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1. RAMSEY-LIKE DYNAMICS IN PHOTOSYNTHESIS

In this section, we provide a detailed derivation for the Ramsey-like dynamics in photosynthesis [S1, S2]. We assume the total
Hamiltonian to be

H = εD|1〉〈1|+ εA|2〉〈2|+
∑
k

ωka
†
kak +

∑
k

ωkb
†
kbk + |1〉〈1|

∑
k

gk

(
a†k + ak

)
+ |2〉〈2|

∑
k

gk

(
b†k + bk

)
, (S1)

where we have assumed that the dimer is subject to two local harmonic-oscillator baths with the same parameters.
In the experiment, the system is initialized to |1〉 and followed by a π/2 pulse, i.e.,

|ψ (0)〉 = exp
(
i
π

4
σx

)
|1〉 = (|1〉+ i|2〉) /

√
2. (S2)

And the bath is in thermal equilibrium, i.e.,

ρB =

⊗∏
k

1

Zk

∞∑
n=0

exp(−nβωk)|n〉ak〈n| ⊗
⊗∏
k′

1

Zk′

∞∑
m=0

exp(−mβωk′)|m〉bk′ 〈m|, (S3)

where the partition function of kth bath mode is Zk = (1− e−βωk)−1. Then, the system evolves under the Hamiltonian (S1) for
a time interval t and thus results in

ρ (t) = TrB
[
U (t) |ψ (0)〉〈ψ (0) | ⊗ ρBU† (t)

]
=

 a (t) b (t)

b∗ (t) 1− a (t)

 . (S4)

Finally, after applying a reverse π/2 pulse, we measure the population of |1〉 in the final state, i.e.,

ρ (tf ) = exp (−iπσx/4) ρ (t) exp (iπσx/4) =
1

2

 1 + i (b− b∗) (b+ b∗)− i (1− 2a)

(b+ b∗) + i (1− 2a) 1− i (b− b∗)

 . (S5)

Thus, the populations of |1〉 reads

P1 (tf ) =
1

2
[1 + i (b− b∗)] . (S6)

The off-diagonal element can be calculated as

b (t) = TrB
[
U (t) |1〉〈2| ⊗ ρBU† (t)

]
= exp[−i (εD − εA) t]

∏
k,k′

I
(a)
k I

(b)
k′ , (S7)

where

H1 = εD +
∑
k

ωka
†
kak +

∑
k

ωkb
†
kbk +

∑
k

gk

(
a†k + ak

)
, (S8)

H2 = εA +
∑
k

ωka
†
kak +

∑
k

ωkb
†
kbk +

∑
k

gk

(
b†k + bk

)
, (S9)

I
(a)
k =

[
I

(b)
k

]∗
= TrB

[
exp

(
−i
[
ωka

†
kak + gk

(
a†k + ak

)]
t
) 1

Zk

∞∑
n=0

exp (−nβωk) |n〉ak〈n| exp
(
iωkta

†
kak

)]
. (S10)

Hereafter, we shall explicitly give the expression of I(a)
k as

I
(a)
k =

1

Zk
TrB

[
D†k

(
gk
ωk

)
exp

(
−iωkta†kak

)
exp

(
i
g2
k

ωk
t

)
Dk

(
gk
ωk

)
exp

(
−βωka†kak

)
exp

(
iωkta

†
kak

)]
, (S11)

where the displacement operator is Dk(α) = exp
[
α
(
a†k − ak

)]
. By using the identity

exp
(
iωkta

†
kak

)
ak exp

(
−iωkta†kak

)
= ak exp (−iωkt) , (S12)
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I
(a)
k is simplified as

I
(a)
k =

1

Zk
exp

(
i
g2
k

ωk
t− ig2

k

ω2
k

sinωkt

)
TrB

[
exp

{
gk
ωk

[
a†k
(
1− eiωkt

)
+ ak

(
e−iωkt − 1

)]}
exp

(
−βωka†kak

)]
, (S13)

where in the last line we have used the Baker-Hausdorff formula [S6] eAeB = e[A,B]/2eA+B . Then, we apply the identity

TrB

exp
(
r1ak + r2a

†
k

) exp
(
−βωka†kak

)
Zk

 = exp

[
1

2
r1r2 coth

(
βωk

2

)]
(S14)

to the above equation, we obtain I(a)
k as

I
(a)
k = exp

{
− g

2
k

ω2
k

[
(1− cosωkt) coth

(
βωk

2

)
+ i (sinωkt− ωkt)

]}
. (S15)

By inserting I(a)
k into b(t), we have

b(t) = exp {−i (εD − εA) t− 2Re[g(t)]} , (S16)

where the lineshape function reads

g(t) =
∑
k

g2
k

ω2
k

[
(1− cosωkt) coth

(
βωk

2

)
+ i (sinωkt− ωkt)

]
. (S17)

The population of |1〉 reads

P1(tf ) =
1

2
{1 + exp(−2Re[g(tf )]) cos(εD − εA)tf} . (S18)

Since the spectral density is defined as

J (ω) =
∑
k

g2
k δ(ω − ωk) =

∫
dωk ρ (ωk) g2

k δ(ω − ωk) = ρ(ωk)g2
k|ωk=ω (S19)

with ρ(ωk) being density of states of bath, the lineshape function can explicitly given as

g (t) =

∫ ωc

0

dωk
2λΛ

(ω2
k + Λ2)ωk

[
(1− cosωkt) coth

(
βωk

2

)
+ i (sinωkt− ωkt)

]
, (S20)

where we assumed a Drude-Lorentz form spectral density

J (ω) =
2λΛω

ω2 + Λ2
(S21)

with λ and Λ being the reorganization energy and cutoff frequency respectively.
By using a Matsubara expansion [S18], the lineshape function is explicitly calculated as

g(t) =
λ

Λ

[
cot

(
βΛ

2
− i
)] (

e−Λt + Λt− 1
)

+
4λΛ

β

∞∑
n=1

e−νnt + νnt− 1

νn (ν2
n − Λ2)

, (S22)

where νn = 2πn/β and β = 1/(kBT ).
In Sec. 3, we will demonstrate that in order to simulate the photosynthetic dynamics in NMR, the following relations should

be fulfilled

χ(t) = Re[g(t)], (S23)
ωL = εD − εA. (S24)
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2. HIERARCHICAL EQUATIONS OF MOTION (HEOM)

The hierarchical equations of motion (HEOM) formalism has become an important method for studying quantum open sys-
tems [S7–S9]. In this section, we describe the application of the HEOM method for studying the excitation energy transfer
(EET) in photosynthetic systems [S8, S9].

We discuss the EET dynamics in a photosynthetic complex containing four pigments, and each pigment is modeled by a
two-level system. The following Frenkel exciton Hamiltonian [S1, S10], studying EET dynamics, consists of three parts,

Htot = Hel +Hph +Hel-ph, (S25)

where

Hel =

4∑
j=1

εj |j〉〈j|+
4∑
j<k

Jjk (|j〉〈k|+ |k〉〈j|) , (S26)

Hph =

4∑
j=1

Hph,j =

4∑
j=1

∑
m

ωjm
(
p2
jm + q2

jm

)
/2, (S27)

Hel-ph =

4∑
j=1

Hel-ph,j =

4∑
j=1

Vjµj . (S28)

In the above, |j〉 represents the state where only the jth pigment is in its electronic excited state and all others are in their
electronic ground state. Moreover, this

εj = ε0
j + λj (S29)

is the so-called site energy of the jth pigment, where ε0
j is the excited electronic energy of the jth pigment in the absence of

phonons and λj is the reorganization energy of the jth pigment. Furthermore, Jjk is the electronic coupling between pigments i
and j. Also, ωm, pjm and qjm are the frequency, dimensionless coordinate, and conjugate momentum of the mth phonon mode,
respectively. Here,

Vj = |j〉〈j|, (S30)

µj = −
∑
m

cjmqjm (S31)

with cjm being the coupling constant between the jth pigment andmth phonon mode. For simplicity, we assume that the phonon
modes associated with different pigments are uncorrelated.

The reduced density operator of the system

ρ(t) = Trph {ρtot(t)} (S32)

with ρtot being the density operator for the total system can adequately describe the EET dynamics. At the initial time t = 0, we
assume that the total system is in the factorized product state of the form

ρtot(0) = ρ(0)
exp (−βHph)

Tr exp (−βHph)
. (S33)

In accordance to the vertical Franck-Condon transition [S8, S9], the initial condition (S33) is appropriate in electronic excitation
processes. In this work, we adopt the spectral density of the overdamped Brownian oscillator model, Jj(ω) =

2λjγjω

ω2+γ2
j

, to
describe the coupling between the jth pigment and the environmental phonons. For this modeling, the timescale of the phonon
relaxation is simply, τc = γ−1

j . According to the reorganization dynamics, one can determine the reorganization energy λj .
For high temperatures βγj < 1, the following hierarchically coupled equations of motion for the reduced density operator

with the overdamped Brownian oscillator model is given by

∂

∂t
σ(n, t) = −

i`e +

4∑
j=1

njγj

σ(n, t) +

4∑
j=1

[Φjσ(nj+, t) + njΘjσ(nj−, t)] , (S34)

where n = (n1, n2, n3, n4), nj± = (n1, · · · , nj ± 1, · · · , n4) are three sets of nonnegative integers. The phonon-induced
relaxation operators are written by

Φj = iV ×j , (S35)

Θj = i
(
2λjTV

×
j − iλjγjV

o
j

)
, (S36)
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whereO×f = [O, f ] = Of−fO,Oof = {O, f} = Of+fO are the hyper-operator notations. In addition, ρ(t) = σ(0, t), and
the other σ(n 6= 0, t) are auxiliary operators considering the fluctuation and dissipation. The Liouvillian operator `e corresponds
to the electronic Hamiltonian He.

We terminate Eq. (S34), when the integers nj’s satisfy

N =

4∑
j=1

nj �
ωe

min (γ1, γ2, γ3, γ4)
, (S37)

where ωe is a characteristic frequency of the system dynamics `e [S8]. The required number of auxiliary density operators
σ(n, t) is given by

N∑
k=0

 k + 4− 1

4− 1

 =
(4 +N)!

4!N !
. (S38)

3. DYNAMICS WITH CLASSICAL PURE-DEPHASING NOISE

i. General Case

In this section, inspired by Ref. [S3], we provide a detailed calculation for the dynamics in the classical pure-dephasing noise.
The total Hamiltonian

H (t) = H0 (t) +Hc (t) (S39)

is divided into two parts, i.e. the control Hamiltonian Hc (t) = ~h (t) · ~σ, and the noise Hamiltonian H0 (t) = ~β (t) · ~σ, where
~h (t) = (hx (t) , hy (t) , hz (t)), ~β (t) = (βx (t) , βy (t) , βz (t)), ~σ = (σx, σy, σz).

In the rotating frame with respect to Uc (t) = T exp
[
−i
∫ t

0
dτHc (τ)

]
, the noise Hamiltonian reads

H̃0 (t) = U†c (t)H0 (t)Uc (t) . (S40)

And the propagator in this frame is correspondingly

Ũ (t) = T exp

[
−i
∫ t

0

dτH̃0 (τ)

]
. (S41)

Therefore, transformed back to the Schrödinger picture, the propagator is written as

U (t) = Uc (t) Ũ (t) . (S42)

Let us now consider

H̃0 (t) = U†c (t) ~β (t) · ~σUc (t) =
∑
i,j

βi (t)Rij (t)σj , (S43)

where

Rij (t) =
1

2
Tr
[
U†c (t)σiUc (t)σj

]
, (S44)

and in the last line of Eq. (S43) we have used the relation Tr [σiσj ] = 2δij . Hereafter, we shall use the compact definition

−→
R = (Rx (t) , Ry (t) , Rz (t))

T
, (S45)

where

Ri (t) = (Rix (t) , Riy (t) , Riz (t)) . (S46)

When

Ũ (t) = exp

[
−i

∞∑
µ=1

Φµ (τ)

]
, (S47)
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according to the Magnus expansion [S15], we have

Φ1(τ) =

∫ τ

0

dtH̃0(t), (S48)

Φ2(τ) = − i
2

∫ τ

0

dt1

∫ t1

0

dt2

[
H̃0(t1), H̃0(t2)

]
, (S49)

Φ3(τ) = −1

6

∫ τ

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

{[
H̃0(t1),

[
H̃0(t2), H̃0(t3)

]]
+
[
H̃0(t3),

[
H̃0(t2), H̃0(t1)

]]}
. (S50)

By using the identity [−→u ~σ,−→v ~σ] = 2i (−→u ×−→v )~σ, the propagator (S47) can be rewritten as

Ũ(t) = exp

[
−i
∑
µ

~aµ(τ) · ~σ

]
, (S51)

where

~a1(τ) =
∑
i

∫ τ

0

dt βiRi(t), (S52)

~a2(τ) =
∑
i,j

∫ τ

0

dt1

∫ t1

0

dt2 βi(t1) βj(t1) R̃ij(t1, t2), (S53)

~a3(τ) =
2

3

∑
i,j,k

∫ τ

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 βi(t1) βj(t2) βk(t3) R̃ijk(t1, t2, t3), (S54)

with

R̃ij(t1, t2) = Ri(t1)×Rj(t2), (S55)

R̃ijk(t1, t2, t3) = Ri(t1)× [Rj(t2)×Rk (t3)] +Rk(t3)× [Rj(t2)×Ri(t1)] . (S56)

To calculate the fidelity of the operation described by

Uc(t) = T exp

[
−i
∫ t

0

dτHc(τ)

]
, (S57)

we use the Hilbert-Schmidt inner product to measure the fidelity as

F (τ) =
1

4

∣∣∣Tr
[
U†c (τ)Uc(τ)Ũ(τ)

]∣∣∣2 =
1

2

[
1 +

∞∑
n=0

(−1)
m 22m

(2m)!
〈a2m〉

]
, (S58)

where a is the modulus of the vector ~a(τ), and 〈· · · 〉 is averaged over all possible noise trajectories. In the above equation, the
lowest order term is

〈a2〉 = 〈aaT 〉 = 〈a1a
T
1 〉+ 〈a2a

T
2 〉+ · · ·+ 2

(
〈a1a

T
2 〉+ 〈a1a

T
3 〉+ 〈a1a

T
4 〉+ · · ·

)
. (S59)

Thus, the fidelity can be expanded as

F(τ) ' 1− 〈a1a
T
1 〉 = 1−

∑
i,j,k

∫ τ

0

dt1

∫ τ

0

dt2 〈βi(t1)βj(t2)〉Rik(t1)R∗jk(t2), (S60)

where we have used the relation RTkj(τ) = R∗jk(τ).
By introducing the Fourier transform of the cross-power spectrum

〈βi(t1)βj(t2)〉 =
1

2π

∫ ∞
−∞

dω Sij(ω)eiω(t2−t1), (S61)

we have

F(τ) = 1− 1

2π

∑
i,j,k

∫ τ

0

dt1

∫ τ

0

dt2

∫ ∞
−∞

dω Sij(ω)eiω(t2−t1)Rik(t1)R∗jk(t2)

= 1− 1

2π

∑
i,j,k

∫ ∞
−∞

dω

ω2
Sij(ω) (−iω)

∫ τ

0

dt1 Rik(t1)e−iωt1 (iω)

∫ τ

0

dt2 R
∗
jk(t2)eiωt2

= 1− 1

2π

∑
i,j,k

dω

ω2
Sij(ω)Rik(ω)R∗jk(ω), (S62)



7

where we have defined

Rik(ω) = −iω
∫ τ

0

dt Rik(t)e−iωt. (S63)

ii. Ramsey Fringes

In the following, we shall consider a special case where [H0(t), Hc(t)] = 0. At the end of this subsection, we will provide the
deviation for Ramsey-interferometer experiment. In this case, we assume the total Hamiltonian as

H(t) =
ωL
2
σz + βz(t)σz. (S64)

Thus, the control Hamiltonian is Hc = ωL

2 σz , and the noise Hamiltonian is H0(t) = βz(t)σz .
In the rotating frame with respect to Uc(t) = exp

(
−iωLt

2 σz
)
, the noise Hamiltonian reads

H̃0(t) = U†c (t)H0(t)Uc(t) = H0(t), (S65)

because [Hc, H0(t)] = 0.
And the propagator in this frame is correspondingly

Ũ = exp

[
−i
∫ t

0

dτ βz(τ)σz

]
. (S66)

Therefore, transformed back to the Schrödinger picture, the propagator is written as

U(t) = Uc(t)Ũ(t) = exp

(
−iωLt

2
σz

)
exp

[
−i
∫ t

0

dτ βz(τ)σz

]
. (S67)

In the experiment, the system is initialized to |0〉 and followed by a π/2 pulse, i.e.

|ψ(0)〉 = exp
(
i
π

4
σx

)
|0〉 = (|0〉+ i|1〉) /

√
2. (S68)

Then, the system evolves under the Hamiltonian (S64) for a time interval t and thus results in

|ψ(t)〉 =
1√
2
U(t) (|0〉+ i|1〉) =

1√
2

(
e−iφ(t)|0〉+ ieiφ(t)|1〉

)
, (S69)

where

φ(t) = φA(t) + φB(t), (S70)

φA(t) =
ωLt

2
, (S71)

φB(t) =

∫ t

0

dτ βz(τ). (S72)

Finally, after applying a reverse π/2 pulse, we measure the population of |0〉 in the final state, i.e.

|ψf (t)〉 =
1√
2
e−iπσz/4

(
e−iφ(t)|0〉+ ieiφ(t)|1〉

)
= cosφ(t)|0〉+ sinφ(t)|1〉. (S73)

Thus, the population of |0〉 reads

P0(t) = cos2 φ(t) =
1

2
[1 + cos 2φA〈cos 2φB(t)〉 − sin 2φA(t)〈sin 2φB(t)〉] , (S74)

where 〈· · · 〉 is averaged over all possible random realizations. If we further assume a Gaussian noise, 〈φ2n−1
B (t)〉 = 0 for any

positive integer n, P0(t) can be simplified as

P0(t) =
1

2
[1 + cos 2φA(t)〈cos 2φB(t)〉] =

1

2

[
1 + cos 2φA(t)

∞∑
n=0

(−1)
n 22n

(2n)!
〈φ2n
B (t)〉

]
. (S75)
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For the lowest nontrivial order n = 1, we have

χ(t) = 〈φ2
B(t)〉 =

∫ t

0

dτ1

∫ t

0

dτ2 〈βz(τ1)βz(τ2)〉 =
4

2π

∫ ∞
−∞

dω

ω2
Szz(ω) sin2 ωt

2
, (S76)

where we have introduced the Fourier transform of 〈βz(τ1)βz(τ2)〉 as

Szz(ω) =

∫ ∞
−∞

dt 〈βz(0)βz(t)〉eiωt (S77)

with 〈βz(τ1)βz(τ2)〉 being only dependent on the time interval τ2 − τ1.
For the order with n = 2, we have

〈φ4
B(t)〉 =

∫ t

0

dτ1

∫ t

0

dτ2

∫ t

0

dτ3

∫ t

0

dτ4 〈βz(τ1)βz(τ2)βz(τ3)βz(τ4)〉

=

∫ t

0

dτ1

∫ t

0

dτ2

∫ t

0

dτ3

∫ t

0

dτ4 [〈βz(τ1)βz(τ2)〉 〈βz(τ3)βz(τ4)〉+ 〈βz(τ1)βz(τ3)〉 〈βz(τ2)βz(τ4)〉

+ 〈βz(τ1)βz(τ4) 〉 〈βz(τ2)βz(τ3)〉]

= 3

∫ t

0

dτ1

∫ t

0

dτ2

∫ t

0

dτ3

∫ t

0

dτ4 〈βz(τ1)βz(τ2)〉 〈βz(τ3)βz(τ4)〉 = 3χ2(t). (S78)

For the order with arbitrary integer n, we have

〈φ2n
B (t)〉 =

∫ t

0

dτ1

∫ t

0

dτ2 · · ·
∫ t

0

dτ2n 〈βz(τ1)βz(τ2) · · ·βz(τ2n)〉

=

∫ t

0

dτ1

∫ t

0

dτ2

∫ t

0

dτ3

∫ t

0

dτ4 [〈βz(τ1)βz(τ2)〉 〈βz(τ3)βz(τ4)〉 · · · 〈βz(τ2n−1)βz(τ2n)〉+ · · · ]

=
(2n)!

2nn!

[
4

2π

∫ ∞
−∞

dω

ω2
Szz (ω) sin2 ωt

2

]n
=

(2n)!

2nn!
χn(t), (S79)

where there are (2n)!/(2nn!) terms in the second line according to Isserlis’ theorem if it is a Gaussian noise [S16]. To conclude,

P0(t) =
1

2

[
1 + cos 2ΦA(t)

∞∑
n=0

(−1)
n 22n

(2n)!

(2n)!

2nn!
χn(t)

]
=

1

2

[
1 + cos 2φA(t)e−2χ(t)

]
. (S80)

This predicts that before decaying to the steady value 1/2 in the long run, P0(t) will experience oscillations with frequency ωL.
We assume that

βz = α

J∑
j=1

F (ωj)ωj cos (ωjt+ ψj) , (S81)

where the ψj’s are random numbers. According to Ref. [S16], the ensemble average is equivalent to the time average for a
wide-sense-stationary random process. In this case, the two-time correlation function reads

〈βz(t+ τ)βz(t)〉 = lim
T→∞

1

2T

∫ T

−T
dtβz(t+ τ)βz(t) =

(α
2

)2 J∑
j=1

[ωjF (ωj)]
2 (
eiωjτ + e−iωjτ

)
, (S82)

which does not depend on t but τ .
The power spectral density is the Fourier transform of the correlation function, i.e.

Szz (ω) =

∫ ∞
−∞

dτ e−iωτ 〈βz (t+ τ)βz (t)〉 =
(α

2

)2 J∑
j=1

[ωjF (ωj)]
2

[δ (ω − ωj) + δ (ω + ωj)] , (S83)

where δ(ω ± ωj) =
∫∞
∞ dt ei(ω±ωj)t. The power spectral density is a set of equally-spaced peaks with distance ω0 and height(

α
2

)2
[ωjF (ωj)]

2.
If we set F (ωj) = (ωj

(
ω2
j + γ2

)
)−1/2, we have

Szz(ω) =
α2

4

J∑
j=1

ωj
ω2
j + γ2

[δ(ω − ωj) + δ(ω + ωj)] (S84)
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and thus Szz(ω) is the Drude-Lorentz spectral density of the step-function form with cutoff frequency ωJ .
The transverse relaxation time T2 is defined by

2χ(T2) = 1. (S85)

For photosynthesis, the decoherence is determined by the real part of the lineshape function

g(t) =
λ

Λ

[
cot

(
βΛ

2

)
− i
]

exp (−Λt+ Λt− 1) +
4λΛ

β

∞∑
n=1

e−νnt+νnt−1

νn (ν2
n − Λ2)

, (S86)

with spectral density J(ω) = 2λΛω
ω2+Λ2 , where νn = 2πn/β.

Therefore, in order to simulate photosynthetic dynamics in NMR, we should relate the following two quantities

χ(t) = Re[g(t)] (S87)

and cutoff frequencies in two spectra are equal, i.e.

γ = Λ. (S88)

4. ARTIFICIALLY INJECTING NOISE

Here we introduce a method of artificially injecting noises in NMR and ion trap systems, including dephasing noise and
amplitude noise [S4, S5].

i. Dephasing Noise

Dephasing noise comes from the inhomogeneous and non-static magnetic field in NMR systems. The corresponding Hamil-
tonian can be written as βz(t)σz with

βz(t) =

N∑
j=1

αzF (ωj)ωj cos(ωjt+ φj), (S89)

where αi(i = x, y, z) is the noise amplitude and φj is a random phase. Nω0 determines the high frequency cutoff and ω0 is the
base frequency with ωj = jω0. The types of noise rely on the function F (ωj). The two-time correlation function for βz(t) is
then written as

〈βz(t+ τ)βz(t)〉 = lim
T→∞

1

2T

∫ T

−T
dt βz(t+ τ)βz(t) =

(αz
2

)2∑
j

[ωjF (ωj)]
2(eiωjτ + e−iωjτ ), (S90)

which does not depend on t but on τ . Applying the Wiener-Khintchine theorem [S17], we then obtain the power spectral density
which can describe the energy distribution of the stochastic signal in the frequency domain by Fourier transform

Sz(ω) =

∫ ∞
−∞

dτ e−iωτ 〈βz(t+ τ)βz(t)〉 =
πα2

z

2

N∑
j=1

[F (ωj)ωj ]
2[δ(ω − ωj) + δ(ω + ωj)]. (S91)

Hence, we can use the model of power spectral density to reverse the noise distribution in the time domain. For instance, if we
want to simulate the power spectral density for S(ω) ∼ ωp, then the modulation function F (ωj) = (ωj)

p/2−1. Taking Eq. (S87)
into above,

χ(t) = α2
z

N∑
j=1

[F (ωj)]
2 sin2 ωjt

2
(S92)

The initial state |ψ(0)〉 = α|0〉+ β|1〉 with the dephasing noise of the Hamiltonian βz(t)σz in the rotating frame after time τ
will become

|ψ(τ)〉 = exp
[
−i
∫ τ2

τ1

dtβz(t)σz/2

]
(α|0〉+ β|1〉) = exp

[
−i4θτ

σz
2

]
|ψ(0)〉, (S93)

where 4θτ is the integral of βz(t) . Hence we just rotate the angle 4θτ along the z-axis at the desired point to realize the
evolution of the quantum system in the dephasing environment.
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ii. Amplitude Noise

Similarly, we can obtain the βx(t) of the amplitude noise as a result of the amplitude fluctuation of the control field,

βx(t) =

N∑
j=1

αxF (ωj) sin(ωjt+ φj), (S94)

F (ωj) = (ωj)
p/2, (S95)

and its power spectral density is

S(ω) =
πα2

x

2

N∑
j=1

[F (ωj)]
2[δ(ω − ωj) + δ(ω + ωj)] (S96)

iii. Parameters for Dephasing Noise of the Drude-Lorentz Form

For the Drude-Lorentz spectrum of the dephasing noise, taking Re[g(t)] equal to χ(t), we obtain

β(t) =

√
2

π

N∑
j=1

F (ωj)ωj cos(ωjt+ φj), (S97)

F (ωj) =

√√√√2λγω0 coth(
βωj

2 )

ωj(ω2
j + γ2)

. (S98)

In short, as long as we know the power spectral density of the noise, we can then obtain the time-varying β(t) and χ(t). Table I
shows F (ωj) for distinct types of dephasing and amplitude noises.

Table I. F (ωj) for distinct dephasing and amplitude noises

Dephasing Amplitude

1/f2 1/f White Ohmic Drude-Lorentz 1/f2 1/f White Ohmic

F (ωj) ω−2
j ω

−3/2
j ω−1

j ω
−1/2
j

√
2λγω0 coth(βωj/2)

ωj(ω2
j+γ

2)
ω−1
j ω

−1/2
j ω0

j ω
1/2
j

iv. Parameters for Dephasing Noise of Arbitrary Form

For the general spectrum J(ω) of the dephasing noise, we make Re[g(t)] and χ(t) be equal according to Eqs. (S20), (S87), (S92)

α2
z

N∑
j=1

[F (ωj)]
2

sin2 ωjt

2
=

N∑
j=1

J(ωj)ω0

ω2
j

(1− cosωjt) coth

(
βωj

2

)
. (S99)

After simplifying the above formula, we can obtain

F (ωj) =
1

αz

√
2J(ωj)ω0

ω2
j

coth

(
βωj

2

)
. (S100)

For the B777-complexes in Ref. [S22], of which the spectral density is

J(ω) =
S0

s1 + s2

∑
i=1,2

si
7!2Ω4

i

ω3e−(ω/Ωi)
1/2

(S101)

where s1 = 0.8, s2 = 0.5, Ω1 = 0.069 meV, Ω2 = 0.24 meV, S0 = 0.5, the corresponding F (ωj) in NMR experiments can be
obtained via the above formula (S100).
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5. EXPERIMENTAL DETAILS AND RESULTS

Experiments are carried out at room temperature using a Bruker Avance III 400 MHz spectrometer. The sample is chloroform
dissolved in d6-acetone as a two-qubit NMR quantum processor where H is the first qubit and C is second qubit. The internal
Hamiltonian of the two-qubit system can be described as

Hint = πω1σ
z
1 + πω2σ

z
2 +

π

2
Jσz1σ

z
2 , (S102)

where ω1 = 3206.5 Hz, ω2 = 7787.9 Hz are the chemical shifts of the two spins and J = 215.1 Hz is the J-coupling strength
between two spins. The experimental process is divided into three steps, as shown in Fig. S1.

PPS ...

U1 U2 UN

Evolution

...

Figure S1. Sequence of the NMR experimental process. It includes three steps: preparation of the pseudo-pure state, Evolution of the
Hamiltonian with Drude-Lorentz noise and measuring the probability distribution of four states.

X

X

X

-X

-X

Gz Gz

X

Y

C

1/4J

PPS Preparation

R( ) R( ) R( )

H

Figure S2. NMR sequences to realize pseudo-pure state. Gz means a z-gradient pulse which is used to cancel the polarization in xy plane.
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i. Preparation of the Pseudo-pure State

The thermal equilibrium state for the two qubit system is

ρeq ≈
1

4
I + ε(γHσ

z
1 + γCσ

z
2), (S103)

where I is a 4× 4 identity matrix, ε ≈ 10−5 describes the polarization, and γH and γC represent the gyromagnetic ratios of the
1H and 13C nuclei, respectively. The spatial average technique [S12] is used to obtain a pseudo-pure state

ρ00 =
1− ε

4
I + ε|00〉〈00| (S104)

and the related pulse sequence is depicted in Fig. S2. Thus we only focus on the part |00〉 as the entire system behaves since the
identity part does not influence the unitary operations or measurements in NMR experiments.

ii. Evolution of the Hamiltonian with the Drude-Lorentz Noise

The total Hamiltonian for simulating photosynthetic EET in the NMR system is

H(t) = HS + n1(t)σz1 + n2(t)σz2 , (S105)

n1(t) =
β1(t) + β2(t)

2
, (S106)

n2(t) =
β1(t)− β2(t)

2
, (S107)

where HS is the system Hamiltonian, and βi(t) (i = 1, 2) are the time-dependent Drude-Lorentz noises. In experiments, the
evolution can have L discretized steps, and the evolution time is t = L∆t with

U(t) = T exp

[∫ t

0

−iH(t′)dt′
]

=

L∏
i=1

Ui =

L∏
i=1

exp[−iHi∆t], (S108)

where Hi is the time-independent Hamiltonian at point ti = i∆t. Note U(t) is calculated by the gradient ascent pulse engineer-
ing (GRAPE) method with 5 ms of each pulse to reduce the accumulated pulse errors in experiments.

iii. Measure the Probability Distribution of Four States

Our goal now is to acquire probability distributions of four states |00〉, |01〉, |10〉, |11〉; namely, the four diagonal values of the
final density matrix. The density matrices of the output states are reconstructed completely via quantum state tomography (QST)
[S13]. In the QST theory, the density matrix of the system can be estimated from ensemble averages of a set of observables. For
the one-qubit system, the observable set is {σi} (i = 0, 1, 2, 3), where σ0 = I is the identity, σ1 = X , σ2 = Y , σ3 = Z are the
Pauli matrices. The NMR signal is

S(t) ∝ [〈X〉+ i〈Y 〉]eiωt, (S109)

which is oscillating at the frequency ω and 〈X〉 and 〈Y 〉 are obtained in practice by Fourier transforming S(t) and integrating
the real and imaginary spectra, respectively. The signal becomes

SY (t) ∝ [−〈Z〉+ i〈Y 〉]eiωt (S110)

after applying exp[−iπY/4]. The density operator of one-qubit can be estimated by

ρ =
1

2
I + 〈X〉 X + 〈Y 〉Y + 〈Z〉 Z. (S111)

For the two-qubit system, the observable set is {σi ⊗ σj}(i, j = 0, 1, 2, 3). In our experiments, the complete density matrix
tomography is not necessary. All we need is to perform two experiments in which the reading-out pulses exp(−iπY/4)⊗ I and
I ⊗ exp(−iπY/4) are respectively implemented on the final states of 1H and 13C and the corresponding qubits that need to be
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observed are respectively 1H and 13C. Then the probability distribution of four states are obtained by the results of measuring
〈ZI〉, 〈IZ〉, 〈ZZ〉. Then the probability distribution of four states are respectively

ρ00 =
1

4
I + 〈ZI〉+ 〈IZ〉+ 〈ZZ〉, (S112)

ρ01 =
1

4
I + 〈ZI〉 − 〈IZ〉 − 〈ZZ〉, (S113)

ρ10 =
1

4
I − 〈ZI〉+ 〈IZ〉 − 〈ZZ〉, (S114)

ρ11 =
1

4
I − 〈ZI〉 − 〈IZ〉 − 〈ZZ〉. (S115)

6. GRADIENT ASCENT PULSE ENGINEERING (GRAPE) ALGORITHM

Here we describe the GRAPE technique proposed by Glaser et al. [S14] which has been frequently used in NMR experiments.
For an n-qubit NMR system, the total Hamiltonian contains the internal term

Ht = Hint +HRF, (S116)

and the radio frequency (RF) term

HRF = −
n∑
k=1

γkBk
[
cos(ωkRFt+ φk)σkx + sin(ωkRFt+ φk)σky

]
, (S117)

where Bk and φk are the amplitude and phase of the control field on the kth nuclear spin. The goal of the GRAPE technique is
to find the optimal parameters Bk and φk of the RF field by iteration to control the designed evolution UT very close to desired
target evolution UD. Assuming that the total time of RF field is T , which is divided into L discrete segments. The time of each
segment is ∆t = T/L and the time propagator of the jth segment can be expressed as

Uj = exp[−i∆t(Hint +
∑
k

ukx(j)σkx +
∑
k

ukx(j)σkx)]. (S118)

Thus, the total evolution is UT = UNUN−1 · · ·U2U1. The fidelity to the target evolution UT can be expressed as F =

|Tr(U†DUT )|/2n, which is also called the fitness function. The GRAPE algorithm considers the fidelity F as the extreme value
optimization of the multi-function. We calculate the gradient function to first order,

gkx,y(j) =
∂F

∂ukx,y(j)
≈ − 2

2n
Re[U†DUN · · · (−i∆tσ

k
x,y)Um · · ·U1]. (S119)

The fitness functions can be increased in the gradient iteration,

ukx,y(j)→ ukx,y(j) + ε · gkx,y(j), (S120)

where ε is a suitable and small step size. The GRAPE procedure starts from an initial guess input and evaluates the corresponding
gradients gkx,y(j) and then keeps iterating until the fitness function reaches the desired value.

7. RESULTS OF THE NUMERICAL SIMULATIONS

Before the experimental demonstration, we shall numerically demonstrate that the photosynthetic light harvesting can be
exactly mimicked by the NMR quantum simulation using the GRAPE algorithm.

In our numerical simulations, we used the following parameters, i.e., γNMR = 2π × 45 kHz, λNMR = 2π × 0.01 kHz,
TEET = 3× 104 K, and TNMR = 5× 10−5 K. Also, ~ = 1.055× 10−34 J · s, and kB = 1.381× 10−23 J/K. The Hamiltonian
for four-pigments in the single-excitation subspace is

HNMR = 2π ×


650 6.3040 0.8059 0.2370

6.3040 645 6.5950 0.8059

0.8059 6.5950 615 6.3040

0.2370 0.8059 6.3040 610

 kHz. (S121)
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Figure S3. The symbols show the GRAPE results and the curves show the HEOM results. The time interval of (a) is 0 ∼ 12 ms, and the time
of (b) interval is 0 ∼ 0.5 ms.

8. COMPUTATIONAL COSTS OF NMR AND HEOM

When the open quantum system consists of N levels or sites, each coupled to an independent bath (so N baths), and the
correlation function of each bath contains K exponentials, there are [S9, S23]

(N +KN)!

N !(KN)!
≤
√

2π(N +KN)N+KN+ 1
2 e−(N+KN)

eNN+ 1
2 e−N eKNKN+ 1

2 e−KN
=

√
2π(N +KN)

e4NKN

(
1 +

KN

N

)N (
1 +

N
KN

)KN
(S122)

density operators in a hierarchy with a cut-off of N , where we have used the Stirling’s formula [S19]. When the number of
chlorophylls in the photosynthetic complex is very large, e.g. 96 chlorophylls in PSI and about 300 chlorophylls in PSII, and the
form of the spectral density is complicated or the temperature is low,

lim
K,N→∞

(N +KN)!

N !(KN)!
≤ lim
K,N→∞

√
2π(N +KN)

e4NKN

(
1 +

KN

N

)N (
1 +

N
KN

)KN
=

√
2π(N +KN)

e4NKN
eN+KN . (S123)

On the other hand, the computational cost of GRAPE is [S20, S21]

4log2N = N2, (S124)

where N is the number of energy levels involved in the energy transfer. Because the N -level photosynthetic light harvesting is
simulated by log2N -qubit NMR, the computational cost has the potential to be effectively reduced from exponential in N by
the HEOM to polynomial in N by GRAPE.

9. EFFECT OF THE NUMBER OF RANDOM REALIZATIONS AND ERROR ANALYSIS

Errors are small and mainly caused by imperfections in the initial-ground-state preparation and GRAPE pulses, which can be
estimated by numerical simulations. The remaining errors may originate from, e.g., imperfections in the experimental quantum
control, the static magnetic field, and the spectral integrals.

As shown in Sec. 3, in the derivation of quantum dynamics under the influence of noise, we have assumed that the average over
random realizations is equivalent to the average over time. The assumption is valid only if the number of random realizations
M is in the infinite-M limit. In order to verify this assumption, we experimentally investigate the effect of number of random
realizations on the NMR simulation, as shown in Fig. S4. As M increases from M = 50 to M = 150, the experimental
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Figure S4. Simulation of the energy transfer governed by HNMR for M random realizations: (a) and (b) M = 50, (c) and (d) M = 100, (e)
and (f) M = 150. The right column is enlarged for short-time regimes in the left column. The symbols show the experimental data, and the
curves are obtained from the numerical simulation using the HEOM.

simulation approaches closer and closer to the numerical simulation by the HEOM. In Fig. 4 of the main paper, we have
compared the numerical results by GRAPE and HEOM for M =50, 500, and 5000. As M increases, the difference between
the results by the GRAPE and the HEOM algorithms becomes smaller. When M ∼ 500, the difference is hardly noticeable.
Therefore, it is justified to mimic the photosynthetic energy transfer by the NMR with random realizations.
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