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Experimental quantum forgery of quantum optical money
Karol Bartkiewicz 1,2,3, Antonín Černoch4, Grzegorz Chimczak1, Karel Lemr2, Adam Miranowicz1,3 and Franco Nori 3,5

Unknown quantum information cannot be perfectly copied (cloned). This statement is the bedrock of quantum technologies and
quantum cryptography, including the seminal scheme of Wiesner’s quantum money, which was the first quantum-cryptographic
proposal. Surprisingly, to our knowledge, quantum money has not been tested experimentally yet. Here, we experimentally revisit
the Wiesner idea, assuming a banknote to be an image encoded in the polarization states of single photons. We demonstrate that it
is possible to use quantum states to prepare a banknote that cannot be ideally copied without making the owner aware of only
unauthorized actions. We provide the security conditions for quantum money by investigating the physically-achievable limits on
the fidelity of 1-to-2 copying of arbitrary sequences of qubits. These results can be applied as a security measure in quantum digital
right management.
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INTRODUCTION
The seminal proposal of quantum money by Wiesner1 (see also
ref. 2), followed by the introduction of quantum key distribution
(QKD) protocols by Bennet and Brassard3 and by Ekert,4 have
triggered a breathtaking interest and progress not only in
quantum cryptography but, in general, in quantum information
over the last three decades. It is not surprising that refs 3, 4 on
QKD are among the most often cited works in quantum
information, and both quantum and classical cryptography.
Moreover, various commercial implementations of QKD protocols
(for a recent review see ref. 5), together with quantum random-
number generators and the D-Wave machine (see, e.g., 6) are
probably the only commercial applications of quantum informa-
tion and quantum optics up to now.7 Although, various protocols
of quantum money have already been proposed (see, e.g.,
refs 8–17), this interest cannot be compared with the immense
popularity and applicability of QKD (see refs 18–20 as an example
of recent and fundamental achievements). This is partially because
there have not been, to our knowledge, any experimental
realizations of quantum money performed yet. Here, we report
not only an experimental implementation of quantum money but
also an experimental attempt to its forgery using optimal cloning
machines.
Our experimental work basically describes one-by-one attacks

on each single qubit. In the quantum money scheme, however,
eavesdroppers, in principle, can access every qubit at once. So,
they can globally access multiple qubits and can seek superior
attacks using such global access. This could be a reason why there
has not been a known representative work for the experiment of
attacking quantum money, because this would need to treat
numerous qubits and difficult global controls of their quantum
states. The attacks presented in this work are less distinguished
from quantum cloning itself or the attack for BB84 quantum key
distribution. Thus, collective or coherent attacks on multiple qubits

simultaneously can, in principle, optimize the attacker’s strategy.
This is, nevertheless, considerably more demanding if not
impossible with the current state of experimental quantum
information processing. In this paper, we investigate a more
accessible form of attack based on individual cloning which, in our
view, represents a realistic threat for near-future quantum
communications, including quantum money schemes.
Any information can be encoded as a sequence of zeros and

ones. This sequence can also be represented using a set of single
photons prepared in the horizontal and vertical polarization states.
The polarization states of a photon can be described as a
superposition of the two orthogonal polarization states, i.e.,

ψj i ¼ cos
θ

2
$j i þ eiϕ sin

θ

2
lj i; ð1Þ

where the angles θ and ϕ are the spherical coordinates of this
qubit on the Bloch sphere, while ↔ and l denote horizontal and
vertical polarizations, respectively. For each such state there exists
an orthogonal state

ψ?j i ¼ sin
θ

2
$j i � eiϕ cos

θ

2
lj i: ð2Þ

Any pair of such orthogonal states can be used to encode logical
values 0 and 1. Without knowing what particular states have been
used (i.e., without knowing θ and ϕ), there is no way of telling (with
certainty) what logical value is associated with the photon.
Any attempt of gaining this information from the photon will

disturb its polarization state and damage the information.
Therefore, using photons to transmit sensitive information
appears to be a promising idea. In the simplest scenario, the
sequence of polarized photons is associated with a set of numbers
indicating the correct measurement bases. These latter sequence
needs to be confidential. If this sequence would be intercepted
together with the sequence of photons, the quantum information
could be read and reproduced at will. First, by deterministically
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distinguishing between |ψ⟩ and |ψ┴⟩ associated with the bit values
0 and 1, respectively. Next, by reproducing the detected state.
Therefore, the advantages provided by this kind of quantum

communication are limited to protocols, where a trusted arbiter
checks the validity of a given sequence of qubits. Thus, the
sequence of qubits can be used, e.g., as one-time passwords
(tokens)15 or arbitrated quantum currency.1 However, some
research has been conducted in order to eliminate the need for
an arbiter in the quantum currency schemes.12, 16

Currently, tokens are widely applied as an extra layer of security,
e.g., in a two-step authentication protocols used in social media
services or Internet banking etc. While the classical tokens are
sensitive to being copied, the quantum tokens cannot be
delivered to two or more users at the same time without
disturbing a given quantum dataset.1, 15, 17

It is claimed today that the security of our data is as good as its
passwords. In the following text we discuss how to generate and
check the security of the best tokens allowed by the laws of
nature. The quantum passwords cannot be copied nor viewed
without damaging them. However, quantum data are prone to
noise and some level of noise has to be tolerated in order to
harness the benefits of quantum technologies.
The quantum tokens can also be used as quantum money. The

idea of quantum money goes back to Wiesner1 who proposed to
embed a sequence of qubits into banknotes that would be
verified by banks. This was the first idea of quantum cryptography
introduced already in the early 1970s and eventually published in
1983.1, 21

In order to be able to verify the money, a bank would attach
information about the banknote serial number as classical
information. This pioneering idea evolved over the last decades
to more practical protocols, which are shown to be more secure
and less demanding on the participating parties of a quantum
currency system.12, 16 However, all the protocols face the problem
of decoherence that makes the quantum banknotes to be usable
for a limited amount of time, even if the currency is represented as
a sequence of photons,15 which can have exceptionally-long
coherence times.
Photons are robust to decoherence, because they do not

usually interact with each other. Moreover, if the string of photons
is handled properly it can last in a coherent state long enough to
be useful in some financial transactions. Let us consider a
transaction, where quantum money is withdrawn at the speed
of light from a bank by an authorized user as a sequence of
photons that arrives at a payment terminal, which allows its user
to redirect the money to any other payment terminal. The final
user sends the sequence to the bank together with an account
number, where the money is to be stored. Lossless transmission of
photons is impossible. Therefore, banks would have to accept
large enough parts of incomplete quantum banknotes and issue
new ones. The same is done nowadays if a banknote is damaged
or a small part of it is missing. The communication between the
payment terminals cannot be wiretapped without damaging this
quantum money. Thus, this quantum money scheme (QMS) allows
for some anonymity if the addresses of the terminals are not
assigned to a specific person and there is at least one terminal
used between the initial and final users. However, the money
could be signed without damaging it using, e.g., the approach
discussed in ref. 22.
Perfect copying of quantum information is impossible,16, 23, 24

but as it was shown in various works, we can copy partially-known
quantum information with very high fidelity. If we are going to
clone some qubits more often than others, we can use a generic
distribution function g(θ, ϕ) to describe this intent. The higher the
value of g, the more frequent cloning of the specific qubit is. This
distribution function satisfies the following normalization

conditionZ
Ω

gðθ;ϕÞdΩ¼ 1; ð3Þ

where dΩ � sin θ dϕ dθ and Ω is the full solid angle. The
distribution g can be arbitrary, but until now only highly-
symmetric distributions have been analyzed (see, e.g., refs 25–27
and references therein). Therefore, one can be under the
impression that this optimal cloning problem can be solved only
for a highly-symmetric class of distributions. However, as we show
below, we are in principle able to always find an optimal cloning
machine corresponding to any randomly generated quantum
tokens or banknotes. Note that the most secure tokens are the
ones with the highest entropy. The same applies here, because
the lowest average cloning fidelity, corresponding to the case
most resistant to cloning attacks, is achieved for a uniform
distribution g, which has the highest possible entropy. However,
while generating quantum money of a finite size at random, it is
hard to ensure each time the perfect entropy. Therefore, in
practice, we could deal with any qubit distribution function g that
could be potentially known to the counterfeiter. In particular,
there exist qubit distributions g made of a weighted sum of two
Dirac’s delta functions at any antipodes of the Bloch sphere. In this
special case, the problem is reduced to the classical case of
standard digital tokens. This is because these particular functions
tell us that there are only two states sent that could be
discriminated deterministically. Quantum money of this kind
should obviously be avoided.
Let us briefly review the main possible attack scenarios. Without

any knowledge about the token, the counterfeiter can use the
universal quantum cloner (UC).28 If the states, appearing in the
qubit sequence, are known but their order is unknown, the
attacker can apply a specialized optimal quantum cloning
machine. This is equivalent to the situation in which the attacker
has some information about the money statistics, but does not
know the sequence of qubits itself. The results of such an attack
can be seen in Fig. 1. Unfortunately, if the attacker knows the
sequence of bases, the quantum money (tokens) can be perfectly
copied.

RESULTS
Noise tolerance vs. security
Let us estimate the level of noise tolerance needed for a quantum
token to be validated in realistic conditions and compare it to the
level of noise introduced by a given optimal quantum cloning. By
doing so, we will limit the class of distributions associated with
acceptable tokens. We assume that a counterfeiter can replace the
noisy communication channel with a less noisy one and perform a
quantum man-in-the-middle attack with an optimal quantum
cloning machine. An equivalent assumption is that the counter-
feiter is a party in the QMS. Finding the optimal cloning
transformation for a given g is a semi-definite programming
problem.29, 30 Such problem can be described as a task of finding
a semi-definite operator χ̂ (a cloning map) describing the copying
process that maximizes the average single-copy fidelity F. Such
operator is isomorphic to a completely positive trace-preserving
map.31 The average single-copy fidelity for an arbitrary distribu-
tion (for symmetric 1→2 cloning) can be expressed refs 26, 27 as

F ¼ 1
2

Z
Ω

gðθ;ϕÞðF0 þ F1Þ dΩ; ð4Þ

where the fidelities of copying a particular qubit for the first and
second clones are

F0 ¼ Tr ½ðρ̂T � ρ̂� b1Þ χ̂� and F1 ¼ Tr ½ðρ̂T � b1� ρ̂Þ χ̂� ; ð5Þ
where ρ̂ ¼ ψj i ψh j, T stands for transposition, and b1 is the single-
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qubit identity operator. The density matrices of both clones are
identical and they read ρi ¼ Trin;i�1½ðρ̂T � 1�2Þ χ̂�, where we
calculate the partial trace over the input qubit and one of the
two clones (⊕ stands for sum modulo 2).
The average single-copy fidelity written in a compact form

reads

F ¼ Tr ðR̂ χ̂Þ: ð6Þ
In order to find the optimal cloning map χ̂, one needs to

compute the R̂ operator defined as

R̂ ¼ 1
2

Z
Ω

gðθ;ϕÞ ρ̂T � ðb1� ρ̂þ ρ̂� b1Þ dΩ: ð7Þ

Remarkably, we show in the Methods that this operator
depends only on its five expansion coefficients of g in the basis
of spherical harmonics, regardless of the exact form of g. The
optimal map χ̂ is found by maximizing F in Eq. (6) for a given R̂
with the optimization algorithm described in ref. 29 (see also refs
18, 25–27, 32).

The output distribution gout of the cloned qubits will differ from
g, because perfect cloning is impossible. Each cloning machine
prepares a perfect clone (1), with probability equal to the fidelity
Fi, and an orthogonal state (2), with probability 1 − Fi. Thus, the
distribution gout(θ,ϕ) of the cloned qubit states can be expressed
as

goutðθ;ϕÞ ¼ Fiðθ;ϕÞgðθ;ϕÞ þ ½1� Fiðθþ π;ϕþ πÞ�gðθþ π;ϕþ πÞ:
ð8Þ

There is no difference between g and gout, if the function is
symmetric with respect to inverting the directions of the Bloch
sphere. This includes the scenarios both for the best case (a
uniform qubit distribution) and the worst case (a sequence of
distinguishable states). The class of such distributions defines the
so-called mirror phase-covariant cloner (or cloning) (MPCC).26

Note that the MPCC is a generalization of the phase-covariant
cloners (PCCs), which enable optimal copying of a qubit state from
the equator of the Bloch sphere33 or other states on the Bloch
sphere with a definite angle θ (see refs 25, 34) (see

Fig. 1 An illustrative example of a a classical banknote. In panels b and c, the simplified banknote from panel a with the decreased number of
colors and resolution is encoded experimentally in two ways to form two examples of quantum banknotes. The symbols used here
correspond to different linear (↔, l, …) and circular (↺ and ↻) photon polarizations (as explained in the main text). Note that the white
regions in b and c correspond to the lack of photons
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the Supplementary Information for more theoretical details on
optimal axially-symmetric quantum cloners together with some
additional experimental data, and about the MPCC and PCC). The
output distribution cannot be used directly to quantify the quality
of the clones, because it does not carry the information about the
order of states in a given sequence.
The analyzed sequence would usually contain some additional

noise due to small random polarization rotations caused by
various imperfections. These include state preparation, distribu-
tion, storage, and finally delivery and analysis. In practice, all these
imperfections lead to the average sequence fidelity Fpass < 1 with
respect to the ideally-performed qubit preparation, storage, and
detection steps.
For simplicity, we assume that all the enlisted protocol elements

are perfect, except the final step of our state analysis. If this final
step is the polarization analysis of single photons with standard
detectors and a polarization beam splitter, we have Fpass ≈ 98%.
Here, we model the joint dispersion of the transmission channel
and the state verification with respect to the target polarization by
the spherical dispersion model on a sphere given by the von
Mises-Fisher distribution35 (i.e., the Gaussian distribution on a
sphere)

f ðκ; αÞ ¼ expðκ cos αÞ
2πI0ðκÞ ; ð9Þ

which is the probability density function of any qubit prepared in
a target state given by its Bloch vector being rotated by an angle
α. The level of concentration of the density function around the
state vector |ψ⟩ is given by the parameter κ. The density function
is normalized with the modified Bessel function I0(κ).

36 From this
model it follows that the probability of detecting a qubit
described by the density matrix ρ = |ψ〉〈ψ| is equivalent to the
average fidelity (6) and is given by

Fprocðρ; κÞ ¼
Z π

0

Z 2π

0
f ðκ; αÞ μh jρ μj idδ dα; ð10Þ

where μj i ¼ cosðθ�α
2 Þ ψj i þ expðiδÞ sinðθ�α

2 Þ ψ?j i. For example, our
direct calculations for α = 0 lead to Fprocðθ; κÞ ¼
2κ cos θ cosh κ þ πκI1ðκÞ sin θþ 2ðκ � cos θÞ sinh κÞ½ �=ð4κ sinh κÞ;
where I1 is the modified Bessel function.36 Thus, for the QMS to be
feasible, we need to accept those sequences with fidelity Fpass =
Fproc(|ψ〉〈ψ|, κ0). Hence, κ0 describes the minimum resolution
required to reveal an attack using a cloner with a given value of
Fpass. The value of κ0 can be derived numerically from the fixed
value of Fpass corresponding to the fidelity of polarization analysis.
For a single qubit, we can use the following security condition
Fproc(ρi, κ) < Fpass, where now κ describes the dispersion of the
channel used by the counterfeiter to deliver the copied sequence.
If this condition is satisfied, the counterfeiter cannot cheat the
verification process. The verification process is performed on the
full sequence of qubits. Therefore, any verification process that
allows for some implementation imperfections should depend on
the average verification fidelity. For a long sequence of cloned
qubits this average fidelity is

FiðκÞ ¼
Z
Ω

gðθ;ϕÞFprocðρi; κÞdΩ ; ð11Þ

whereas for the verification threshold reads as

Fpassðκ0Þ ¼
Z
Ω

gðθ;ϕÞFpassðθ;ϕÞ dΩ: ð12Þ

These values can be obtained by projecting the delivered
quantum banknote on the associated sequence of bases. These
can be approximated as the ratios of the number of the correctly
projected states to the number of the conclusive state projections.
A quantum banknote passes the verification process if Fi>Fpass:
These quantities (used in this inequality) depend implicitly on the
choice of g as the quality of the optimally-counterfeited state

depends on g, specifically on its five expansion coefficients in
terms of spherical harmonics, i.e., five real numbers that could be
estimated by the counterfeiter after measuring some random
parts of the banknote. Thus, in the following text, we assume that
g is publicly known. We demonstrate experimentally that this
weakness could be exploited by a counterfeiter.
Let us consider the situation where the security threshold is

given by a theoretical value of Fi , where κ→∞, which does not take
into account the threat of the counterfeiter using the knowledge
about g. In this case, one would naively assume that the forgery
cannot lead to the fidelity Fi exceeding 5/6, corresponding to the
fidelity of the universal cloning machine.28 It would appear that
using the security threshold of Fpass¼ 5=6 might be a good idea, as
it makes the QMS more robust against errors. This means that one
could naively allow the resolution of the verification process κ0 to
be as small as κ0 = 2.9515. This value is obtained from
Fprocð0; κ0Þ ¼ 5=6. To illustrate that this could be a problem, let
us imagine that we verify qubits described by the Bloch vectors
rotated by an angle Δθ from the Bloch vectors of the expected
states. In Fig. 2, we see that the measured fidelity Fproc(Δθ, κ0)
would be seemingly above the security threshold even for Δθ ≈ π/
2, which means that the verification process would recognize a
large volume of pure states as valid. However, it would not accept
the states for which the Bloch vectors are rotated by more that 90°
from the target Bloch vectors. In this regime, we are approaching
the situation where any state prepared in a basis, which is
unbiased with respect to the verification basis, would pass the
verification process. The counterfeiter can guess the conjugate
basis correctly with probability 2/3 and choose the correct state in
the matching basis with probability 1/6. This means that 83% of an
arbitrary banknote prepared by the counterfeiter is accepted and
the QMS is broken. Fortunately, this is not exactly the case as

Fig. 2 Contour plot showing how the probability of detecting a
qubit of an unknown state |ψ(θ, ϕ)〉 for money verification depends
on the imperfect choice of the measurement direction Δθ and the
photon verification (or discrimination) resolution κ. Specifically, this
probability is equivalent to the fidelity Fproc(Δθ, κ) for which the
Bloch vector is rotated with respect to its correct orientation by Δθ
for a given value of κ. Note that the probability does not depend on
θ or ϕ, but only on Δθ, which measures the angle between the
original and rotated Bloch vectors. The solid black lines mark two
specific values of κ: κ0= 2.9515 describes the minimal resolution
needed to detect an attack with an optimal universal cloning
machine and κd= 25 corresponds to the resolution reached in our
experiment. Note that the shape of the depicted relation depends
on the dispersion function of the detector. Here, this function is
chosen as the von Mises-Fisher distribution
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Fproc(π/2, 2.9515) = 0.8115 < 5/6. Note that this could be dangerous
if the dispersion of the state verification would not be described
with the von Mises-Fisher distribution, but with some similar
function. Thus, for the low resolution regime of κ0 ≈ 2.9515 the full
characterization of the verification setup is required in order to
exclude this classical attack.
The detection resolution κd of a given experimental setup

should be as large as possible. In our experiment we
achieved κd = 25, which is obtained from Fprocð0; κdÞ ¼0:98. Even
if the detection resolution is perfect κ0→∞, the quantum money
can be counterfeited using a specialized quantum cloner
optimized for g. In the following section we illustrate this with
an experiment.

Experimental quantum forgery
Let us consider cloning the quantum banknote 1 from Fig. 1,
where single-photon polarization states appear approximately
with the following probabilities: p(⤡) = 0.125, p(⤢) = 0.125,
pðlÞ ¼ 0:125; p(↔) = 0.125, pð↺Þ ¼ 0:25; pð↻Þ ¼ 0:25; where
the poles of the Bloch sphere correspond to the left-circular (↺)
and right-circular (↻) polarization states, while the equatorial
plane is spanned by the horizontal (↔), vertical (l), diagonal (⤡),
and anti-diagonal (⤢) polarization states. In this case the optimal
cloning machine is an axially-symmetric PCC 27 corresponding to
the MPCC.26 The probability distribution is described here with
only one nonzero number, i.e., c2,0 = 0.25(5π)1/2 (using the notation
from ref. 27: a2 = c2,0/(5π)

1/2 and |Γ| = 0). The fidelity of copying the
equatorial states is then equal to F(↔) = F(↕) = F(⤡) = F(⤢)=0.789
and Fð↺Þ ¼ Fð↻Þ ¼ 0:894 for the pole states. This results in the
theoretical value of Fiðκ ! 1Þ ¼ 0:842, which is a bit above the
security threshold of Fi ¼ 0:833: Using our experimental setup
shown in Fig. 3, we achieve Fi;experiment ¼ ð81:9 ± 2:0Þ%. This
experimental value is close to the universal cloning limit, i.e.,
Fi ¼ 0:833. In this case, only (14.0 ± 2.9)% of the sequence was
successfully copied. Alternatively, when we attack this banknote
with our implementation of the optimal universal cloner, we
obtain Fi;experiment ¼ ð81:5 ± 1:2Þ%; and (19.6 ± 1.2)% of qubits are
copied. This makes the forgery unsuccessful for two reasons: (i)
the quality of the delivered qubits is lower than allowed, (ii) we
delivered less than 50% of the sequence to each recipient. More
than 50% of the qubits have to be delivered to exclude the
possibility of duplicating the money by cutting it into pieces.
However, the forgery becomes successful if one uses the optimal
quantum cloning process, with high fidelity but low success rate,
interchangeably with a classical cloning process, with high success
rate but low fidelity.

Let us consider another case, where we can crack the QMS and
the quantum banknote 2 from Fig. 1 is described with the
following probabilities: p(⤡) = 0.125, p(⤢) = 0.125, pðlÞ ¼ 0:125; p
(↔) = 0.125, pð↺Þ ¼ 0:50; and pð↻Þ ¼ 0: In this case the optimal
cloning machine is also an axially-symmetric (phase-covariant)
cloner27 (ASC), where c1,0 = 0.5(3π)1/2, c2,0 = 0.25(5π)1/2, which
corresponds to a1 = 0.5, a2 = 0.25, and |Γ| =∞, using the notation
from ref. 27. We have falsified this banknote by applying
interchangeably both the optimal classical and the best quantum
copying strategies (see ref. 32). The optimal classical copying can
be viewed as measuring a fraction ε of the original photons from
the sequence in a random basis (selected according to g) and
preparing two photons in the detected state. We implemented
this strategy by randomly swapping a fraction of photons from the
original sequence with the circularly-polarized photons selected in
accord with g (for details see the Methods). The fidelity of this
strategy is ð3þ hcos θi2Þ=4 ¼ ð3þ a21Þ=4. We used this optimal
classical strategy with probability ε = 0.4. Using this method, we
implemented a cloning attack, which copies circa (54.9 ± 0.1)% of
the sequence (this means that we could sacrifice about 4% of the
sequence to estimate g). Our implementation of the optimal
quantum copying strategy allows us to copy 24.8 ± 0.1% of the
sequence with a fidelity of (92.4 ± 0.4)% (the theoretical value is
92.6%). The optimal classical copying strategy32 operated with
fidelity circa 81.3%. This provides us with the experimental
average cloning fidelity of Fi;experiment ¼ 0:842± 0:002. Thus, we
demonstrated that it is possible to crack the Wiesner QMS with
currently available technology. However, this was possible only
because the incoming sequence of photons was synchronized
with the probing photons allowing them to interact on a beam
splitter. The counterfeiter would face some additional technical
challenges when applying the discussed copying method in real
life (see the discussion in ref. 18). This cloning regime, where the
cloning process happens with a fidelity larger than the fidelity of
the best classical copying process, and the transmitted qubits are
successfully copied with a probability larger than 50%, can also be
applied constructively to increase the classical product capacity of
a quantum channel.32

The experimental results of the above-discussed copying
strategies for the two experimental quantum banknotes are
summarized in Fig. 4. Moreover, in Figs 5, 6 we demonstrate how
the measured success probability of the cloning process and the
corresponding single-copy fidelity depend on the value of the
hybridization parameter ε. The selected values of this parameter
correspond to optimal classical (ε = 1), hybrid (ε = 0.4), and optimal
quantum cloning (ε = 0). The significant reduction of variance in
these figures with respect to purely quantum cloning (ε = 0) is
caused by using a robust classical copying process interchange-
ably with a more delicate optimal quantum cloning strategy (for
details see the Methods).

DISCUSSION
We demonstrated that using currently available technology we are
able to both implement and crack the original QMS of Wiesner.1

given that (i) a sequence of qubits, representing the quantum
banknote is not sampled uniformly over the Bloch sphere, (ii) the
banknote is considered valid if more than 50% of the sequence is
delivered and its average fidelity is above the fidelity of the
universal cloner.28 i.e., 83.3%. From our results it follows that to
make the Wiesner QMS secure against copying, one should apply
a g-dependent verification threshold, which corresponds to the
average single-copy fidelity of the relevant optimal quantum
cloner. We have shown that a specialized optimal cloner for an
arbitrary qubit distribution g can easily be found by computing
only its five parameters and subsequently applying the optimiza-
tion procedure described in ref. 29. We believe that our results will

Fig. 3 Experimental setup for cloning quantum bankotes. Compo-
nents are labeled as follows: HWP is half-wave plate, QWP is quarter
wave-plate, PDBS is polarization dependent-beam splitter, PBS is
polarizing beam splitter, BD is beam divider, NDF is neutral density
filter, and D is single photon detector. A successful cloning and
verification of a qubit from a given sequence is registered as a
simultaneous detection event at the two detectors
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stimulate further research on secure quantum communication and
quantum technologies.

METHODS
Theory
In our theoretical considerations we apply the spherical harmonics36 Ym

l for
l = 0,1,2 and m = 0,1,...,l. The spherical harmonics for m < 0 are simply
related to these for m > 0, because

Ym
l ¼ ð�1ÞmY�m

l : ð13Þ
The operator R̂, in terms of the spherical harmonics Yl,m, can be

expressed as

R̂ ¼
X2
l¼0

Xl

m¼�l

K̂ l;mcl;m ; ð14Þ

where

K̂ l;m ¼ 1
2

Z
Ω

ρ̂T � ðb1� ρ̂þ ρ̂� b1ÞYm
l ðθ;ϕÞ dΩ ; ð15Þ

the bar denotes complex conjugation, and

cl;m ¼
Z
Ω

gðθ;ϕÞYm
l ðθ;ϕÞ dΩ: ð16Þ

It can be directly shown that

ρ̂T � ðb1� ρ̂þ ρ̂� b1Þ¼ 2
X2
l¼0

Xl

m¼�l

K̂ l;mY
m
l ðθ;ϕÞ ; ð17Þ

hence, we do not need terms with l > 2. For a real-valued distribution g we
obtain

cl;m ¼ ð�1Þmcl;�m: ð18Þ
This property follows from the definition of the spherical harmonics.

Thus, for the normalized g distributions one computes cl,m only for l = 1,2
and m = 0,1,...,l, which results in five integrals in total. Depending on the
symmetry of the distribution g, some of the integrals vanish, which
simplifies further calculations. The expansion coefficients K̂ l;m can be
written in the form of block matrices as given in the Supplementary
Information. (see Supplementary Information for more theoretical details
on optimal axially-symmetric quantum cloners together with some
additional experimental data).

Fig. 4 Experimental quantum banknotes 1a and 2b are copied probabilistically with an optimal 1-to-2 linear optical cloning machine shown
in Fig. 3 and subsequently verified. This device can be tuned to implement, in special cases, the UC, the PCC, and the MPCC. Note that the
white regions in quantum banknotes, or their copies, correspond to either a lack of photons or the cases where the cloning process failed to
deliver one photon per banknote. One observes that the copies, which are provided with the best possible cloning machines, are noisy and,
thus, the sequences of qubits are damaged (shown in red). The performance of a given cloning process depends on the statistics of photon
polarizations. Thus, the copies of quantum banknote 1a obtained by an optimal purely-quantum cloner (the UC and MPCC) fail the
verification. The copies of banknote 2b obtained by an optimal hybrid (i.e., quantum-classical) cloner fail the verification if the UC is used, but
pass the verification if the PCC is applied
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Experiment
The experimental setup is depicted in Fig. 3. Pairs of photons were
generated in the process of spontaneous parametric down-conversion
using a LiIO3 crystal pumped by 200mW of cw Kr + laser beam at 413 nm.
Hundreds of photon pairs were collected using single-mode fibers and
transferred to the input of the cloner setup. One photon of each pair (i.e., a
cloned photon) was used to encode a bit of quantum information into its
polarization state, while the other photon served as an ancilla being either
horizontally or vertically polarized. In the next step, the cloned and
ancillary photon interfere on a polarization-dependent beam splitter
(PDBS). Ideally, this beam splitter should transmit the horizontally-
polarized light with intensity transmissivity of 0.789 and the vertically-
polarized light with intensity transmissivity of 0.211. Due to manufacturing
errors, the real intensity transmissivities of our PDBS are 0.76 and 0.18 for
horizontal and vertical polarizations, respectively. To correct for this
deviation between the real and ideal PDBS parameters, a beam divider
assembly (BDA) is inserted into each output mode of the PDBS. This BDA
consists of two beam displacers separating and subsequently rejoining
horizontal and vertical polarization components of photons wave packets.
By inserting a neutral-density filter (NDF) into either a horizontal or vertical
polarization mode inside the BDA, one can achieve polarization sensitive
losses and, thus, compensate for incorrect parameters of the PDBS. Note
that this compensation can restore an ideal operation of the PDBS at the
expense of a lower success rate. To balance the rate of the cloned and
ancillary photons, some additional NDFs can be placed behind the BDAs.
Finally, both the cloned and ancillary photons are subjected to our
polarization analysis consisting of a set of quarter-wave (QWP) and half-
wave (HWP) plates followed by a polarizing prism.37 The coincident photon
detections are counted for each combination of the polarization projection
onto the horizontal, vertical, diagonal, anti-diagonal, and both circular

polarizations. The density matrices of the corresponding two-photon states
are then estimated using a maximum-likelihood algorithm.38 A more
detailed account on the experimental procedure is available in our
technical paper.39 The swapping procedure used for the optimal classical
copying strategy was implemented with the setup shown in Fig. 3 by
removing the PDBS and filters used in the BDAs. We applied the following
hybrid quantum-classical cloning procedure: Initially, we prepared the best
classical replacement for ρ = |ψ〉〈ψ|, i.e., σ̂ ¼ R

Ωg ψj i ψh j dΩ in the ancillary
mode and randomly swapped it with the input state ρ̂ for a fraction ε of
the input photons. For the remaining 1 − ε photons we performed the
relevant optimal quantum cloning. When properly tuned, this procedure is
far less noisy than the implementation of pure quantum cloning and, thus,
the quality (described by, e.g., the dispersion of the fidelity) of this hybrid
cloning procedure depends mostly on the quality of the quantum cloning
process (see Figs 5, 6).
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