Determining eigenvalues of a density matrix with minimal information in a single experimental setting

Tohru Tanaka,1 Yukihiro Ota,2 Mitsunori Kanazawa,1 Gen Kimura,3 Hiromichi Nakazato,1 and Franco Nori2,4

1Department of Physics, Waseda University, Tokyo 169-8555, Japan
2CEMS, RIKEN, Saitama 351-0198, Japan
3College of Systems Engineering and Science, Shibaura Institute of Technology, Tokyo 108-8548, Japan
4Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 26 August 2013; published 21 January 2014)

DOI: 10.1103/PhysRevA.89.012117 PACS number(s): 03.65.Ta, 03.65.Aa, 03.67.—a

The eigenvalues of a density matrix are fundamental quantities in quantum physics and characterize many quantum properties, such as coherence and entanglement. Typically, a function of the density matrix’s eigenvalues allows us to examine features of a quantum state. The von Neumann entropy, for example, is defined as the Shannon entropy of eigenvalues of a density matrix and has different applications such as thermodynamic entropy [1], optimal compression rate of a quantum state [2], and entanglement measure [3]. Other entropies of eigenvalues, e.g., the Rényi entropy and the Tsallis entropy [4], can have curious applications in thermodynamics and statistical mechanics. The entanglement spectrum [5] depends on spectrum of a reduced density matrix and is useful for studying the ground-state properties of many-body quantum systems in low dimensions. Thus, the eigenvalues of a density matrix (and their functions) are probes into quantumness in various issues.

Developing a method for determining eigenvalues of an unknown quantum state is highly desirable, because one can experimentally test many theoretical ideas about sensing quantum features. A fundamental question here is whether the method is simple enough and implemented by a small number of experimental setting, ideally by a single setup. We first consider a simple approach. Reconstructing a density matrix via quantum-state tomography [6] leads to determining all the eigenvalues. In a d-level quantum system, however, we have \((d^2 - 1)\) numbers of free parameters to be fixed in the reconstruction, so it is highly redundant to determine \(d\) numbers of the eigenvalues, where only \((d - 1)\) numbers of free parameters (with the normalization) are necessary. Actually, without a full reconstruction of a quantum state, the eigenvalues of a density matrix are attainable. We only need to know the moments of a density matrix \(\rho\), as seen in, e.g., Ref. [7]. There are experimental proposals [8–10] to directly measure \(\rho^k\) \((k = 2, \ldots, d)\). Since the number of the unknown eigenvalues is equal to that of the measured quantities, this approach is regarded as an eigenvalue determination with minimum information. We call such a method minimal. An eigenvalue determination with minimum information is considered to be simple enough, since there is no redundancy. The minimality of information gain is important in quantum systems, from the viewpoint of the information-disturbance relation [11,12]. Extracting minimal information can lead to suppressing unnecessary disturbance in a quantum state.

Next, let us consider the implementability of eigenvalue determination, with a single setup. In proposed methods [8–10] with the minimality, the \(k\)th moment of \(\rho\) is measured by the expectation value of an observable under an identically and independently distributed (i.i.d.) state, \(\rho^{\otimes d}\). Thus, this approach requires \((d - 1)\) kinds of the experimental settings to determine all the eigenvalues. A single-setup determination is built straightforwardly by a measurement of an information complete positive operator-valued measure (see, e.g., Ref. [13]). We recall that the information completeness is defined by the state-reconstructing ability from statistical measurement data. One can reconstruct a density matrix, via a single experimental setting for such a measurement [14]. However, as pointed out above, this method does not have minimality. An alternative way for obtaining all the moments of \(\rho\) with a single setup is to use random unitary operations on a single system [15]. This method is applicable to photon qudits passing through a disordered medium [16], although one must guarantee the uniformity of the random operations.

In this article, we propose a method for measuring the eigenvalues of a density matrix, equipped with both minimality and single-setup implementability. Our proposal for a \(d\)-level quantum system consists of a measurement of a single \(d\)-valued observable, or equivalently, a measurement of a projection-valued measure (PVM) measurement \((P_i)_{i=1}^d\), on a \(d\)-i.i.d. state, \(\rho^{\otimes d}\). Our central idea is to build a specific unitary gate in a multipartite system. We will show that the characteristic polynomial of any density matrix \(\rho\) is constructed in terms of probability distributions \(\text{tr}(P_i\rho^{\otimes d})\) as

\[
\det(x - \rho) = \sum_{i=1}^d m_i(x) \text{tr}(P_i\rho^{\otimes d}) \quad (x \in \mathbb{R}).
\]

Here \(m_i(x)\) \((i = 1, \ldots, d)\) is a known polynomial of \(x\), determined according to the choice of the single observable. From the PVM measurement \((P_i)_{i=1}^d\) on state \(\rho^{\otimes d}\), we obtain the probability distribution \(\text{tr}(P_i\rho^{\otimes d})\). Then, we can calculate all the eigenvalues of \(\rho\), via formula (1). This process can be efficiently performed by a classical computer, since the problem is a 1D root finding, simpler than a full matrix.
diagonalization. Figure 1 is the summary of our proposal. Moreover, we will show methods for implementing our proposal in physical systems.

One of the simple realizations of our approach is to use the antisymmetrizer (projector on a fermionic ground state). To see this, let us start with some mathematical ingredients. The unitary operator on $\mathcal{H}^{\otimes d}$ associated with a permutation $\sigma \in \mathfrak{S}_k$ over k integers $\{1, \ldots, k\}$ is

$$U_\sigma |\phi_1 \rangle \cdots |\phi_k \rangle = |\phi_{\sigma(1)} \rangle \cdots |\phi_{\sigma(k)} \rangle,$$

for $|\phi_i \rangle \in \mathcal{H}$ ($i = 1, \ldots, k$). An m-cycle $c_m \in \mathfrak{S}_k$ is a permutation to cycle m distinct integers from $\{1, \ldots, k\}$, with others being fixed. Noting that $tr \rho = 1$, we have

$$tr (U_{c_m} \rho \otimes \cdots \otimes \rho) = tr \rho^m \quad (m = 2, \ldots, k),$$

for any m-cycle c_m. Thus, each moment of ρ is related to a physical process. An observable for determining $tr \rho^m$ can be constructed by taking the Hermitian part of U_{c_m}, as seen in, e.g., Ref. [8]. For a general permutation σ, we can use the unique decomposition by cycles (see, e.g., Ref. [17]) to obtain

$$tr (U_\sigma \rho \otimes \cdots \otimes \rho) = \frac{1}{k!} \sum_{m=1}^k (\mu_m)^{j_m(\sigma)},$$

where $j_m(\sigma)$ is the number of the m cycles in σ. For instance, we have

$$tr (U_\sigma \rho \otimes \cdots \otimes \rho) = (tr \rho^2)^2 (tr \rho^3)$$

for $\sigma = (12)(34)(567)$, because $j_2(\sigma) = 2$ and $j_3(\sigma) = 1$, with others being zero.

The antisymmetrizer on $\mathcal{H}^{\otimes d}$ is defined by

$$A_k = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_k} \text{sgn}(\sigma) U_\sigma \quad (k = 1, \ldots, d),$$

where $\text{sgn}(\sigma) = \pm 1$ is the sign of σ. A_k is a projection operator on $\mathcal{H}^{\otimes k}$ ($A_k^2 = A_k^1$) and has a natural extension on $\mathcal{H}^{\otimes d}$ by $A_k \otimes I^{d-k}$. Hereafter, we use the same symbol A_k on $\mathcal{H}^{\otimes d}$ and define A_0 to be the identity operator on $\mathcal{H}^{\otimes d}$. Using Eqs. (4) and (5), we obtain

$$tr (A_k \rho \otimes \cdots \otimes \rho) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_k} \prod_{m=1}^k (\mu_m)^{j_m(\sigma)},$$

with $\mu_m = (-1)^{m-1} tr \rho^m$. Here we have used $\text{sgn}(\sigma) = \prod_{m=1}^k [\text{sgn}(c_m)]^{j_m(\sigma)}$, and $\text{sgn}(c_m) = (-1)^{m-1}$ for an m-cycle c_m. Thus, a projective measurement about A_k includes the moments of ρ, up to the kth order.

Now, we show a way to reconstruct the characteristic polynomial of ρ, with Eq. (6). Let us write $tr (A_k \rho \otimes \cdots \otimes \rho)$ as a_k, and formally define $a_0 = 1$. A straightforward calculation of the right-hand side of Eq. (6) leads to the Newton-Girard formula [18]

$$a_k = \frac{1}{k} \sum_{m=1}^k \mu_m a_{k-m} \quad (k = 1, \ldots, d).$$

Thus, the sequence of $\{a_k\}_{k=1}^d$ is equivalent to that of the coefficients of the characteristic polynomial (i.e., elementary symmetric polynomials). To sum up, we obtain

$$\text{det}(x - \rho) = tr [M(x) \rho \otimes \cdots \otimes \rho],$$

with $M(x) = \sum_{k=1}^d (-1)^k x^{d-k} A_k$. This result is notable, because the characteristic polynomial is described by a single quantum observable $M(x)$. However, we still need to remove the dependence on the continuous variable x, to make a single-setup approach possible. The key is the following structure of the antisymmetrizers. Since a permutation procedure in A_k is a part of A_l when $k < l$, $A_k \subset A_l \subset \mathcal{H}^{\otimes d}$. Therefore, we obtain the inclusion relation for A_k:

$$A_d \subset A_{d-1} \subset \cdots \subset A_2 \subset A_1.$$

We note that $A_1 = \mathcal{H}^{\otimes d}$. Thus, we have an orthogonal decomposition of $\mathcal{H}^{\otimes d}$ as $\mathcal{H}^{\otimes d} = B_1 \oplus B_1 \oplus A_{d-1} \oplus A_{d-2} \oplus \cdots (i = 2, \ldots, d)$. The projection operators P_i onto B_i are then defined by $P_1 = A_d$ and $P_i = A_{d-i+1} \oplus A_{d-i+2}$ ($i = 2, \ldots, d$). They constitute our PVM measurements $(P_i)_{i=1}^d$. By definition, we find that $A_1 = \sum_{i=1}^d P_i$. By substituting this formula into Eq. (8), we obtain the practical formula (1) for eigenvalue determination, with

$$m_i(x) = \sum_{k=0}^{d-i} (-1)^k x^{d-k}.$$
Next, we examine a solid-state system, especially a superconducting qubit [25]. Let us consider a controlled gate $U_{DZ} = \exp[-i(\pi/4)H_{DZ}]$, with $H_{DZ} = J_\sigma \otimes \sigma_\pi$. The 2×2 Pauli matrices are $\sigma_x, \sigma_y, \sigma_z$. The qubit-coupling Hamiltonian H_{DZ} is realized in various systems such as flux qubits [26] and transmon qubits [27,28]. This control gate with single-qubit gates leads to

$$U_D = (I \otimes U_H)(Z_{-\pi/4} \otimes Z_{-\pi/4})U_{DZ}(I \otimes U_H),$$

where $U_H = Y_{-\pi/8}Z_{\pi/2}Y_{\pi/8}, \ Z_\pi = \exp(i\theta \sigma_\pi), \ \text{and} \ Y_\pi = \exp(i\pi \sigma_\pi)$. We find that $U_D|^\pi\rangle_\sigma = |0\rangle, \ \ U_D|^\pi\rangle_\sigma = |1\rangle, \ U_D|^\pi\rangle_\sigma = |11\rangle, \ \text{up to overall phases, where} \ (|\phi^\pi\rangle = (|00\rangle \pm |11\rangle)/\sqrt{2} \text{and } |\psi^\pi\rangle = (|01\rangle + |10\rangle)/\sqrt{2})$. If both of the qubits are detected as $|1\rangle$ after performing U_D, the projector P_0 is done.

We refer to the extendability of our proposal useful for the implementation in general systems. Using a superoperator Ξ such that $\Xi(\rho^{\otimes 3}) = \rho^{\otimes 3}$, and its adjoint Ξ^*, $\text{tr} \ [\Xi^*(A) B] = \text{tr} \ [A \Xi(B)]$, we find that an expansion of the characteristic polynomial is not unique. In contrast to $M(x)$ in Eq. (8), the observable $\Xi^*(M(x))$ can involve operators other than the antisymmetrizers. Thus, one may perform our proposal, not sticking to the PVM measurement. Let us apply this technique to the eigenvalue determination in a linear optical qutrit ($d = 3$). Our qutrit is a superposition of 3-path (or mode) single-photon states. The corresponding bosonic creation operators are $a^\dagger_\ell \ (\ell = 1, 2, 3)$. To represent a 3-i.i.d. state $\rho^{\otimes 3}$, we need two additional spatial modes b^\dagger_1 and c^\dagger_1, each of which has another spatial mode index ℓ for expressing a qutrit state, like a^\dagger_ℓ. To simplify the notations, we will denote b^\dagger_1 (c^\dagger_1) as a^\dagger_1 ($a^\dagger_{\ell_1}$). In our setting, a 3-i.i.d. qutrit enters an interferometer. For each ℓ, a mixing among a^\dagger_1, $a^\dagger_{\ell_1}$, and $a^\dagger_{\ell_6}$ occurs:

$$
\begin{align*}
(a^\dagger_1) & \mapsto \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & e^{i\pi/3} & e^{i2\pi/3} \\ 1 & e^{i2\pi/3} & e^{i4\pi/3} \end{pmatrix} \begin{pmatrix} a^\dagger_1 \\ a^\dagger_{\ell_1} \\ a^\dagger_{\ell_6} \end{pmatrix}.
\end{align*}
$$

This transformation (a qutrit quantum Fourier transformation [29]) does not alter the bosonic canonical commutation relations and can be built up by beam splitters and phase shifters [30]. The interferometer has nine output ports, each of which is connected to a threshold detector $D_\alpha (\alpha = 1, \ldots, 9)$. In other words, the detector D_α is clicked if photons live in the αth output mode after the transformation (13). We regard a triplet $(D_\beta, D_{\beta+1}, D_{\beta+2})$ as a single detector $D_\beta (\beta = 1, 4, 7)$. Thus, when at least one element of the triplet is clicked, the logical value of this coarse-graining measurement is true. We can find that three distinct events occur at the outputs in the total apparatus: “bunching” (one of the three coarse-graining detectors is clicked), “antibunching” (all the coarse-graining detectors are clicked), and others. The elements of the corresponding positive operator-valued measure (not PVM) are $Q_1 = (2/3)S_1$ for bunching, $Q_2 = (S_3/3) + A_3$ for antibunching, and $Q_3 = I^{\otimes 3} - Q_1 - Q_2$ for residues, with the three-body symmetrizer S_3. Now, we take Ξ as the three-body symmetrizing superoperator, $\Xi(A) = (1/3)! \sum_{\pi \in \mathcal{S}_3} U_{\pi^0} A U_{\pi^0}$. Then, we find that $\Xi^*(M(x)) = \sum_{x \in X} m_3(x)Q_x$. The polynomials $m_3(x)$ can be obtained by straightforward calculations.
and do not depend on ρ, like $m_r(x)$. In this way, we can reconstruct the characteristic polynomial of a qutrit density matrix, using $m_r'(x)$ and the measurement probabilities $\text{tr}(Q_n \rho^{\otimes N})$.

Finally, we compare our proposal to an approach proposed by Keyl and Werner [31]. They found a single observable for an eigenvalue determination, via a group-theoretic approach (see also Ref. [32]). Different from ours, the outcome of the observable in a single-shot measurement is an estimator of the eigenvalues. Their method can be considered to be minimal observable in a many-body system, whose particle number depends on a given accuracy. In contrast, our observable is fixed, once the dimension of a target system is set. Thus, our method could be much simpler, from a technical point of view.

In summary, we showed a simple method for measuring the eigenvalues of a density matrix of a d-level system in a single setup. We also implemented our proposal in linear optical and superconducting systems. In the present formulation, a characteristic polynomial is reconstructed via quantum measurements. The resultant polynomial is straightforwardly calculated by classical computers. This approach is also applicable to evaluating the energy spectrum of a physical system, like Ref. [33]. Thus, our proposal can be used for a practical assessment of quantum features in a physical system.

The authors thank A. Miranowicz, S. Ashhab, and S. Tanaka for helpful discussion. T.T. is partially supported by a Grant for Excellent Graduate Schools, MEXT, Japan. Y.O. is supported in part by the Special Postdoctoral Researchers Program, RIKEN. G.K. and H.N. are partially supported respectively by a Grant-in-Aid for Young Scientists (B) (No. 22740079) and by a Grant-in-Aid for Scientific Research (C) (No. 22540292) from JSPS. F.N. acknowledges partial support from the ARO, RIKEN iTHES project, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and Funding Program for Innovative R&D on S&T.

[14] One can make an indirect measurement (through the Steinspring representation) by preparing an ancilla interacting with the system and finally performing a projective measurement of an observable on the ancilla.

