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Here, we, first, in Sec. I present more details of how to obtain the spin-controlled coherent coupling between separated
mechanical resonators. Second, in Sec. II, we show the detailed implementation of the controlled Hadamard gate, the
phase gate, and the mechanical quantum delayed-choice experiment. Next, in Sec. III, we derive in detail the phonon
occupation of each CNT at finite temperatures. Then, Sec. IV describes the detailed derivation of the fluctuation
noise and the detailed analysis of the requirement of resolving the coherent signal from the environment-induced
fluctuation. Finally, in Sec. V we show the method of the numerical simulation used in this work.

I. Spin-controlled coherent coupling between separated mechanical resonators
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FIG. 1. (Color online) (a) Schematic representation of a mechanical quantum delayed-choice experiment with an NV electronic
spin and two carbon nanotubes (CNTs). The mechanical vibrations of the CNTs, labelled by k = 1, 2, are completely decoupled
or coherently coupled, depending, respectively, on whether or not the intermediate spin is in the spin state |0〉, with the dc
current Ik through the kth CNT, and the distance dk between the spin and the kth CNT. (b) Level structure of the driven NV
spin in the electronic ground state. Here we have assumed that the Zeeman splitting between the spin states |±1〉 is eliminated
by applying an external field.

The effective Hamiltonian Heff in the article describes a spin-mediated CNT-CNT coupling conditioned on the NV
spin state. This is the basic element underlying our proposal. To understand more explicitly the spin-controlled
coupling between the CNTs, in this section we derive in detail the effective Hamiltonian. We consider a hybrid
quantum system consisting of two parallel CNTs and an NV electronic spin (a qutrit), as depicted in Fig. 1(a). Here,
for convenience, illustrations in Figs. 1(b) and 1(c) in the article are reproduced in Figs. 1(b) and 1(a), respectively.
The CNTs, respectively, carry dc currents I1 and I2, both along the +x̂–direction. A spin is placed between them, at
a distance d1 (d2) from the first (second) CNT. According to the Biot-Savart law, the CNTs can, at the position of

the spin, generate a magnetic field ~B
(0)
cnt = B

(0)
cntẑ, where

B
(0)
cnt =

∑
k=1,2

(−1)
k−1 µ0Ik

2πdk
, (1)
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ε̂ (ε = x, y, z) is a unit vector in the ε̂–direction, µ0 is the vacuum permeability, and the subscript “cnt” refers
to the CNTs. When the CNTs vibrate along the ŷ-direction, the magnetic field is parametrically modulated by

their mechanical displacements y1 and y2, and then is reexpressed, up to first order, as ~Bcnt = ~B
(0)
cnt + ~B

(1)
cnt, where

~B
(1)
cnt = B

(1)
cntẑ is a first-order modification, and where B

(1)
cnt =

∑
k=1,2Gkyk, with a magnetic-field gradient,

Gk =
µ0Ik
2πd2

k

. (2)

Note that, here, y1 > 0 (y2 < 0) indicates a decrease in d1 (d2). Therefore, the sign, (−1)
k−1

, in Eq. (1) does not

appear in Eq. (2). Furthermore, an external magnetic field, ~Bext = Bx (t) x̂+Bz ẑ, is applied to the NV spin. We have
assumed, as required below, that Bx (t) is a time-dependent component but Bz is a dc component. The Hamiltonian
governing the NV spin is therefore given by

HNV = ~DS2
z + µBgs

[
B

(0)
cnt +Bz

]
Sz + µBgsBx (t)Sx + µBgsB

(1)
cntSz, (3)

where gs ' 2 is the Landé factor, µB the Bohr magneton, D ' 2π × 2.87 GHz the zero-field splitting, and Sε the

ε–component of the spin operator ~S (ε = x, y, z). In terms of the eigenstates, {|ms〉,ms = 0,±1}, of Sz, the operator
Sε is expanded as

Sx =
1

2

 0
√

2 0√
2 0

√
2

0
√

2 0

 , Sy =
1

2i

 0
√

2 0

−
√

2 0
√

2

0 −
√

2 0

 , and Sz =
1

2

 +1 0 0
0 0 0
0 0 −1

 , (4)

and accordingly, the Hamiltonian HNV is transformed to

HNV =
{
~D + µBgs

[
B

(0)
cnt +Bz

]}
|+ 1〉〈+1|+

{
~D − µBgs

[
B

(0)
cnt +Bz

]}
| − 1〉〈−1|

+
1√
2
µBgsBx (t) (| − 1〉〈0|+ |+ 1〉〈0|+ H.c.)

+ µBgsB
(1)
cnt (|+ 1〉〈+1| − | − 1〉〈−1|) . (5)

We find that the magnetic field along the ẑ–direction causes different Zeeman shifts to be imposed, respectively, on
the spin states | ± 1〉, and also that the magnetic field along the x̂–direction drives the transition between the spin
states |0〉 and| ± 1〉.

The quantum treatment of the mechanical motion demonstrates that the mechanical vibrations of the CNTs can
be modelled by two single-mode harmonic oscillators with a Hamiltonian

Hmv =
∑
k=1,2

~ωkb†kbk, (6)

where ωk is the phonon frequency and bk (b†k) is the phonon annihilation (creation) operator. Here, we have subtracted
the constant zero-point energy ~ωk/2. The mechanical displacement yk is accordingly expressed as

yk = y(k)
zp

(
bk + b†k

)
≡ y(k)

zp qk, (7)

where qk is the canonical phonon position operator, and y
(k)
zp = [~/ (2mkωk)]

1/2
, with mk being the effective mass,

describes the zero-point (zp) motion. Combining Eqs. (5), (6), and (7) gives the full Hamiltonian of the hybrid system,

HF =
∑
k=1,2

~ωkb†kbk +
{
~D + µBgs

[
B

(0)
cnt +Bz

]}
|+ 1〉〈+1|

+
{
~D − µBgs

[
B

(0)
cnt +Bz

]}
| − 1〉〈−1|

+
1√
2
µBgsBx (t) (| − 1〉〈0|+ |+ 1〉〈0|+ H.c.)

+
∑
k=1,2

µBgsGky
(k)
zp (|+ 1〉〈+1| − | − 1〉〈−1|) qk. (8)
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The last line in Eq. (8) describes a magnetic coupling between the spin and the mechanical modes. In order to realize
a tunable detuning between them, Bx (t) is chosen to be Bx (t) = B0 cos (ω0t) with amplitude B0 and frequency
ω0. In a frame rotating at Hrot = ~ω0 (| − 1〉〈−1|+ |+ 1〉〈+1|), the full Hamiltonian can be divided into two parts,
HF = Hlow +Hhigh, where

Hlow =
∑
k=1,2

~ωkb†kbk + ~δ+|+ 1〉〈+1|+ ~δ−| − 1〉〈−1|

+ ~Ω (| − 1〉〈0|+ |+ 1〉〈0|+ H.c.)

+
∑
k=1,2

~gk (|+ 1〉〈+1| − | − 1〉〈−1|) qk, (9)

Hhigh =~Ω [exp (i2ω0t) | − 1〉〈0|+ exp (i2ω0t) |+ 1〉〈0|+ H.c.] , (10)

account for the low- and high-frequency components, respectively. Here, we have defined

~δ± = ~D ± µBgs
[
B

(0)
nt +Bz

]
− ~ω0,

~Ω =
1

2
√

2
µBgsB0,

~gk = µBgsGky
(k)
zp . (11)

Roughly, having δ′± = δ± + 2ω0 � Ω allows one to make the rotating-wave approximation (RWA), and to straight-
forwardly remove Hhigh. However, as demonstrated in Sec. V, the accumulated error increases during the evolution,
causing the dynamics driven by Hlow to deviate largely from that driven by HF . Thus, we are not using the RWA
here. In order to suppress the error accumulation, we need to analyze the effects of Hhigh in the limit δ′± � Ω. In such
a limit, we can employ a time-averaging treatment for the high-frequency component Hhigh [1, 2], and as a result, its
effective behavior is described by the following time-averaged Hamiltonian,

Hhigh =~
(

2Ω2

δ′−
+

Ω2

δ′+

)
| − 1〉〈−1|+ ~

(
Ω2

δ′−
+

2Ω2

δ′+

)
|+ 1〉〈+1|

+ ~
Ω2

2

(
1

δ′−
+

1

δ′+

){
exp

[
i
(
δ− + δ′− − δ+ − δ′+

)
t
]
| − 1〉〈+1|+ H.c.

}
, (12)

where the first line corresponds to the energy shifts of the spin states | ± 1〉, and the second line describes a coherent
coupling between these. Accordingly, the full Hamiltonian HF is approximated to be a time-independent form,

HF ' Hlow +Hhigh. (13)

As seen in Sec. V, the error accumulation is strongly suppressed when Hhigh is included.

Tuning B
(0)
cnt + Bz = 0 yields δ+ = δ− = ∆− and δ′+ = δ′− = ∆+, implying that the spin states | ± 1〉 have

the same Zeeman shift of ∆ = ∆− + 3Ω2/∆+, as shown in Fig. 1(b). Therefore, we can define a bright state,

|B〉 = (|+ 1〉+ | − 1〉) /
√

2, which is dressed by the spin state |0〉, and a dark state, |D〉 = (|+ 1〉 − | − 1〉)
√

2, which
decouples from the spin state |0〉. In terms of the states |B〉 and |D〉, the full Hamiltonian becomes

HF '
∑
k=1,2

~ωkb†kbk + ~∆ (|B〉〈B|+ |D〉〈D|) + ~
√

2Ω (|0〉〈B|+ |B〉〈0|)

+
∑
k=1,2

~gk (|B〉〈D|+ |D〉〈B|) qk + ~
Ω2

∆+
(|B〉〈B| − |D〉〈D|) . (14)

The dressing mechanism allows us to introduce two dressed states,

|Φ−〉 = cos (θ) |0〉 − sin (θ) |B〉, (15)

|Φ+〉 = sin (θ) |0〉+ cos (θ) |B〉, (16)

where tan (2θ) = 2
√

2Ω/∆. Upon substituting them back into the full Hamiltonian in Eq. (14) and then using the
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identity operator I = |D〉〈D|+ |Φ−〉〈Φ−|+ |Φ+〉〈Φ+|, we can straightforwardly obtain

HF '
∑
k=1,2

~ωkb†kbk + ~ω+|Φ+〉〈Φ+|+ ~ωD|D〉〈D|

+
∑
k=1,2

~
[
g

(−)
k |Φ−〉〈D|+ g

(+)
k |D〉〈Φ+|+ H.c.

]
qk

+ ~
Ω2

∆+

[
cos (2θ) |Φ+〉〈Φ+| −

1

2
sin (2θ) (|Φ+〉〈Φ−|+ H.c.)− cos2 (θ) |D〉〈D|

]
. (17)

Here,

ω+ =
√

∆2 + 8Ω2, (18)

ωD =
1

2

(
∆ +

√
∆2 + 8Ω2

)
, (19)

g
(−)
k =− gk sin (θ) , (20)

g
(+)
k =gk cos (θ) . (21)

Under the assumption of ∆ � Ω, we have θ ' 0, such that sin (θ) ' sin (2θ) ' 0, cos (θ) ' cos2 (θ) ' cos (2θ) ' 1,
ω+ ' ∆ + 4Ω2/∆, ωD ' ∆ + 2Ω2/∆, and |Φ+〉 ' |B〉. In this limit, the coupling between |0〉 and |B〉 only causes
an energy splitting, of ' 2Ω2/∆, between the states |B〉 and |D〉, so |B〉 and |D〉 can be used to define a spin qubit.
Correspondingly, the full Hamiltonian is approximated as

H ′F =
∑
k=1,2

~ωkb†kbk +
1

2
~ωqσz +

∑
k=1,2

~gkσxqk, (22)

where ωq = 2Ω2/∆ + 2Ω2/∆+, σz = |B〉〈B| − |D〉〈D|, and σx = σ+ + σ− with σ− = |D〉〈B| and σ+ = σ†−. Modest
parameters [3–9], mk = 1.0 × 10−22 kg, ωk/2π = 2 MHz, dk ' 2 nm, and Ik ' 380 nA, could result in a spin-CNT
coupling of up to gk/2π ' 100 kHz.

Furthermore, from Eq. (22) it is found that the sequential actions of the terms σ+b1 and σ−b
†
2, as well as of the

counter-rotating terms σ−b1 and σ+b
†
2, can transfer a mechanical phonon from the left to the right CNT, and the

reverse process is caused by their Hermitian conjugates. When restricting our discussion to a dispersive regime,

ωq ± ωk � |gk|, (23)

this phonon transfer becomes dominant. Hence, in the dispersive regime the dynamics described by H ′F in Eq. (22)
enables a spin quantum bus for the mechanical phonons and can be used to realize a coherent CNT-CNT coupling.
In order to show more explicitly, we rewrite H ′F in the interaction picture as

H ′F =
∑
k=1,2

~gk
{
σ+bk exp [i (ωq − ωk)] + σ+b

†
k exp [i (ωq + ωk)] + H.c.

}
. (24)

The condition in Eq. (23) justifies to use a time-averaging treatment of the Hamiltonian H ′F [1, 2]. In the time-
averaging treatment, all terms in Eq. (24) are considered as high-frequency components and exhibit time-averaged
behaviors. Based on this, the dynamics of the system can be determined by an effective Hamiltonian

Heff =
2~ωq

ω2
q − ω2

m

 ∑
k=1,2

g2
kb
†
kbk + g1g2

(
b1b
†
2 + b2b

†
1

)⊗ σz. (25)

Here, we have assumed that ωk = ωm. As expected, Eq. (25) shows a coherent spin-mediated CNT-CNT coupling,
corresponding to the standard linear coupler transformation, which can give rise to a direct phonon exchange. Thus
in this case, the spin qubit works as a quantum bus. At the same time, it also shows that the CNT-CNT coupling
can be turned off if the intermediate spin is in the state |0〉. This is because the NV spin in the state |0〉 is decoupled
from the CNTs, and the mechanical phonons can no longer be transferred from one CNT to another. Specifically, if
the spin is in the state |D〉 or |B〉, the CNTs are coupled; however, if the spin is instead in the state |0〉, they are
decoupled. Note that in Eq. (25) ac Stark shifts caused to be imposed on the qubit have been excluded because we
focus only on the quantum states of the CNTs.
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In the last part of this section, we evaluate the direct coupling between the CNTs. For simplicity, we assume that
Ik = I, dk = d, and that the CNTs have the same length L. The attractive force acting on the kth CNT is

~Fk = (−1)
k−1

F ŷ, (26)

where

F =
µ0LI

2

2π (d− y1 + y2)
(27)

is the force size. The work done by the force is given straightforwardly by

W =
µ0LI

2 (y1 − y2)

2π (d− y1 − y2)
. (28)

After applying a perturbation expansion and then a quantization, this direct CNT-CNT coupling is found to be

W =~W (1) (b1 − b2 + H.c.)

+ ~W (2)

[(
b1 + b†1

)2

+
(
b2 + b†2

)2

− 2
(
b1 + b†1

)(
b2 + b†2

)]
, (29)

where

W (1) =
µ0LI

2yzp

2πd~
, (30)

W (2) =
µ0LI

2y2
zp

2πd2~
. (31)

For a modest setup [3–9], m = 1.0× 10−22 kg, ωm = 2π × 2 MHz, L = 10 nm, d = 2 nm, and I = 380 nA, we have

W (1) ' 2π × 20 kHz, (32)

which is much smaller than the mechanical resonance frequency ωm, and also have

W (2) ' 2π × 1 kHz, (33)

which is much smaller than the spin-mediated CNT-CNT coupling, for example, ' 2π × 12 kHz, as shown in the
section below. Therefore, the direct CNT-CNT coupling can be neglected in our setup.

II. Controlled Hadamard gate, phase gate, and mechanical quantum delayed-choice experiment

In order to implement a quantum delayed-choice experiment with macroscopic CNT mechanical resonators, we
need a controlled Hadamard gate and a phase gate to act on the CNT mechanical modes. Below, we demonstrate
how the effective Hamiltonian in Eq. (25) can be used to make all required gates. Let us first consider the controlled
Hadamard gate. Tuning the currents to be Ik = I and, at the same time, the distances to be dk = d results in a
symmetric coupling gk = g. The effective Hamiltonian Heff is accordingly reduced to Heff = Hcnt ⊗ σz, where

Hcnt = ~J

∑
k=1,2

b†kbk + b1b
†
2 + b2b

†
1

 (34)

is a beam-splitter-type interaction, and where

J =
2g2ωq
ω2
q − ω2

m

(35)

is an effective CNT-CNT coupling strength. In our discussion, the NV spin is restricted to a subspace spanned by
{|0〉, |D〉}, where the spin is a control qubit of a Hadamard gate. The spin in the state |D〉 mediates the coherent
coupling between the separated CNTs, and causes them to evolve under the Hamiltonian Hcnt in Eq. (34). According
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to the Heisenberg equation of motion, bk (t) = exp (iHcntt/~) bk exp (−iHcntt/~), the unitary evolution for a time
t = τ0 ≡ π/ (4J) corresponds to a Hadamard-like gate,

b1 (τ0) =
1√
2

(b1 − ib2) , (36)

b2 (τ0) =
1√
2

(b2 − ib1) . (37)

However, when the spin state is |0〉, the two CNTs decouple from each other. In this case, their quantum states
remain unchanged under the unitary evolution, yielding

b1 (t) = b1, (38)

b2 (t) = b2. (39)

We have therefore achieved a spin-controlled Hadamard gate between the CNTs. That is, if the NV spin is in the
state |D〉, then the Hadamard operation is applied to the CNTs, and if the NV spin is in the state |0〉, then the states
of the CNTs are unchanged.

We next consider the phase gate. For the phase gate, we tune the currents to be I1 6= 0 and I2 = 0, such that
g1 = g and g2 = 0, causing the effective Hamiltonian in Eq. (25) to become

Hcnt = ~Jb†1b1σz. (40)

We find from Eq. (40) that there exists a spin-induced shift, J , of the mechanical resonance. This dispersive shift
can, in turn, introduce a dynamical phase, φ (t) = Jt, onto the first CNT. With the spin being in the state |D〉, we
solve the Heisenberg equations of motion for the CNTs, and then obtain a phase gate,

b1 (t) = exp [iφ (t)] b1, (41)

b2 (t) = b2. (42)

In fact, similar to the controlled Hadamard gate discussed above, the phase gate can also be controlled by the spin
according to Eq. (40).

Having achieved all required gates, we now turn to the detailed description of the macroscopic quantum delayed-
choice experiment with CNT resonators. The hybrid system is initially prepared in the state |Ψ〉i ≡ |Ψ (0)〉 =(
b†1 ⊗ I2|vac〉

)
⊗ |D〉, where |vac〉 refers to the phonon vacuum of the CNTs and I2 is the identity operator on the

second CNT. First, we turn on the currents of the CNTs and ensure Ik = I. After a time τ0, a Hadamard operation
is applied to the CNTs and accordingly, |Ψ〉i becomes

|Ψ (τ0)〉 =
1√
2

(
b†1 + ib†2

)
|vac〉|D〉. (43)

Then, we turn off the current of the second CNT for a phase accumulation for a time τ1. As a consequence, the
system further evolves to

|Ψ (τ0 + τ1)〉 =
1√
2

[
exp (iφ) b†1 + ib†2

]
|vac〉|D〉. (44)

While achieving the desired phase φ, we make a spin single-qubit rotation |D〉 → cos (ϕ) |0〉+ sin (ϕ) |D〉, and have

|Ψ (τ0 + τ1)〉 =
1√
2

[
exp (iφ) b†1 + ib†2

]
|vac〉 (cosϕ|0〉+ sinϕ|D〉) . (45)

Here, note that, we have ignored the length of the driving pulse of the spin rotation as being of the order of ns,
and thus assumed that the state of the CNTs remains unchanged. At the end of the driving pulse, we turn on the
current of the second CNT again and hold for another τ0 to perform a Hadamard gate. This gate is in a quantum
superposition of being present and absent. The three operations on the mechanical phonon correspond to the actions,
on a single photon, of the input beam splitter, the phase shifter, and the output beam splitter, respectively, in quantum
delayed-choice experiments with a Mach-Zehnder interferometer. The final state is therefore given by

|Ψ〉f ≡ |Ψ (2τ0 + τ1)〉 = cos (ϕ) |particle〉|0〉+ sin (ϕ) |wave〉|D〉, (46)
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FIG. 2. (Color online) (a) Probability P1 and (b) P2 as a function of the rotation angle ϕ and the relative phase φ. This
represents a continuous transition between a particle-type behavior (ϕ = 0) and a wave-type behavior (ϕ = π/2).

where

|particle〉 =
1√
2

[
exp (iφ) b†1 + ib†2

]
|vac〉, (47)

|wave〉 =
1

2

{
[exp (iφ)− 1] b†1 + i [exp (iφ) + 1] b†2

}
|vac〉, (48)

describe particle and wave behaviors, respectively. This reveals that the CNT mechanical phonon is in a quantum
superposition of both a particle and a wave. The probability of finding a single phonon in the kth CNT is expressed
as

Pk =
1

2
+ (−1)k

1

2
sin2 (ϕ) cos (φ) , (49)

according to Eq. (46). In Fig. 2, we have plotted the probabilities P1 and P2 versus the rotation angle ϕ and the
relative phase φ. In this figure we find that the mechanical phonon shows a morphing behavior between particle
(ϕ = 0) and wave (ϕ = π/2).

We now consider the timing errors of the Hadamard and phase gates. We first consider the Hadamard gate. We
assume that the error of the time required for performing the Hadamard gate is δ0, such that the actual evolution
time for the gate becomes τ ′0 = τ0 + δ0. In order to estimate the effect of this timing error on the gate performance,
we introduce a gate fidelity, defined as

F0 = 〈Ψtarget,0|ρactual,0 (τ ′0) |Ψtarget,0〉, (50)

where |Ψtarget,0〉 is the target state given by the ideal Hadamard gate, and ρactual,0 (τ ′0) is the actual state obtained
by integrating the exact master equation, given by Eq. (122). In Fig. 3, we plot the gate fidelity, F0, versus the

timing error δ0 (red curve). In this figure, the initial state for the Hadamard gate is assumed to be b†1|vac〉|D〉, so that

the target state is |Ψtarget,0〉 = 1√
2

(
b†1 + ib†2

)
|vac〉|D〉. Here, |vac〉 represents the acoustic vacuum state of the CNT

resonators. From this figure, we find that for −0.32τ0 . δ0 . 0.34τ0, the gate fidelity F0 can be kept above 0.9.
For the phase gate, we assume, as above, that the timing error is δ1. Thus, the actual evolution time for the phase

gate is τ ′1 = τ1 + δ1. We also introduce a gate fidelity, defined as

F1 = 〈Ψtarget,1|ρactual,1 (τ ′1) |Ψtarget,1〉, (51)

where |Ψtarget,1〉 is the target state given by the ideal phase gate, and ρactual,1 (τ ′1) is the actual state obtained from
the exact master equation, given in Eq. (122). The gate fidelity F1 is plotted as a function of the timing error δ1

in Fig. (3) (blue curve). There, we assumed that the initial state for the phase gate is 1√
2

(
b†1 + ib†2

)
, and that the

phase accumulated is equal to π. The target state |Ψtarget,1〉 is, therefore, given by 1√
2

(
−b†1 + ib†2

)
. It is seen from

this figure that, as long as −0.15τ1 . δ1 . 0.12τ1, we can obtain the gate fidelity of F1 > 0.9.
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FIG. 3. (Color online) Gate fidelity as a function of the timing error. We have assumed that δ0/τ0 = δ1/τ1 = δ, and that

the initial state is: (i) b†1|vac〉|D〉 for the Hadamard gate, and (ii) 1√
2

(
b†1 + ib†2

)
|vac〉|D〉 for the phase gate that accumulates

a relative phase π. Here, in addition to γs/2π = 200γm/2π = 80 Hz, we have assumed that g/2π = 100 kHz, ωm/2π = 2 MHz,
Ω = 10ωm, and ∆− = 142ωm, resulting in ωq ' 1.5ωm and then J/2π ' 12 kHz. We have also assumed that nth = 100, which
corresponds to the environment temperature of ' 10 mK.

0 /4 /2
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FIG. 4. (Color online) (a) Fidelity F as a function of the rotation angle ϕ. All the results are numerically obtained by
integrating the exact master equation in Eq. (122). Here, in addition to γs/2π = 200γm/2π = 80 Hz, we have assumed that
g/2π = 100 kHz, ωm/2π = 2 MHz, Ω = 10ωm, and ∆− = 142ωm, resulting in ωq ' 1.5ωm and then J/2π ' 12 kHz. We have
also assumed that nth = 100, which corresponds to an environmental temperature of ' 10 mK.

Note that the spin, in a classical mixed state of the form cos2 (ϕ) |0〉〈0| + sin2 (ϕ) |D〉〈D|, would lead to the
same measured statistics in Eq. (49), that is, a local hidden variable model is capable of reproducing the quantum
predictions. This is a loophole [10–13]. However, as discussed in Refs. [14–17], this loophole can be avoided as long
as the second Hadamard operation is ensured to be in a truly quantum superposition of being present and absent. In
our proposal, the second Hadamard operation is conditioned on the spin state. If the spin is in the |0〉 state, then the
Hadamard operation is absent; if the spin is in the |D〉 state, then the Hadamard operation is present; if the spin is
in a quantum superposition of the |0〉 and |D〉 states, then the Hadamard operation is in a quantum superposition of
being present and absent. To confirm such a quantum superposition, in Fig. (4) we numerically calculate the fidelity,
F = f 〈Ψ|ρactual (τT ) |Ψ〉f , between the desired state |Ψ〉f in Eq. (46) and the actual state ρactual (τT ) obtained from

the exact master equation in Eq. (122). From this figure, we find that the fidelity is very close to unity even for the
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finite temperature of T ' 10 mK. Furthermore, in experiments, in order to exclude the classical interpretation and
prove the existence of the coherent wave-particle superposition, the quantum coherence between the states |0〉 and |D〉
should be verified. Experimentally, this coherence can be prepared by a spin single-qubit operation [18–20], and can
be verified by performing quantum state tomography to show all the elements of the density matrix of the spin [20].

III. Phonon occupation at finite temperatures

We begin by considering the total operation time, which is given by τT = 2τ0 + τ1, as discussed in Sec. II. Here,
τ0 = π/ (4J) is the time for the Hadamard gate and τ1 ∈ [0, 2π/J ] is the time for the phase gate. In a realistic
setup, we can assume ωm/2π ' 2 MHz, ωq/2π ' 3 MHz, and g/2π = 100 kHz, such that J/2π ' 12 kHz, yielding a
maximum total time τmax

T = 2τ0 + τmax
1 ' 0.1 ms, where τmax

1 = 2π/J is the maximum phase gate time. Note that,
the operation time τT depends inversely on the CNT-CNT coupling strength J , but the enhancement in J is limited
by the validity of the effective Hamiltonian Heff .

The total decoherence in our setup can be divided into two parts, one from the spin and the other from the CNTs.
The spin decoherence in general includes the relaxation and the dephasing. For an NV electronic spin, the relaxation
time T1 can reach up to several minutes at low temperatures and the dephasing time can be T2 ' 2 ms even at room
temperature [21, 22]. These justify neglecting the spin decoherence. For the mechanical decoherence, despite a long
phonon life, the low mechanical frequency makes the CNT mechanical modes very sensitive to the environmental
temperature. In this section and in Sec. IV, we discuss the effects of the mechanical noise on our quantum delayed-
choice experiment, and demonstrate that the morphing between wave and particle can still be effectively observed
even at finite temperatures.

As a result, the dissipative processes, in the hybrid system considered here, are induced only by the mechanical
decoherence, which arises from the vacuum fluctuation and thermal noise. The full dynamics of the system can then
be governed by the following master equation

ρ̇ (t) =
i

~
[ρ (t) , H (t)]− γm

2
nth

∑
k=1,2

L
(
b†k

)
ρ (t)− γm

2
(nth + 1)

∑
k=1,2

L (bk) ρ (t) , (52)

where ρ is the density operator of the system, γm is the mechanical decay rate, nth = [exp (~ωm/kBT )− 1]
−1

is the
equilibrium phonon occupation at temperature T , and L (o) ρ (t) = o†oρ (t) − 2oρ (t) o† + ρ (t) o†o is the Lindblad
superoperator. Here, H (t) is a binary Hamiltonian of the form,

H (t) =

{
H0, 0 < t ≤ τ0, and τ0 + τ1 < t ≤ τT
H1, τ0 < t ≤ τ0 + τ1,

(53)

with

H0 =~J

∑
k=1,2

b†kbk + b1b
†
2 + b2b

†
1

σz, (54)

H1 =~Jb†1b1σz. (55)

The three time intervals in Eq. (53) correspond to the first Hadamard gate, the phase gate and the second Hadamard
gate, respectively. Note that in Eq. (53), we did not include the spin single-qubit rotation before the third interval
because the length of the driving pulse is of the order of ns. We can derive the system evolution step by step.

Let us now consider the first evolution interval 0 < t ≤ τ0. During this interval, the coupling of the CNT mechanical
modes introduces two delocalized phononic modes,

c± =
1√
2

(b1 ± b2) , (56)

such that H0 is diagonalized to be

H0 = 2~Jc†+c+σz, (57)

and the master equation in Eq. (52) is reexpressed, in terms of the modes c±, as

ρ̇ = i
[
ρ, 2Jc†+c+σz

]
− γm

2
nth

∑
µ=1,2

L
(
c†µ
)
ρ (t)− γm

2
(nth + 1)

∑
µ=1,2

L (cµ) ρ (t) . (58)
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In order to calculate the phonon occupations at the end of the first interval, we need to obtain the equations of motion

for 〈c†±c±〉, 〈c
†
+c−〉, 〈c

†
+c−σz〉, and 〈c†+c−σ2

z〉. Here, 〈O〉 represents the expectation value of the operator O. Following
the master equation in Eq. (58), we have

d

dt
〈c†±c±〉 =− γm〈c†±c±〉+ γmnth, (59)

d

dt
〈c†+c−〉 =i2J〈c†+c−σz〉 − γm〈c

†
+c−〉, (60)

d

dt
〈c†+c−σz〉 =i2J〈c†+c−σ2

z〉 − γm〈c
†
+c−σz〉, (61)

d

dt
〈c†+c−σ2

z〉 =i2J〈c†+c−σz〉 − γm〈c
†
+c−σ

2
z〉, (62)

where we have used the relation σ3
z = σz. We can straightforwardly solve the differential equation (59) to find

〈c†±c±〉 (t) =

(
1

2
− nth

)
exp (−γmt) + nth. (63)

Combining Eqs. (61) and (62) gives

〈c†+c−σjz〉 (t) = (−1)
j 1

2
exp (−i2Jt) exp (−γmt) , (64)

for j = 1, 2. Upon substituting Eq. (64) back into Eq. (60), we can then obtain

〈c†+c−〉 (t) =
1

2
exp (−i2Jt) exp (−γmt) . (65)

It is found, according to Eq. (56), that in the localized-mode basis,

〈b†kbk〉 (τ0) =

(
1

2
− nth

)
exp (−γmτ0) + nth, (66)

〈b†1b2〉 (τ0) =
i

2
exp (−γmτ0) . (67)

For the second evolution interval τ0 < t ≤ τ0 + τ1, we directly use the master equation in Eq. (52) but with H (t)
replaced by H1. When comparing with the master equation in Eq. (58), we see that the equations of motion for

〈b†kbk〉, 〈b
†
1b2〉, 〈b

†
1b2σz〉, and 〈b†1b2σ2

z〉 should have the same forms as in Eqs. (59), (60), (61), and (62), but with the
substitutions c+ → b1, c− → b2 and 2J → J . In combination with the initial conditions, given in Eqs. (66) and (67),
we follow the same procedure as above to find

〈b†kbk〉 (τ0 + τ1) =

(
1

2
− nth

)
exp [−γm (τ0 + τ1)] + nth, (68)

〈b†1b2〉 (τ0 + τ1) =
i

2
exp (−iJτ1) exp [−γm (τ0 + τ1)] . (69)

We now turn to the third evolution interval τ0 + τ1 < t ≤ 2τ0 + τ1. Before this interval or at the end of the second
interval, we apply a single qubit rotation, |D〉 → cos (ϕ) |0〉+ sin (ϕ) |D〉, on the NV spin to engineer the subsequent
Hadamard operation to be in a quantum superposition of being absent and present. In this situation, we still use
the delocalized-mode basis and the corresponding master equation in Eq. (58). According to Eqs. (68) and (69), the
initial conditions of the last evolution can be rewritten, in terms of c±, as

〈c†±c±〉 (τ0 + τ1) =

[
1

2
± 1

2
sin (Jτ1)− nth

]
exp [−γ (τ0 + τ1)] + nth, (70)

〈c†+c−〉 (τ0 + τ1) =− i

2
cos (Jτ1) exp [−γ (τ0 + τ1)] , (71)

〈c†+c−σjz〉 (τ0 + τ1) = (−1)
j

sin2 (ϕ) 〈c†+c−〉 (τ0 + τ1) , (72)
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for j = 1, 2. Then, as before, solving the differential equations in Eqs. (59), (60), (61) and (62) leads to

〈c†±c±〉 (t) =

[
1

2
± 1

2
sin (Jτ1)− nth

]
exp (−γmt) + nth, (73)

〈c†+c−〉 (t) =− i

2
cos (Jτ1)

{
cos2 (ϕ) + sin2 (ϕ) exp [−i2J (t− τ0 − τ1)]

}
exp (−γmt) , (74)

which, in turn, gives

nk ≡ 〈b†kbk〉 (τT ) = (Pk − nth) exp (−γmτT ) + nth, (75)

which is the phonon occupation of the kth at the end of the third interval. For a realistic CNT, the mechanical
linewidth can be set to γm/2π = 0.4 Hz [23], and then we obtain a phonon lifetime of ' 400 ms, which is much longer
than the maximum total time τmax

T ' 0.1 ms. This ensures γmτT � 1, which results in

nk ' Pk + nthγmτT . (76)

This shows that the occupation for each CNT has two contributions: one from a coherent phonon signal and one
from thermal excitations. Furthermore, we find from Eq. (76) that the thermal excitations have equal contributions
to n1 and n2. This is because the thermal excitations do not contribute to the interference. For an environmental
temperature T = 10 mK, the equilibrium phonon occupation is nth ' 100, yielding nthγmτ

max
T ' 0.03, which can be

neglected, as shown in Fig. 2 of the article.

IV. Signal-to-noise ratio at finite temperatures

In addition to the thermal occupation, nthγmτT , in Eq. (76), the desired signal Pk is also always accompanied
by fluctuation noise. Such a noise includes vacuum fluctuations and thermal fluctuations. In particular, the latter
increases with temperature, so that the signal can be completely drowned in the noise when the temperature is
sufficiently high. In this case, it is very difficult to observe the morphing between wave and particle. Thus in this
section, we analyze this fluctuation noise in detail, and demonstrate that, in order for the morphing behavior to be
observed effectively, the total fluctuation noise of both CNTs should be limited by an upper bound, which leads to a
critical temperature Tc.

Specifically, we begin by deriving the fluctuation δnk in the occupation nk, for k = 1, 2. This is defined by

(δnk)
2

= 〈
(
b†kbk

)2

〉 (τT )− 〈b†kbk〉
2 (τT )

= 〈b†kb
†
kbkbk〉 (τT ) + nk − n2

k. (77)

In order to understand the fluctuation noise better, we need to derive an analytical expression of δnk. In Sec. III, nk
has been given in Eq. (76). Below, we derive the evolution of 〈b†kb

†
kbkbk〉 in a step-by-step manner as in Sec. III.

We now consider the first evolution interval 0 < t ≤ τ0. During this interval, the delocalized modes c± in Eq. (56) are
employed owing to the coupling of the CNT mechanical modes, and the dynamics is described by the master equation

in Eq. (58). To achieve 〈b†kb
†
kbkbk〉 at time τT , the dynamical evolutions of 〈c†±c

†
±c±c±〉, 〈c

†
+c+c

†
−c−〉, 〈c

†
+c
†
+c+c−〉,

〈c†+c
†
−c−c−〉, and 〈c†+c

†
+c−c−〉 are involved. The equations of motion for 〈c†±c

†
±c±c±〉 and 〈c†+c+c

†
−c−〉 are

d

dt
〈c†±c

†
±c±c±〉 = 4γmnth〈c†±c±〉 − 2γm〈c†±c

†
±c±c±〉, (78)

d

dt
〈c†+c+c

†
−c−〉 = γmnth

(
〈c†+c+〉+ 〈c†−c−〉

)
− 2γm〈c†+c+c

†
−c−〉. (79)

Substituting Eq. (63) yields

〈c†±c
†
±c±c±〉 (τ0) = 2X (τ0) , (80)

〈c†+c+c
†
−c−〉 (τ0) = X (τ0) , (81)

where

X (t) = nth (nth − 1) exp (−2γmt) + nth (1− 2nth) exp (−γmt) + n2
th. (82)
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The equations of motion for 〈c†+c
†
+c+c−〉 are found to be

d

dt
〈c†+c

†
+c+c−〉 = i2J〈c†+c

†
+c+c−σz〉+ 2γmnth〈c†+c−〉 − 2γm〈c†+c

†
+c+c−〉, (83)

d

dt
〈c†+c

†
+c+c−σz〉 = i2J〈c†+c

†
+c+c−σ

2
z〉+ 2γmnth〈c†+c−σz〉 − 2γm〈c†+c

†
+c+c−σz〉, (84)

d

dt
〈c†+c

†
+c+c−σ

2
z〉 = i2J〈c†+c

†
+c+c−〉+ 2γmnth〈c†+c−σ2

z〉 − 2γm〈c†+c
†
+c+c−σ

2
z〉. (85)

Together with Eq. (64), solving straightforwardly the coupled differential equations (84) and (85) results in

〈c†+c
†
+c+c−σz〉 (t) = −nth [1− exp (−γmt)] exp (−i2Jt) exp (−γmt) , (86)

which, in turn, gives

〈c†+c
†
+c+c−〉 (τ0) = −iY (τ0) , (87)

where

Y (t) = nth [1− exp (−γmt)] exp (−γmt) . (88)

In a treatment similar to that used for 〈c†+c
†
+c+c−〉, we obtain

〈c†+c
†
−c−c−〉 (τ0) = −iY (τ0) , (89)

〈c†+c
†
+c−c−〉 (τ0) = 0. (90)

Upon combining Eqs. (80), (81), (87), (89), and (90), this yields, after inversion back to the localized-mode basis,

〈b†kb
†
kbkbk〉 (τ0) = 2X (τ0) , (91)

〈b†1b1b
†
2b2〉 (τ0) = X (τ0) , (92)

〈b†1b
†
1b1b2〉 (τ0) = 〈b†1b

†
2b2b2〉 (τ0) = iY (τ0) , (93)

〈b†1b
†
1b2b2〉 (τ0) = 0. (94)

During the second evolution interval τ0 < t ≤ τ0 + τ1, the dynamics of the system is driven by the master equation
given in Eq. (52), but with H (t) replaced by H1. Thus, as mentioned in Sec. III, the system has a dynamical evolution
similar to what has already been discussed with the delocalized-mode basis in the first interval. We follow the same
recipe as above and then find

〈b†kb
†
kbkbk〉 (τ0 + τ1) = 2X (τ0 + τ1) , (95)

〈b†1b1b
†
2b2〉 (τ0 + τ1) = X (τ0 + τ1) , (96)

〈b†1b
†
1b1b2〉 (τ0 + τ1) = 〈b†1b

†
2b2b2〉 (τ0 + τ1) = i exp (−iJτ1)Y (τ0 + τ1) , (97)

〈b†1b
†
1b2b2〉 (τ0 + τ1) = 0, (98)

at the end of this interval.
For the third evolution interval τ0 + τ1 < t ≤ τT , we return back to the master equation in Eq. (58), and also back

to the delocalized-mode basis. According to Eqs. (95), (96), (97), and (98), the evolution at this stage starts from

〈c†±c
†
±c±c±〉 (τ0 + τ1) = 2X (τ0 + τ1)∓ i2 sin (Jτ1)Y (τ0 + τ1) , (99)

〈c†+c+c
†
−c−〉 (τ0 + τ1) = X (τ0 + τ1) , (100)

〈c†+c
†
+c+c−〉 (τ0 + τ1) = 〈c†+c

†
−c−c−〉 (τ0 + τ1) = −i cos (Jτ1)Y (τ0 + τ1) , (101)

〈c†+c
†
+c+c−σ

j
z〉 (τ0 + τ1) = 〈c†+c

†
−c−c−σ

j
z〉 (τ0 + τ1) = i(−1)j+1 sin2 (ϕ) cos (Jτ1)Y (τ0 + τ1) , (102)

〈c†+c
†
+c−c−〉 (τ0 + τ1) = 〈c†+c

†
+c−c−σ

j
z〉 (τ0 + τ1) = 0, (103)
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where j = 1, 2. Note that, before this evolution, the spin state has already been transformed from |D〉 → cos (ϕ) |0〉+
sin (ϕ) |D〉 via a single-qubit rotation. Then, by following the same procedure as in the first interval, the last evolution
ends with

〈c†±c
†
±c±c±〉 (τT ) = 2X (τT )± 2 sin (Jτ1)Y (τT ) , (104)

〈c†+c+c
†
−c−〉 (τT ) = X (τT ) , (105)

〈c†+c
†
+c+c−〉 (τT ) = 〈c†+c

†
−c−c−〉 (τT ) = −i cos (Jτ1)

[
cos2 (ϕ)− i sin2 (ϕ)

]
Y (τT ) , (106)

〈c†+c
†
+c−c−〉 (τT ) = 0, (107)

and as a result, with

〈b†kb
†
kbkbk〉 (τT ) = 2X (τT ) + 2 (−1)

j
sin2 (ϕ) cos (Jτ1)Y (τT ) . (108)

It is seen that on the right-hand side of Eq. (108), the first term arises from the particle behavior of a phonon and
the second term arises from its wave behavior.

By substituting Eq. (108) into Eq. (77), the fluctuation δnk in the occupation nk is given by

(δnk)
2

=
(
n2

th − 2Pknth − P 2
k

)
exp (−2γmτT )

− (2nth + 1) (nth − Pk) exp (−γmτT ) + nth (nth + 1) . (109)

Since γmτT � 1, we have

(δnk)
2 '

(
δnsignal

k

)2

+
(
δnnoise

k

)2
, (110)

where (
δnsignal

k

)2

= Pk (1− Pk) , (111)(
δnnoise

k

)2
= Pk (2Pk − 1) γmτT + nthγmτT (2Pk + 1) . (112)

Here, δnsignal
k , the quantum fluctuation induced by the Heisenberg uncertainty principle, accounts for the coherent

signal, and δnnoise
k represents the fluctuation noise, including the vacuum (the first term) and thermal (the second

term) fluctuations. To confirm the predictions of Eq. (110), we perform numerics, as shown in Fig. 5. Specifically,
we plot the fluctuation noises δnnoise

1 and δnnoise
2 versus the relative phase φ. The analytical expression is in excellent

agreement with our numerical simulations. Furthermore, the respective CNT signal-to-noise ratios can be defined as
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FIG. 5. (Color online) Fluctuation noise δnnoise
1 and δnnoise

2 as a function of the phase φ. (a) ϕ = 0, (b) π/4, and (c) π/2. Solid
and dashed curves are analytical results for δnnoise

1 and δnnoise
2 , respectively, and symbols correspond to numerical simulations.

These analytical and numerical results exhibit an exact agreement. For all plots, in addition to γs/2π = 200γm/2π = 80 Hz,
we have assumed that g/2π = 100 kHz, ωm/2π = 2 MHz, Ω = 10ωm, and ∆− = 142ωm, resulting in ωq ' 1.5ωm and then
J/2π ' 12 kHz. We have also assumed that nth = 100, corresponding to an environmental temperature of ' 10 mK.
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FIG. 6. (Color online) Signal-to-noise ratios R1 and R2. (a) ϕ = 0, (b) π/8, (c) π/4, (d) 3π/8, and (e) π/2. The solid curves
show R1, while the dashed curves show R2. The gray shaded area represents the region, where the signal cannot be resolved.
For all plots, all other parameters have been set to be the same as in Fig. 5.

Rk =
Pk

δnnoise
k

. (113)

Note that, here, we did not use δnk to define Rk because δnsignal
k in δnk results from quantum fluctuations of the

desired signal, as mentioned previously; and therefore this is not the environmental noise. In order to resolve a signal
from the fluctuation noise, the ratio Rk is required to be Rk > 1. However, Eq. (113) demonstrates that this criterion
is not always met for all values of Pk, in particular, at finite temperatures. For example, Pk = 0 leads directly to
Rk = 0. To address this problem, we now consider the total fluctuation noise,

S2 =
(
δnnoise

1

)2
+
(
δnnoise

2

)2
. (114)

We further assume that

S2 < P 2
1 + P 2

2 . (115)

Under this assumption, if Rk < 1, then R3−k > 1 for k = 1, 2; otherwise R1 > 1, R2 > 1. This means that at least
one of the signals, P1 or P2, is resolved for each measurement. Because the coherent phonon number equal to 1 is
conserved, and therefore the signals in the two CNTs are complementary, the unresolved signal can be completely
deduced from the resolved one. Thus, the criterion in Eq. (115) ensures that the morphing behavior between wave
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and particle can be observed from the environment-induced fluctuation noise. In fact, for any value of Pk, the total
noise S is limited by an upper bound,

S < B ≡
√
γmτmax

T + 4nthγmτmax
T , (116)

which is independent of Pk. Meanwhile,
√
P 2

1 + P 2
2 is also limited by a lower bound

√
2/2. Thereby, in order to meet

the criterion given in Eq. (115), it is required that

B <
√

2

2
. (117)

Based on this condition, we can define a signal visibility

R =

√
2

2B
, (118)

in analogy to Rk. When R > 1, the morphing between wave and particle can be observed, and cannot otherwise.
This, in turn, leads to an upper bound on the equilibrium phonon occupation,

nth <
1− 2γmτ

max
T

8γmτmax
T

, (119)

and therefore an upper bound on the temperature,

T <
~ωm

kB ln [(1 + 6γmτmax
T ) / (1− 2γmτmax

T )]
. (120)

Because τmax
T ' 5π/2J , the critical temperature is

Tc =
~ωm

kB ln [(1 + 15πγm/J) / (1− 5πγm/J)]
. (121)

In Fig. 6 we plot the signal-to-noise ratios R1 and R2 at the temperature T ' 10 mK. We find that almost all signals
can be resolved, and also, as expected, find that when the signal in one CNT is unresolved, the signal in the other

CNT is resolved. In fact, the upper bound B is the fluctuation noise in the total phonon occupation 〈b†1b1 + b†2b2〉 at

time τT . The criterion R > 1 heralds that to resolve the morphing behavior, the fluctuation noise in 〈b†1b1 + b†2b2〉 (τT )

is required to be smaller than
√

2/2.

V. Numerical simulations

In order to confirm our analytical results, we need to numerically simulate the dynamics with the full master
equation given by

ρ̇ (t) =
i

~
[ρ (t) , HF ]− γs

2
L (σ′z) ρ (t)

− γm
2
nth

∑
k=1,2

L
(
b†k

)
ρ (t)− γm

2
(nth + 1)

∑
k=1,2

L (bk) ρ (t) , (122)

where σ′z = |D〉〈D| − |0〉〈0|, and HF is the full Hamiltonian of Eq. (8). Here, we use the Python framework
QuTiP [24, 25] to set up this problem. However, the full Hamiltonian is time-dependent, and it takes a long time
to integrate the corresponding Schrödinger equation or the master equation, in particular, for our case, where all
quantum gates result from the deterministic time evolution of the system. Thus, in our numerical simulations, we
replace HF with Hlow + Hhigh, as in Eq. (13). This is a reasonable replacement because in our proposal Ω (tens
of MHz) is required to be much smaller than ∆′ (up to ∼ GHz). In Fig. 7, we plot the unitary evolution of the

phonon occupations, 〈b†1b1〉 and 〈b†2b2〉, of the CNTs. Symbols are the exact results from the full Hamiltonian HF and
solid curves are given by the approximate Hamiltonian Hlow +Hhigh. We find an excellent agreement for a very long

evolution time, and thus HF can be very well approximated by Hlow +Hhigh. For additional comparison, we also plot
the phonon occupation evolution driven only by the low-frequency component Hlow, corresponding to dotted curves.
As seen in Fig. 7, owing to the error accumulation, the dynamics of Hlow deviates largely from the full dynamics of
HF , even within one oscillation cycle. With the above replacement, we obtain the numerical simulations plotted in
Fig. 2 of the article, and also in Fig. 5 of the Supplemental Material.
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FIG. 7. (Color online) Unitary evolution of the CNT phonon occupations, 〈b†1b1〉 and 〈b†2b2〉, for (a) ∆− = 10Ω, (b) 25Ω, and (c)
35Ω. The symbols, solid, and dotted curves are obtained, respectively, from HF , Hlow +Hhigh, and Hlow. For all plots here we
have assumed that ωm/2π = 2 MHz, Ω = 15ωm, ω0 = D−∆−, ∆+ = D+ω0, ∆ = ∆−+3Ω2/∆+, ωq = 2Ω2/∆+2Ω2/∆+, and

J = 2ωqg
2/

(
ω2
q − ω2

m

)
, with a symmetric coupling strength g/2π = 100 kHz and an initial state |Ψ〉i =

(
b†1 ⊗ I2|vac〉

)
⊗ |D〉.
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