 ↔ 4), (3 ↔ 7), and (6 ↔ 8) are complex conjugate of each other. We can explain this property based on the
relation �n,m(�kj

) = �∗
m,n(�kj

) in Eq. (A10) and the following relations:

Mj,2 = �1,0
(
�kj

)
, Mj,4 = �0,1

(
�kj

)
; Mj,3 = �2,0

(
�kj

)
, Mj,7 = �0,2

(
�kj

)
; Mj,6 = �2,1

(
�kj

)
, Mj,8 = �1,2

(
�kj

)
.

(A16)
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In addition, the elements in the first, fifth, and ninth columns are real. This is because Mj,1 = �0,0(�kj
), Mj,5 = �1,1(�kj

),
Mj,9 = �2,2(�kj

), and �n,n(�kj
) is real.

By numerically solving the equation MC = S, we obtain the expression of C, which can be expressed in the density-matrix form
as

ρ(b)(0) ≈ 0.3333 33

⎛
⎜⎝

1 −i −1

i 1 −i

−1 i 1

⎞
⎟⎠ , (A17)

where ρ(b)
m,n(0) = Cl . The relationship between m,n and l is m = Floor[(l − 1)/N ] and n = (l − 1) − mN , where l = 1,2,3, . . . ,9,

and m,n = 0,1,2. The fidelity between the two density matrices ρ
(b)
exact(0) and ρ(b)(0) is almost unity.
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[13] S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M.
Raimond, and S. Haroche, Nature (London) 455, 510 (2008).

[14] M. Brune, J. Bernu, C. Guerlin, S. Deléglise, C. Sayrin,
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