
PHYSICAL REVIEW A 88, 063823 (2013)

Feedback control of Rabi oscillations in circuit QED
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We consider the feedback stabilization of Rabi oscillations in a superconducting qubit which is coupled to a
microwave readout cavity. The signal is readout by homodyne detection of the in-phase quadrature amplitude
of the weak-measurement output. By multiplying the time-delayed Rabi reference, one can extract the signal,
with maximum signal-to-noise ratio, from the noise current. We further track and stabilize the Rabi oscillations
by using Lyapunov feedback control to properly adjust the input Rabi drives. Theoretical and simulation results
illustrate the effectiveness of the proposed control law.
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I. INTRODUCTION

In control theory, the system to be controlled is compared
to the desired reference, and the discrepancy is used to modify
the control action [1]. In contrast to classical systems, where
measurements do not alter the state of the system, quan-
tum measurements will collapse the system instantaneously
into one of its eigenstates in a probabilistic manner: the
“measurement-induced backaction” [2,3]. Although quantum
coherent feedback control has been proposed [4] and exten-
sively applied in quantum optics and for cooling mechanical
oscillators [5–7], measurement-based feedback control still
attracts considerable interest. Based on the quantum trajectory
theory, Wiseman and Milburn [8,9] developed a quantum
conditional stochastic master equation (SME) to describe the
dynamics resulting from the feedback (of the measurement
output at each instant) to the quantum system. SME has
been a topic of considerable activity in recent years for
it paves the way for studying real-time measurement-based
feedback control [10–14] in quantum information processing
and computation.

Circuit quantum electrodynamics (i.e., circuit QED, where
a superconducting qubit is coupled to a microwave-frequency
resonator cavity; see, e.g., Refs. [15–19]) has been shown
to be a promising quantum computing architecture. Circuit
QED allows for rapid, repeated quantum nondemolition
(QND) superconducting qubit measurement [2,20,21] and also
provides several simple high-fidelity readout mechanisms,
such as using large measurement drive powers [22], and
using either quantum-limited [23] or nonlinear bifurcation
amplifiers [24]. Moreover, circuit QED is an excellent test
bed for implementing quantum feedback control in either the
qubits or the microwave resonator [25–32]. For example, a
recent work [33] verified that measurement-based feedback
using continuous weak measurement of a qubit can reduce
dephasing and remarkably prolong Rabi oscillations. The
method they proposed and verified is based on the quantum
Bayesian formalism. Based on the phase-shift error ηerr, they
define the direct-feedback control law �fb(t) to compensate
the dephasing (Eq. (12) in the supplementary information of
Ref. [33]). Another protocol to stabilize any trajectory of
a single qubit using a stroboscopic digital feedback based
on strong quantum measurement was proposed in [34] and
experimentally verified in [35]. They proposed using two

feedback loops to obtain persistent Rabi oscillations in circuit
QED: The first one is to correct the phase diffusion of the Rabi
oscillations by applying corrective π pulses, and the second
one is used to compensate the deviation in the amplitudes [34].

In our work, we propose an alternative feedback phase-
correction scheme. The method used here is the Lyapunov-
function method. This method is widely used in stability and
control theory. Based on this approach, we analytically derive
a simple and experimentally feasible measurement-based
feedback control law for circuit QED to track and stabilize
Rabi oscillations. Moreover, we prove that, with the help
of this control law, the extracted signal will asymptotically
converge to the reference signal. The main results in our
study are the following. First, in a general sense, the proposed
Lyapunov-function method contributes not only to the Rabi
stabilization, but also applies to several other examples of
physical interest (including, e.g., quantum state preparation
and purification). Second, the Lyapunov feedback method is
valid to track any trajectory and admits a precise convergence
analysis. Third, we studied in detail the single-qubit readout
by measuring the state of the emitted microwave field. We
also discussed the connection between information gain and
dephasing via an effective stochastic master equation for
the qubit degree of freedom. Furthermore, our work might
help realize high-fidelity measurements for both single-qubit
[30,36] and joint measurements of two qubits [37], and better
understand the fundamental limits of quantum state estimation
[38–41].

The paper is organized as follows. The next section contains
a brief discussion of the circuit QED Hamiltonian, the quantum
detection, and the stochastic master equation for the qubit. In
Sec. III, we study the open-loop control of Rabi oscillations.
In Sec. IV, we study the feedback control by the Lyapunov
function method. We summarize our conclusions in Sec. V.

II. CIRCUIT FOR MEASUREMENT
AND FEEDBACK CONTROL

As shown in Fig. 1(a), we consider a superconducting
circuit QED system with a superconducting qubit coupled to
a microwave readout cavity and driven by two external drives:
(i) a readout drive with amplitude εd (t) and frequency ωd near
the cavity resonance frequency ωc, and (ii) a Rabi drive with
amplitude εr (t) and frequency ωr near the frequency of the
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FIG. 1. (Color online) (a) Simplified circuit diagram of mea-
surement and feedback control. A superconducting qubit (brown) is
coupled to a microwave readout detector cavity (blue). The amplified
output is homodyne detected and the quadrature signal (green)
is then extracted from the noise current I (t) by multiplying the
time-delayed Rabi reference. The discrepancy is used to design the
feedback-control law to correct Rabi oscillations (red). (b) Schematic
of the readout drive to build up the photon population of the cavity
and Rabi drive to stabilize the Rabi oscillation.

qubit ωq [24,33,42,43]. The Hamiltonian of the entire system
can be written as

H = h̄ωca
†a + h̄

ωq

2
σz + h̄g(a†σ− + aσ+)

+ h̄[εd (t)e−iωd t a† + εr (t)e−iωr t a† + H.c.], (1)

where a† and a are the creation and annihilation operators
for the microwave readout cavity, σ+ and σ− are the raising
and lowering operators of the superconducting qubit, and g is
the coupling strength between the cavity and the qubit. In the
dispersive regime [44,45], |�| = |ωq − ωc| � g, by applying
the dispersive shift U = exp[g(aσ+ − a†σ−)/�], and moving
to the rotating frames for both the qubit and cavity, Uc =
exp(ia†aωdt), Uq = exp(iσzωr t/2), with the rotating-wave
approximation, the Hamiltonian in Eq. (1) becomes

Heff = h̄�ca
†a + h̄χa†aσz + h̄

ω̃q

2
σz + h̄

�R

2
σx

+ h̄(εd + εr )(a† + a), (2)

where

�c = ωc − ωd, χ = g2/�, �R = 2εr (t)g/�, (3)

and the Lamb-shifted qubit transition frequency

ω̃q = ωq − ωr + χ. (4)

If the cavity state is coherent, and the microwave cavity
decay rate is much larger than the qubit decay rate, κ � γ1

(that allows one to decouple the qubit dynamics from the
resonator adiabatically), the state at time t is given by
|g〉 ⊗ |αg(t)〉 or |e〉 ⊗ |αe(t)〉. Here |αg(e)(t)〉 are coherent
states of the cavity and, from Eq. (2), the field amplitudes

are given by [46]

α̇g(t) = −iεd (t) − i(�c − χ )αg(t) − κ

2
αg(t),

(5)
α̇e(t) = −iεd (t) − i(�c + χ )αe(t) − κ

2
αe(t).

Thus, these coherent states αg(e) act as “pointer states” [9]
for the qubit. Based on homodyne detection, by applying the
transformation

P (t) = |e〉〈e|D[αe(t)] + |g〉〈g|D[αg(t)], (6)

with D[α] = exp(αa† − α∗a) as the displacement operator of
the microwave cavity, the effective stochastic master equation
[46] for the qubit degrees of freedom becomes

dρ̃ = − i

h̄

ω̃ac(t)

2
[σz,ρ̃]dt − i

�R

2
[σx,ρ̃]dt + γ1D[σ−]ρ̃dt

+ γφ + �d (t)

2
D[σz]ρ̃dt + √

κη|β(t)|H[σz]ρ̃dWt .

(7)

The only difference between this control master equation and
the general master equation for circuit QED is the driving term
εr exp(−iωr t)a† + H.c. in Eq. (1). Applying the dispersive
shift U to this term, it becomes εr exp(−iωr t)(a† + gσ+/�) +
H.c. Here, the Rabi drive �R

2 (σ−eiωr t + σ+e−iωr t ) plays an
important role. Based on the Rabi drive Hamiltonian, the
master equation with Rabi drive was derived in Eq. (C7) of
Ref. [46].

In the stochastic master equation (7)

ω̃ac(t) = ω̃q + B(t), (8)

and

β(t) = αe(t) − αg(t) (9)

is the separation between the pointer states αg(t) and αe(t), η

is the measurement efficiency, γφ is the pure dephasing rate,
D[A] is the damping superoperator

D[A]ρ = AρA† − 1
2 (A†Aρ + ρA†A), (10)

and

H[A]ρ̃ = Aρ̃ + ρ̃A† − 〈A + A†〉ρ̃. (11)

Also,

�d (t) = 2χ Im[αg(t)α∗
e (t)] (12)

is the measurement-induced dephasing and

B(t) = 2χ Re[αg(t)α∗
e (t)] (13)

is the ac Stark shift [37,46]. The innovation dWt is a Wiener
process [9] with

E[dWt ] = 0 and E
[
dW 2

t

] = dt. (14)

Due to the qubit decay γ1 and dephasing γφ + �d (t), the
quantum system will eventually lose its coherence.

A coherent drive is turned on for 20 ns to build up the photon
population of the cavity and is then repeated every 100 ns [see
Fig. 1(b)]. The cavity pull χ/2π represents the dispersive
coupling strength between the cavity photon number and the
qubit [46,47]. We choose a cavity pull χ/2π = 5 MHz, and
cavity decay rate κ/2π = 20 MHz. A homodyne detection
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of the readout cavity field, with the help of the distance β(t)
between the states |αe(t)〉 and |αg(t)〉, can then be used to
distinguish the coherent states and thus readout the state of
the qubit. By applying the P transformation to the in-phase
quadrature amplitude

Iφ = 1
2 (ae−iφ + a†eiφ), (15)

with φ the phase of the local oscillation, the homodyne
measurement record from the microwave cavity becomes

I (t) = √
κη|β(t)|〈σz(t)〉 + ξ (t) = s(t) + ξ (t), (16)

where the qubit uncorrelated term
√

κη|μ(t)| sin[φ + arg(μ)],
with μ = αg + αe, has been omitted. We have set the homo-
dyne phase φ to arg β, which corresponds to detecting the
quadrature with the greatest separation of the pointer states.
Here ξ (t) = dWt/dt is a Gaussian white noise, representing
the shot noise, with spectral density Pξ (ω) = 1. We now face
the challenge of detecting a signal s(t) which is smaller than the
noise ξ (t), because the signal-to-noise ratio S/N < 1 (S/N is
defined in the Appendix ). The overall objective now is to make
the system behave in a desired way by manipulating the input
drive based on the measurement output. This feedback strategy
could extend the number of Rabi oscillations. To achieve this,
the following steps are required: (a) detect the signal s(t)
from the noise current I (t); (b) reconstruct x1(t) = Tr [σxρ̃(t)],
x2(t) = Tr [σyρ̃(t)], and x3(t) = Tr [σzρ̃(t)], which are the
three components of the Bloch vector for the ensemble qubit
state based on the detected signal [48]; (c) feedback the error
signal between the reconstructed state and the desired state,
to design the feedback control law (the Rabi drive), thus
minimizing the error.

III. OPEN-LOOP CONTROL: NO FEEDBACK

To see how the feedback Rabi drive will work, we first
consider the open-loop control. Open loop [49,50] means that
we do not use feedback to determine if the output has achieved
the desired goal. One can simply drive the microwave cavity
with amplitude

εr = 1

2g
�R� (17)

to obtain Rabi oscillations with frequency �R; but cannot
correct any errors. To illustrate this, we have numerically
simulated the microwave cavity field equation (5) and the
superconducting qubit stochastic master equation (7) with
the open-loop drive (17) to obtain the expected frequency
�R/2π = 1 MHz, for four different measurement drives.

In Fig. 2, we numerically analyze the Rabi oscillations
by the open-loop control with frequency �R/2π = 1 MHz.
We set the initial state of the qubit as the excited state.
In these results we set the measurement efficiency η = 1,
the qubit decay γ1/2π = 0.05 MHz, and the pure dephasing
rate γφ/2π = 0.1 MHz. The Rabi-drive amplitude εr and the
frequency ωr = ωq + χ , should be chosen carefully to make
the Lamb-shifted qubit transition frequency equal zero.

When acquiring information from the measurement, it of
course induces significant backaction on the system. From
Fig. 2(a), we see that for the small measurement-drive
amplitude (εd/2π = 1 MHz, red solid curve), the qubit decays
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FIG. 2. (Color online) Evolution of the conditional state [here
we only plot 〈σz(t)〉] by continuous weak measurements of the
open-loop controlled microwave readout cavity with Rabi frequency
�R/2π = 1 MHz. The Rabi-drive amplitude εr = �R�/2g and
the frequency ωr = ωq + χ , which makes the Lamb-shifted qubit
transition frequency equals zero. The qubit is initially in the excited
state and the readout drive amplitudes are εd/2π = 1 MHz (a), 4 MHz
(b), 8 MHz (c), and 20 MHz (d), respectively.

and pure dephasing dominates the evolution. Thus, in this
case, the measurement only causes small amplitude noise on
the Rabi oscillation. However, for the larger drive amplitudes
εd/2π = 4 MHz [Fig. 2(b)] and 8 MHz [Fig. 2(c)] the
measurements induce backaction on the qubit.

We now set εd/2π = 20 MHz to gain more insight into
what is happening during the evolution of the Rabi oscillation
with strong measurement-drive amplitude. As shown in Fig. 2,
〈σz〉 exhibits decaying oscillations, in Figs. 2(a)–2(c), when the
drive is weak (εd/2π = 1, 4, and 8 MHz) and discontinuous
jumps between two levels, in Fig. 2(d), when the driving is
strong (εd/2π = 20 MHz). Clearly, in the strong drive, the
qubit will remain fixed at either z = +1 or −1. This is the
Zeno effect. Thus, Fig. 2 shows that open-loop control cannot
compensate for disturbances in the system.

IV. FEEDBACK CONTROL

Based on the above measurement procedures, we now
propose a simple feedback-control law allowing one to
compensate the dephasing of the superconducting qubit,
the measurement-induced backaction, and to maintain the
coherence of the Rabi oscillations. The schematics of such
feedback control is shown in Fig. 1. The amplified and filtered
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signal s(t) = 〈σz(t)〉 is compared with the Rabi reference
signal s∗(t) = cos �0

Rt , and the difference

ε(t) = s(t) − s∗(t) (18)

is used to generate the feedback signal u(t) that drives the
microwave cavity in order to reduce the difference with the
desired Rabi oscillations: ε(t) → 0 (frequency tracking [51]).
The difference ε(t) evolves as

ε̇(t) = ṡ(t) − ṡ∗(t)

= E

[
d

dt
〈σz(t)〉

]
− ṡ∗(t)

= �R(t)〈σy(t)〉 − γ1[1 + 〈σz(t)〉] + �0
R sin �0

Rt.

(19)

Thus, we design the feedback control law (the Rabi-drive
amplitude):

u(t) = εr (t)

= − �

2g
〈σy(t)〉−1

[
K1 sgn ε(t) + K2ε(t)

− γ1[1 + 〈σz(t)〉] + �0
R sin �0

Rt
]
, (20)

where K1,K2 > 0. Using the feedback-control law (20) in
Eq. (19), we have

ε̇(t) = −K1 sgn ε(t) − K2ε(t). (21)

Clearly, if ε(t) > 0, then ε̇(t) < 0; and if ε(t) < 0, then
ε̇(t) > 0.

The Lyapunov function method [52–57] is employed to
prove the stability of an ordinary differential equation and
widely used in stability and control theory. Here we can choose
a simple Lyapunov function

ν(t) = 1
2ε2(t). (22)

Obviously,

ν(t) > 0 and ν̇(t) = ε̇(t)ε(t) < 0. (23)

Then, the Lyapunov theorem tells us that every trajectory of
Eq. (18) converges to zero:

lim
t→∞ |s(t) − s∗(t)| → 0 as t → ∞, (24)

which means the system is globally asymptotically stable.
Now, the only problem is to choose suitable values of K1

and K2. From the feedback control law in Eq. (20), we find
that when s(t) is far from s∗(t), a large K2 is needed to make
s(t) quickly converge to s∗(t). If s(t) is quite close to s∗(t),
sgn ε(t) dominates the evolution, thus a small K1 is needed to
reduce the error ε(t). Note that the feedback control law (20)
corresponds to the amplitude of the Rabi drive. In practice,
u(t) must be finite and, thus, 〈σy〉 must be nonzero. When
〈σy〉 = 0, a maximum cutoff on u(t) must be imposed. In the
simulation, the function u(t) in Eq. (20) is ∼106. At the nine
points where 〈σy〉 = 0, we impose a cutoff of the amplitude
|〈σy〉| = 2 × 107. We further compared this to a much larger
cut-off value |〈σy〉| = 108, and we found that it made no
difference to our results (Fig. 3).

We have simulated the feedback loop designed above to
maintain Rabi oscillations with frequency �0

R/2π = 2.5 MHz.
The measurement is set in the weak-driving regime, when

0 5 10
−1

0

1

t  (μs)

<σ
z
>

0 1 2 3 4 5
0

0.1

0.3

0.5

Frequency  (MHz)

P
ow

er
 s

pe
ct

ru
m

(a) (b)

FIG. 3. (Color online) (a) Feedback-controlled ensemble-
averaged (over 1,000 realizations) Rabi oscillations, which persist
for much longer time than those with open-loop control. The Rabi
frequency �0

R/2π = 2.5 MHz and the read-out drive amplitude
is εd/2π = 1 MHz. (b) Power spectral density for the averaged
measurement of feedback-controlled Rabi oscillations from (a) (red
curve); the blue curve corresponds to the open-loop case with the
same parameters of (a).

the readout drive amplitude is εd/2π = 1 MHz, where the
measurement-induced backaction �d (t) and B(t) are small.
The control parameters used here are K1 = 5 × 106 and
K2 = 108. The other parameters are the same as in the case
of open-loop control. Figure 3(a) shows typical realizations of
the feedback-controlled ensemble-averaged Rabi oscillations.
Clearly, the feedback control can quickly track the reference
Rabi signal and ideally fight against dephasing and the
measurement-induced backaction. From Fig. 3 we can see
that the feedback-controlled Rabi oscillations persist for much
longer time than those with open-loop control. Finally, in
Fig. 3(b), we compare the power spectral density of the
averaged measurement record in feedback-controlled Rabi
oscillations (red curve) with the corresponding open-loop
control (blue curve). Both of them are centered at 2.5 MHz.
However, the feedback-controlled spectrum has a sharp
peak at the Rabi reference frequency, while the open-loop
controlled spectrum has a broad distribution. Clearly, for
stabilizing the Rabi oscillations in circuit QED, the proposed
feedback control has more advantages than the open-loop
control.

V. CONCLUSION

In conclusion, we have proposed a feedback phase-
correction scheme based on the Lyapunov-function method
to stabilize the Rabi oscillations in a superconducting qubit
which is coupled to a microwave readout cavity. Based on this
approach, we analytically derived a simple and experimentally
feasible measurement-based feedback control law for circuit
QED to track and stabilize Rabi oscillations. Moreover, with
the help of this control law, we proved that the extracted
signal will asymptotically converge to the reference signal.
Thus, we can precisely convert the amplitude of the resonator
microwave drive to the frequency of the induced Rabi oscilla-
tions, which can be understood as an amplitude-to-frequency
converter.
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To use the Lyapunov feedback control [52–58] one needs to
construct an artificial closed-loop controller first, simulate it,
and then obtain the open-loop controller by the simulation
results. During this process, a suitably chosen Lyapunov
function is monotonically decreasing along every trajectory.
A number of Lyapunov feedback-control designs have been
proposed and numerous results established (including, e.g.,
quantum state preparation [55], quantum decoherence control
[56], cooling of a mechanical oscillator [57], and quantum state
feedback stabilization [58]). Mathematically, if the desired
final state is |ψ〉t , by using the Lyapunov feedback control, one
can choose the Lyapunov function ν(t) = 1

2 (1 − |〈ψt |ψ〉|2)
and construct the control law to guarantee that d

dt
ν(t) � 0.

Reference [55] demonstrated that the Lyapunov feedback
control can make the quantum system converge from any initial
state to the target state. Recently, optimal Lyapunov feedback
control was further proposed to shorten the time required to
reach the target state [57].
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APPENDIX: QUADRATURE SIGNAL EXTRACTED
FROM THE NOISE

To detect the signal s(t) from the noise current I (t) one
needs to design the impulse response h(t) of the filter. The

output of the filter can be expressed as

y(t) =
∫ ∞

−∞
h(t − τ )I (τ )dτ

=
∫ ∞

−∞
h(t − τ )s(τ )dτ +

∫ ∞

−∞
h(t − τ )ξ (τ )dτ

≡ s0(t) + ξ0(t).

The signal-to-noise ratio (SNR) at t = T0 is
(

S

N

)2

= s2
0 (T0)

E
{
ξ 2

0 (T0)
} =

∣∣∫ ∞
−∞ h(T0 − τ )s(τ )dτ

∣∣2

E
[ ∫ ∞

−∞ h(T0 − τ )ξ (τ )dτ
]2

=
∣∣ 1

2π

∫ ∞
−∞ H (ω)S(ω)eiωT0dω

∣∣2

1
2π

∫ ∞
−∞ |H (ω)|2Pξ (ω)dω

� 1

2π

∫ ∞

−∞

|S(ω)|2
Pξ (ω)

dω

= 1

2π

∫ ∞

−∞
|S(ω)|2dω,

where S(ω) = ∫ ∞
−∞ s(t)e−iωtdt and H (ω) = ∫ ∞

−∞ h(t)e−iωtdt

are the frequency spectrum of the signal and the transfer
function of the filter, respectively. In the above deriva-
tion, Parseval’s theorem and the Cauchy-Schwartz inequality
|∫ ∞

−∞ f (x)g(x)dx|2 � [
∫ ∞
−∞ |f (x)|2dx][

∫ ∞
−∞ |g(x)|2dx] were

used. Here, the equality holds if and only if f (x) = g(x),
which implies that the maximum SNR can be obtained if and
only if

H (ω) = S(−ω) exp(−iωT0).

The best impulse response of the filter is

h(t) =
∫ ∞

−∞
S(ω) exp[−iω(T0 − t)]dω = s(T0 − t).

Thus the green part in Fig. 1 filters the signal by multiplying
the time-delayed Rabi reference.
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