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Experimental demonstration of quantum walks with initial
superposition states
Qi-Ping Su1, Yu Zhang1, Li Yu1, Jia-Qi Zhou1, Jin-Shuang Jin1, Xiao-Qiang Xu1, Shao-Jie Xiong1,2, QingJun Xu1, Zhe Sun1, Kefei Chen3,
Franco Nori 4,5 and Chui-Ping Yang 1

The preparation of initial superposition states of discrete-time quantum walks (DTQWs) is necessary for the study and applications
of DTQWs. Based on an encoding method, here, we propose a DTQW protocol in linear optics, which enables the preparation of
arbitrary initial superposition states of the walker and the coin and enables to obtain the states of the DTQW in addition to the
probability distribution of the walker. With this protocol, we experimentally demonstrate the DTQW in the polarization space with
both the walker and the coin initially in superposition states, by using only passive linear-optical elements. The effects of the
walker’s different initial superposition states on the spread speed of the DTQW and on the entanglement between the coin and the
walker are also experimentally investigated, which have not been reported before. When the walker starts with superposition
states, we show that the properties of DTQWs are very different from those of DTQWs starting with a single position. Our findings
reveal different properties of DTQWs and pave an avenue to study DTQWs with arbitrary initial states. Moreover, this encoding
method enables one to encode an arbitrary high-dimensional quantum state, using a single physical qubit, and may be adopted to
implement other quantum information tasks.
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INTRODUCTION
Quantum walks (QWs)1 are extensions of the classical random
walk and have wide applications in quantum algorithms,2–4

quantum simulations,5–10 quantum computation,11–13 and so
on.14,15 In standard one-dimensional (1D) discrete-time quantum
walks (DTQWs),16,17 the walker’s position can be denoted as |x〉
(x is an integer) and the coin can be described with the basis
states |0〉c and |1〉c. The evolutions of the walker and the coin are
usually characterized by a time-independent unitary operator U=
TSc(ψ). In each step, the coin is tossed by

ScðψÞ ¼
cosψ �sinψ

sinψ cosψ

� �

with ψ∈ (0°, 90°), and the walker is shifted by
T ¼ P

x jx þ 1ihxj � j1ich1j þ
P

x jx � 1ihxj � j0ich0j. In general,
the result of the DTQW with a finite number of steps is determined
by the initial states of the coin and the walker, as well as the
operator U. The systematic investigation of DTQW properties and
the effect of the initial states on DTQW is important and necessary
for applications of DTQWs.
It is worth noting that DTQW with the walker initially in a

superposition state has rarely been demonstrated in experi-
ments,18 though there were several theoretical works.19–25 DTQWs
have been experimentally realized in several systems, such as
linear optics,4–6,26–28 ion traps,29,30 cavity quantum electrody-
namics,31 and neutral atom traps.32 In most DTQW experiments,
the walker starts from the original position |0〉 and it is difficult to
prepare an arbitrary initial quantum superposition state of the

walker. Moreover, initial superposition states are usually required
for applications of DTQWs. For example, an initial uniform
superposition state of the walker’s position is required in the
Grover walk.2 DTQWs with initial superposition states of the walker
are quite different from the standard DTQW (i.e., the walker starts
from a single position |x〉), because the final state of the former is a
coherent superposition of the final states of the standard DTQW
starting from different single positions and thus contains more
quantum interference.
Note that the effects of the coin’s initial state on DTQW have

been well studied,16,17,26–28,33 but the effects of the walker’s initial
superposition states on DTQW have rarely been investigated
before in experiments. In previous linear-optical DTQW imple-
mentations,34–36 the coin was always encoded in the two-
dimensional polarization space and the position of the walker
must be encoded in high-dimensional spaces. In ref. 34 the coin
was encoded using the polarization state and the walker’s
positions were encoded using the paths of the photons, in which
an additional calcite beam displacer was needed in each step to
perform the conditional shift of the walker, and DTQWs with up to
six steps were measured in experiments. In ref. 18 the coin was
encoded using the polarization state and the walker’s positions
were encoded using the orbital angular momentum of light, in
which the whole process develops in a single light beam and
optical resources scaling linearly with the number of steps are
required. In ref. 35 the coin was also encoded using the
polarization state, and the walker’s positions were encoded using
the temporal information of single photons, in which the coin
operator was adjustable and five-step DTQWs were studied
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experimentally. In linear optics, the preparation of arbitrary initial
superposition states of the coin is not difficult, because it is easy to
obtain arbitrary polarization states using half-wave plates (HWPs)
and quarter-wave plates (QWPs). Each DTQW implementation
scheme has advantages and limitations, but the preparation of
arbitrary initial superposition states of the walker is difficult in
most DTQW schemes.
To our knowledge, how to encode the walker’s position using

the polarization state has not been reported in both theory and
experiment. It is difficult to encode a high-dimensional state using
the two-dimensional state. Moreover, the higher the dimension of
a quantum state is, it becomes more complex to measure the state
or the corresponding density matrix. In DTQW experiments, the
measured quantity is always the probability distribution of the
walker. In optical experiments, the probability distribution of each
position is measured one by one, i.e., a multi-step DTQW should
be performed and measured many times, unless all the walker’s
positions can be separated and measured simultaneously, which is
challenging in most experiments. If the walker’s position can be
encoded using the polarization state, arbitrary superposition
states of the walker can be easily prepared and measured in
linear-optical experiments.
In this work, we propose an encoding method to encode and

read out high-dimensional states using only a 2D physical qubit.
With this method, we report a DTQW protocol with the walker’s
position encoded in the polarization space of single photons. The
main advantages of this protocol are as follows: (i) the DTQW
protocol together with the design of a linear-optical setup, in
which the coin is encoded by two paths, allows us to arbitrarily set
the input state of the walker and coin; (ii) the whole state of the
multi-step DTQW can be obtained, rather than the probability
distribution, which can help to study deep properties of DTQWs
and extend the possible applications of DTQWs; (iii) the devices
needed are simple and common, optical resources do not increase
when increasing DTQW steps; (iv) the mature technique for
operations of polarization of photons makes the implementation
of this protocol easy and efficient. Then we demonstrate the
experimental implementation of DTQW with the walker initially in
superposition states. In this case, the effect of the walker’s
different initial superposition states on the spread speed of the
walker and on the entanglement between the coin and the walker
(i.e., the entropy of the reduced density matrix of the coin) are also
studied experimentally, which has not been studied in experi-
ments before.

RESULTS
DTQW protocol in linear optics
To implement DTQWs in polarization space, we propose an
encoding method in the “Methods” section. Here, we make the
specific choice of encoding the walker’s positions using non-
orthogonal states jkip ¼ cosθk jHi þ eiϕk sinθk jVi (with integer k)
in the polarization space of single photons, by setting θk= kΔθ
and ϕk= 0. The coin is encoded by two paths |0〉 and |1〉 of the
single photons. As shown in Fig. 1a, the operator for the
conditional translation of |k〉p should be expressed as

Tp ¼
X
k

jk þ 1iphkj � j1ih1j þ
X
k

jk � 1iphkj � j0ih0j:

In this case, the coin operator Sc can be implemented by a cos2

ψ/sin2 ψ beam splitter (BS) and the operator Tp can be
implemented via two HWPs oriented at 0° and two HWPs oriented
at Δθ/2 (step forward) and −Δθ/2 (step back), as shown in Fig. 1b.
Note that each of the HWPs oriented at 0° can be replaced by a
mirror.

In each step of a DTQW in polarization space, the state of the
system can be expressed as |Ψ0〉p|0〉+ |Ψ1〉p|1〉, with

jΨ0ip ¼ 1
Np

Pn
k¼�n

ak jkip ¼ 1
Na

Pn
k¼�n

a0k jkip;

jΨ1ip ¼ 1
Np

Pn
k¼�n

bk jkip ¼ 1
Nb

Pn
k¼�n

b0k jkip;
(1)

where a0k ¼ ak=Ca , b0k ¼ bk=Cb, Ca ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPjakj2

q
, Cb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPjbk j2
q

,
Na= Np/Ca, Nb= Np/Cb, and Np is the normalization coefficient,
which guarantees

P
k jakj2 þ

P
k jbk j2 ¼ 1. If one derives all

values of ak and bk, the probability distribution of the DTQW
can be obtained as jak j2 þ jb2k j.
The values of ak (bk) can be obtained by using ak ¼ Caa0k

(bk ¼ Cbb0k ). Note that |Ψ0〉p (|Ψ1〉p) has the same form as that of

|Ψ〉q in Eq. (4) and the condition
P

k ja0k j2 ¼ 1
P

k jb0k j2 ¼ 1
� �

is

satisfied. By using the encoding method introduced in the
“Methods” section, a0k and b0k can be obtained one at a time by
implementing the DTQW with different angles Δθ and measuring
|Ψ0〉p and |Ψ1〉p in path |0〉 and path |1〉, respectively. Next, Ca and
Cb can be obtained by solving two equations

C2
a þ C2

b ¼ 1 and
C2
a

C2
b

�
P

k a
0
kcosðkθÞ

�� ��2P
k b

0
ksinðkθÞ

�� ��2 ¼ r; (2)

where r ¼ jPk akcosðkθÞj2=j
P

k bksinðkθÞj2 is the ratio between
the number of photons counted in path |0〉 and those counted in
path |1〉 at the same time period for an arbitrary θ ≠ 0. With this
protocol, DTQWs with the walker initially in an arbitrary super-
position state can be easily implemented and the entire DTQW
state can be obtained rather than just the probability distribution.
It seems that DTQWs must be performed for at least N times, to
obtain an N-dimensional state of the walker. Actually, in other
DTQW experiments, the probability of each walker position is
measured one by one, i.e., the DTQW also needs to be performed
and measured for at least N times to obtain the probability
distribution of N positions of the walker, unless the walker state is
encoded by the paths of photons and multiple detectors are used
simultaneously.

Experimental demonstrations
A feasible linear-optical setup for a DTQW in the photon
polarization space is shown in Fig. 2. A pair of photons are
generated by the type-I spontaneous parametric downconversion
in a 3-mm-thick nonlinear beta-barium borate (BBO) crystal

Fig. 1 a Encoding of the walker’s position and the implementation
of conditional translation Tp in the polarization space. |H〉 (|V〉) is the
horizontal (vertical) polarization state. b Optical realization of the
time-independent evolution operator U= TpSc for a DTQW, in which
the coin is tossed by the beam splitter (BS) and the conditional
transition of the walker’s positions |k〉p is implemented by two half-
wave plates (HWPs) oriented at Δθ/2 (for the coin state |0〉) and
−Δθ/2 (for the coin state |1〉) and two 0° HWPs
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pumped by a 100-mW diode laser (centered at 405.8 nm). One
photon is directly detected by detector D0 as the trigger and the
other photon is adopted to make a DTQW. Then an arbitrary coin
state can be initialized by a combination of one polarizing beam
splitter (PBS), two QWPs, and one HWP. An arbitrary state of the
walker’s position is represented as a polarization state, which can
be easily initialized by using two HWPs on the two paths of the
DTQW photon after the PBS.
In Fig. 3, we show the results of the 1D Hadamard (i.e., setting ψ=

π/4) DTQW with an initial state of (0.8|−1〉p+ 0.6|1〉p)|0〉. Besides the

probability distribution of the walker’s position |ak|
2+ |bk|

2, the
coefficients ak and bk of the states |Ψ0〉p and |Ψ1〉p for a two-step
DTQW, a four-step DTQW, and a six-step DTQW are obtained and
compared with the theoretical results. Note that the error bars
only indicate statistical uncertainty, which are obtained by
numerical simulations. Our results indicate that the protocol
introduced here is realizable in experiments, and DTQW with small
errors can be implemented by using the setup shown in Fig. 2.
Since the walker is initially in a superposition state of positions

|−1〉p and |1〉p, the outermost positions of the walker after an n-
step DTQW are denoted by |− n− 1〉p and |n+ 1〉p. To simplify the
calculation of ak and bk, we have used an+1= 0 and b−n−1= 0 for
this type of DTQW. In this case, only n different Δθ are needed to
obtain ak and bk for an n-step DTQW.
The initial state of the walker’s position can be easily prepared

by rotating the angles of the HWPs in our experiment. We have
also experimentally studied the DTQW with the initial state
ð0:6j � 2ip þ j0ip þ 0:8j2ipÞj0i=

ffiffiffi
2

p
. The results of the recon-

structed ak, bk, and |ak|
2+ |bk|

2 after a six-step DTQW are shown
in Fig. 4, which also fit well with the theoretical results.
By means of this DTQW experiment, we also study the relation

between the spread speed s and the initial state of the walker’s
position. The spread speed s is defined as s(n)= [σ(n)− σ(0)]/n,
where σ(n) is the variance of the position for an n-step DTQW. The
results for a four-step DTQW are obtained and plotted in Fig. 5a,
in which the initial state is set as

jΦ0i ¼ αj � 1ip þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p
j1ip

� �
j0i þ ij1ið Þ= ffiffiffi

2
p

, with α∈ (−1,

1). It is shown that different initial states of the walker’s position
will lead to different spread speeds of DTQW. Especially, for the
DTQWs with α and −α (α ≠ 0), they have different σ(n) and s(n)
(n > 0) though starting with the same σ(0), which is quite different
from the classical random walk as shown in Fig. 5a, because of the
quantum interference. In Fig. 5a, we also give the simulated
relation of s ~ α for a DTQW with n= 16 and n→∞. It is shown
that the properties of the DTQW starting from superposition states
of the walker are very different from that starting from a single

Fig. 2 Schematic of the experimental setup for a quantum walk in
the polarization space, in which D0 is a single-photon detector and
D1 (D2) represents the standard polarization analysis detector. A pair
of photons are generated in the BBO crystal. One photon is detected
directly by D0 as the trigger and another photon is adopted to make
the DTQW. The initial states of the coin and the walker are prepared
in the light-yellow block. The DTQW is realized with two optical
loops. The photons experience different steps of the DTQW and can
be distinguished by their arrival times at D1 or D2 after a trigger
event. PBS polarizing beam splitter

Fig. 3 Theoretical and experimental amplitudes ak, bk, and the probability |ak|
2+ |bk|

2 of the 1D Hadamard DTQW after two, four, and six steps,
with an initial state of (0.8|−1〉p+ 0.6|1〉p)|0〉. The green (blue) bars represent the experimental (theoretical) results. The red error bars
represent statistical errors
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position of the walker. For example, the parameter s for α ≠ 0
approaches a constant more slowly than that for α= 0, as the
number of DTQW steps increases.
A significant advantage of our DTQW protocol is that the whole

final state of the coin and the walker’s position can be obtained,
rather than the position distributions only in other DTQW
experimental schemes. In this case, we can investigate the
entanglement between the coin and the walker in experiments
by calculating the entropy of the reduced density matrix of the
coin. The entropy is defined as E=−Tr(ρclog2ρc), where ρc=
Trx(ρcx) is obtained by tracing out the walker’s position.
The E ~ α relation of DTQW with n= 4 from the experiment and

of a DTQW with n= 4, n= 16, and n→∞ from the theory is
plotted in Fig. 5b. The properties of entanglement (entropy) of a
DTQW with nonlocal initial states have been studied theoretically
in refs. 19,25 As the number of DTQW steps increases, the entropy E
with the initial state |Φ0〉 will start from 0, then oscillate, and
approach to the asymptotic entanglement19,37

E ¼ �ðr1 log2 r1 þ r2 log2 r2Þ;with r1;2 ¼
1
2
±

ffiffiffi
2

p � 1
2

� 3
ffiffiffi
2

p
� 4

� �
α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p� 	
:

As shown in Fig. 5b, the E ~ α relation for n= 4, n= 16, and
n→∞ have very similar forms, so most properties of the
entanglement can be obtained by a DTQW with a low step, such
as a DTQW with four steps. It indicates that different initial states
of the walker will lead to different behaviors of entanglement E.
The maximum (minimum) E is obtained for α � � ffiffiffi

2
p

=2
(α � ffiffiffi

2
p

=2). This also indicates that the rate at which the
asymptotic value for entanglement is approached is faster for
higher entanglement, which fits with the result in ref. 19 For a local
initial state (i.e., α= 0, ±1), E with n= 16 is close to the asymptotic
E, while E with n= 4 is not. For the nonlocal initial state with
α ¼ � ffiffiffi

2
p

=2 (α ¼ ffiffiffi
2

p
=2), E with both n= 16 and n= 4 are (are not)

close to the asymptotic E. Comparing Fig. 5a with Fig. 5b, it is clear
that in general, a larger spread speed of the DTQW corresponds to
a larger entanglement between the coin and the walker.

DISCUSSION
To implement DTQWs for larger steps, the errors of the
experiment should be analyzed and improved. The errors are
related to the following factors:

(i) The number of coincidence counts: Because of the leakage of
photons at BS 1, the number of coincidence counts will
decrease rapidly with increasing the DTQW steps. The ratio
of reflection to transmission of all BSs adopted in our
experiment is 50:50. The loss of detected photons after
every two steps of DTQW is about 70%. It is an advantage of
two optical loops adopted in the setup: photons are leaked
and detected after every two steps rather than after
each step.The errors in the experiment can be reduced by
increasing the number of coincident counts. One method is
to replace the 50:50 coupler (i.e., BS 1) by a coupler with
better ratios. The other method is to increase the number of
input photons. This can be achieved in several ways. For
example, the BBO can be replaced by a high-efficiency
periodically poled KTiOPO4 (PPKTP), the power of the laser
can be improved, or weak laser pulses can be directly used
as the input photons of DTQW.

(ii) The quality of the interference in the optical loops: QWs are
different from classical random walks because of quantum
interference. There are two optical loops in the setup. To
guarantee good interference of DTQW, anticlockwise and
clockwise optical paths must be adjusted to be the same in
each loop, and two loops must be adjusted to match each
other. In general, the quality of the interference will become
worse when increasing the walk steps. An important factor
leading to interference degradation is the imperfections of
devices, such as the reflection dependence of the polariza-
tion and nonplanar optical surfaces.34,35

To show the scalability of this DTQW protocol and the setup, we
estimate the maximum number of steps that are in principle

Fig. 4 Theoretical and experimental amplitudes ak, bk and the probability |ak|
2+ |bk|

2 for a six-step DTQW with an initial state of
ð0:6j � 2ip þ j0ip þ 0:8j2ipÞj0i=

ffiffiffi
2

p
. The green (blue) bars show the experimental (theoretical) results. The red error bars represent statistical errors

Fig. 5 a Relation between the spread speed s and the initial state of the walker’s position for DTQWs with the number of steps n= 4 (red), n= 16
(blue), and n→∞ (green). The thin solid curves are from the corresponding classical random walks for 4, 16, and 50 steps, which have a
symmetry on the two sides of α= 0. b Relation between the entropy E and the initial state of the walker’s position for DTQWs with the number of
steps n= 4 (red), n= 16 (blue), and n→∞ (green). The initial state of the DTQW is assumed to be ðαj � 1ip þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p
j1ipÞðj0i þ ij1iÞ= ffiffiffi

2
p

. The
curves are from our theoretical calculations. The red dots show the experimental data and the red error bars represent statistical errors
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achievable. We assume the use of perfect devices (including
detectors). In addition, we assume that the loss of detected
photons after every two steps of a DTQW is 70%. By replacing the
50:50 coupler with a 99:1 coupler and replacing the input single
photons with laser pulses of 1.4-W power (5 MHz), there should be
~10,000 photons detected in 1 second after 150 steps, provided
that the signal-to-noise ratio can be improved by adding an active
switch to couple the photons out of the loops.
In summary, we have experimentally demonstrated a 1D DTQW

with the walker moving in the polarization space of single
photons. This work differs from previous works in that the walker
is initially in a superposition state and the walker’s position is
encoded using the photon polarization state. The ability to
operate with arbitrary initial superposition states of DTQWs and to
implement DTQWs in a low-dimensional space opens an avenue
not only for discovering more properties of DTQWs but also more
DTQW applications. This DTQW protocol is quite general and can
be applied to other quantum systems (e.g., cavity or circuit QED
systems). This work may be extended to realize multi-dimensional
DTQWs, which are of importance for large-scale quantum
computing based on QWs. Moreover, the proposed encoding
method enables one to encode an arbitrary high-dimensional
quantum state, using a single physical qubit, and may be adopted
to implement other quantum information tasks.

METHODS
The encoding method
Suppose there is an n-dimensional state

jΨi ¼
Xn
k¼1

ak jkiwith
Xn
k¼1

jak j2 ¼ 1; (3)

where |k〉 (k= 1, 2, …, n) are orthogonal states. In the following, we
propose a method to encode this state with a two-dimensional qubit and
to read out all ak from the qubit by measurement. The obtained ak can be
used to reconstruct the n-dimensional state |Ψ〉 of Eq. (3).
The state |Ψ〉 can be encoded by using n non-orthogonal states jkiq ¼

cosθk j0i þ eiϕk sinθk j1i (k= 1, 2, …, n) of a qubit, which correspond to n
different points in the Bloch sphere of the qubit. With |k〉 replaced by |k〉q,
the state of the qubit in the encoded state can be expressed as

jΨiq ¼
1
Nq

Xn
k¼1

ak jkiq ¼
1
Nq

ðC0j0i þ C1j1iÞ; (4)

where C0 ¼
Pn

k¼1 akcosθk , C1 ¼
Pn

k¼1 ake
iϕk sinθk , and

Nq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jC0j2 þ jC1j2

q
. Note that the same state |Ψ〉q can be constructed

by performing suitable operations on an initial state of the qubit, which is
just the case considered in the DTQW protocol above.

We now show how to read out ak from |Ψ〉q. The density matrix of the
encoded state |Ψ〉q can be expressed as

ρq ¼
1
N2
q

C�
0C0 C�

1C0
C�
0C1 C�

1C1

� �
; (5)

which can be easily obtained by using tomographic measurement on the
qubit. Then one homogeneous equation of ak can be obtained as

C0 � R � C1 ¼ 0 )
Xn
k¼1

cosθk � R � eiϕk sinθk

 � � ak ¼ 0; (6)

where R= C0/C1 is obtained from the measured ρq as

R ¼ ρq11=ρq21 ¼ ρq12=ρq22: (7)

In this way, (n− 1) homogeneous equations for ak can be obtained by
repeatedly encoding the state |Ψ〉 onto a qubit with (n− 1)

different sets j1ijq; j2ijq; ¼ ; jnijq
n o

(where j= 1, 2, …, n− 1, and

jkijq ¼ cosθjk j0i þ eiϕ
j
k sinθjk j1i), and by measuring the corresponding Rj

one at a time. Then ak (k= 1, …, n) can be solved from the (n− 1)
homogeneous equations

Xn
k¼1

cosθjk � Rj � eiϕj
k sinθjk

� �
� ak ¼ 0 (8)

and the normalization condition
Pn

k¼1 jak j2 ¼ 1. Now the n-dimensional
encoded state is reconstructed. Note that the n-dimensional state is
actually encoded in (n− 1) qubits rather than one qubit, and all
information is reconstructed from the (n− 1) qubits. Of course, one can
adopt only one physical qubit which will be repeatedly used.
To study the generality and scalability of this encoding method, we

calculated the fidelity between random 50-dimensional encoded states
and their reconstructed states from numerical simulations of the encoding
process, in which random errors of measured Rj were assumed to be within
±10% and a specific choice of the non-orthogonal states

jkijq ¼ cosðjkΔθÞj0i þ eikΔϕsinðjkΔθÞj1i (9)

was used (i.e., θjk ¼ jkΔθ and ϕj
k ¼ kΔϕ). The averaged fidelity over 1000

random simulations was obtained and its dependence on Δθ and Δϕ is
plotted in Fig. 6a. The averaged fidelity is larger than 90% in the ~41% area
of Δθ∈ (0, 180°) and Δφ∈ (0, 360°). It is not hard to find suitable θk and ϕk

to implement the encoding method, and high fidelity can be achieved for
encoding large-dimensional states if measurement errors are not very
large.
Moreover, we experimentally demonstrated the encoding and reading

of a 16-dimensional state in a linear optics system. At first, we encode a
uniform state Φ16 ¼ 1

4

P16
k¼1 jki in the two-dimensional polarization space

of single photons by using Δθ= 22° and Δϕ= 12° in Eq. (9). This encoding
can be easily implemented by injecting photons into an adjusted setup
consisting of two QWPs and one HWP, which can be used to construct an
arbitrary one-qubit gate in the polarization space. Then density matrices of
the encoding photons can be measured and the initial uniform state can

Fig. 6 a Numerical simulations for the fidelity of the encoding of 50-dimensional states into qubits. b Experimental results for the
reconstruction of a 16-dimensional state 1
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be reconstructed. The experimental result of the reconstructed state is
shown in Fig. 6b, and a high fidelity of 99.1% is achieved.
The encoding method introduced here is feasible for the present

technology of linear optics and can be easily applied to other quantum
systems. One key advantage for the use of this encoding method is the
simplicity of the setup, because only one physical qubit is needed.

The implementation of a DTQW
With the setup shown in Fig. 2, the steps of a DTQW are as follows:

(i) Preparation of the initial states of the coin and the walker: An arbitrary
coin state can be initialized by a combination of one PBS, two QWPs,
and one HWP. An arbitrary state of the walker’s position is
represented as a polarization state, which can be easily initialized
by using two HWPs on the two paths of the DTQW photon after the
PBS. Note that the lengths of the two paths from the PBS to BS
2 should be the same by adjusting the prism.

(ii) Steps for implementing the DTQW: The DTQW starts as the photon
enters BS 2 for the first time and is implemented in loop 1 and loop
2. In each loop, the anticlockwise and clockwise photon paths are
adjusted to overlap with each other and the loop length is designed
to be ~30 cm. Here, the loop’s interference visibility is measured as
~98.5%. The steps for the DTQW realization are described below:Step
1: As the photon passes through BS 2, the coin state is tossed by the
operator Sc. The photon after BS 2 will rotate anticlockwise (or
clockwise) in loop 2, and the walker achieves a rotation of Δθ (or −Δθ)
in the polarization space via HWP 2, just like that shown in Fig. 1a.Step
2: Then the photon goes through BS 2 a second time and the coin is
tossed once again. After BS 2, one possibility is that the photon will
rotate anticlockwise (or clockwise) in loop 1 and the walker’s state
achieves a rotation of Δθ (or −Δθ) in the polarization space via HWP
1. The photon will enter BS 2 one more time, and the next step of
the DTQW will start. The other possibility is that the photon goes
through BS 1 and then is detected by D1 (D2) to get ak (bk) for a two-
step DTQW.

(iii) Extracting the final state of a 2n-step DTQW: The final state of a 2n-
step DTQW can be obtained by measuring the photons which are
detected after repeating steps 1 and 2 for n times. Because the total
length of loop 1 and loop 2 is about 60 cm, the time gap between
the photon detection after a (2n−2)-step DTQW and the photon
detection after a 2n-step DTQW is ~2 ns. In this case, the time
window of the coincidence detections between D0 and D1 (D2) is set
as 0.49 ns.
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