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Optimization of lattice surgery is NP-hard
Daniel Herr 1,2, Franco Nori 1,3 and Simon J. Devitt1,4

The traditional method for computation in either the surface code or in the Raussendorf model is the creation of holes or “defects”
within the encoded lattice of qubits that are manipulated via topological braiding to enact logic gates. However, this is not the only
way to achieve universal, fault-tolerant computation. In this work, we focus on the lattice surgery representation, which realizes
transversal logic operations without destroying the intrinsic 2D nearest-neighbor properties of the braid-based surface code and
achieves universality without defects and braid-based logic. For both techniques there are open questions regarding the
compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult and the
classical complexity associated with this problem has yet to be determined. In the context of lattice-surgery-based logic, we can
introduce an optimality condition, which corresponds to a circuit with the lowest resource requirements in terms of physical qubits
and computational time, and prove that the complexity of optimizing a quantum circuit in the lattice surgery model is NP-hard.
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INTRODUCTION
Quantum computation is a very promising method to perform
information processing. Several types of problems, such as prime
factorization1 or search algorithms2 can be sped up considerably.
The first physical realizations have been built,3–7 where error rates
are small enough to allow for effective error-correction and fault-
tolerant quantum computation.8 Many diverse systems can
already run small quantum algorithms and projects such as the
IBM Quantum Experience,9 have connected small prototype
computers to the cloud for both educational purposes, and to
allow other researchers to test small-scale protocols.
One of the remaining tasks for experimentalists is to scale up

the number of qubits, while maintaining low error rates, in order
to allow more complex algorithms to be performed. The task for
theorists is now to build a quantum compiler,10–13 that can
translate high-level algorithms to individual hardware instructions.
This compiler has to be aware of the hardware faults and should
introduce error-correction to protect logical qubits from physical
influences, in order to ensure a completely fault-tolerant
computation. Several parts of such a compiler have already been
created for both the offline component (before a quantum
computer is initiated)10–13 and the online component (classical
software run in tandem with the quantum algorithm),14, 15 but a
complete software package has yet to be developed. Notably,
optimization algorithms,16 which operate at the error-correction
level, are still lacking to optimize physical resources in the most
commonly used error-correction models. To this end, we inspect
the optimization of a specific topologically based operational
model called lattice surgery (LS).17 This representation was chosen
particularly because of its applicability to a wide range of
hardware models,18–22 and the applicability of LS approaches
using other topological coding techniques.23–25

For a practical fault-tolerant computer using LS, both the
physical and logical levels are arranged in a 2D nearest-neighbor

array, on which a universal gate set can be realized.17, 26 This 2D,
nearest-neighbor environment is enforced by the connectivity of
the physical qubit array. For LS this is the planar code,27 for
braiding it is generally the surface code.8, 27, 28 The common
feature of all these representations is that physical qubits are
connected via a graph, that indicates their possible interactions.
Even non-fault-tolerant implementations suffer from the restricted
connectivity of the underlying physical qubits and methods to
perform computation on these had to be developed.29

Conceptually, algorithmic compilation and optimization is
similar to more traditional measurement-based quantum compu-
tation, but at the level of error-corrected qubits. The LS
translation26 of an arbitrary circuit creates an algorithmically
specific graph state at the encoded level, using the native parity
checks of LS. After this encoded graph is created, a time-ordered
sequence of non-Clifford measurements is performed on each
encoded node in the graph to realize the algorithm. This is akin to
traditional measurement-based quantum computation30 (which is
not error-corrected), where a 2D, universal graph state (commonly
referred to as a cluster state) is prepared, a quantum circuit
mapped to this 2D array and all associated Clifford measurements
are performed. The 2D cluster state is then converted to an
algorithmically specific graph state where the only subsequent
operations needed are a time-ordered sequence of non-Clifford
measurements and feed-forward.26, 31

Here, we want to evaluate the complexity of the creation of
such an encoded graph state. In complexity theory, problems are
divided into categories, which determine their hardness. A famous
class consists of non-deterministic polynomial complete (NP-
complete) problems.32 Such problems lie in the complexity class
NP, such that a solution can be verified in polynomial time, and
are at least as hard as the most difficult problems in NP. A
common way to determine NP-completeness is to map an already
known NP-complete problem to the problem of interest.32
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We were inspired by the proof of NP-hardness of Tetris,33 and map
the 3-partitioning problem34 to the optimization of LS patches
using the translation devised in ref. 26. This implies that it is also
NP-hard to optimize the complete problem including measure-
ments, because this only adds an additional layer of complexity to
the system.
We will prove that the circuit optimization of a particular fault-

tolerant implementation of topological error-correction is NP-hard.
Similarly to our result, it has been shown that it can be NP-hard for
a compiler to optimize classical code, such that its execution is
time optimal.35 Our results, thus, urge the development of
heuristics that can optimize quantum circuits not exactly, but at
least reasonably well, for implementation on realistic quantum
hardware. Furthermore, we derive general estimates on best and
worst performance. We also discuss the benefit of optimization
given a sample algorithm and estimate the hardness of the
optimization problem for an exact, classical solver.
The main idea of the LS translation26 is to encode an

algorithmically specific graph state in the square lattice of the
planar code, which will then use a measurement-based quantum
computational approach to perform any calculation. The imple-
mentation of this encoded state needs to respect the underlying
structure of the planar code. Many square patches that encode
individual qubits17 are aligned on a 2D lattice. Connections
between nearest-neighbor logical qubits are possible using
physical qubits that lie on the boundary between the patches.
These operations constitute merges and splits that act as
parity checks between the two encoded qubits, and can be
used together with injection to enable universal quantum
computation.26

The analysis performed here is rooted in the LS translation
given in ref. 26. First, patches are initialized to þj i, then using
parity checks an algorithmically specific stabilizer state is
generated. This stabilizer state is measured in the bases Zj i, Xj i,

Yj i ¼ P þj i, and Aj i ¼ T þj i, where P =
ffiffiffi
Z

p
and T =

ffiffiffi
P

p
. However,

for planar codes the rotated basis measurements (e.g., Y, A) are not
protected fault-tolerantly, and magic states must be injected.17, 26

Our description is only concerned with the creation of the initial
algorithmically specific stabilizer state and shows that even the
optimization of this less complicated problem is already NP-hard.
An arbitrary circuit can be rearranged into the ICM format,12

which is already divided into (I)nitializations, (C)NOTs, and (M)
easurements. The first two steps can be interpreted as a circuit to
generate the stabilizer state. The translation to LS first merges all
CNOTs of this circuit into multi-target CNOTs, which can then be
easily implemented in LS: For each multi-target CNOT a column in
the planar code is created, which is later split into individual
encoded qubits (Fig. 1). Then, the qubits that are targeted by two
or more CNOTs have to be combined through LS merge
operations.
Due to different CNOTs targeting the same qubits multiple

times in a general quantum circuit, the compiler naturally
produces ancillary qubits, which are inherent to the structure of
the algorithm and the compiler. During our calculations these are
disregarded and we only study the problem of how to optimally
place the patches in the 2D-nearest neighbor environment of the
planar code error-correction model using LS.

RESULTS
We will prove that the problem of deciding if a perfectly
optimizable layout in LS exists, by mapping a known NP-
complete problem to the problem of interest.
Inspired by the proof of NP-hardness of Tetris,33 we chose to

encode the 3-partition problem into a circuit, which then gets
translated to LS. We will show that, with polynomial overhead, a
solution to the 3-partition problem can be obtained by the
optimization of the placement of LS patches.
The proof whether theoretical optimality is reachable implies

that the optimization problem itself is NP-hard. This can be
explained by using the optimization problem as a subroutine to
the decision problem. If the optimization problem was easier, the
decision problem would be solvable in polynomial time. With the
described mapping, this would mean that any problem in NP
could be solved polynomially, which is widely assumed to be false.
The proof itself is given in the methods section.

DISCUSSION
We want to give an estimate on how much of an improvement
can be expected from the optimization of a double Yj i-state
distillation circuit.8, 36 This circuit is only illustrative for the
optimization and we are aware of better proposals to implement
Yj i-states in surface codes.37 For reference, we provide the circuit
of one distillation step in Fig. 2. In our calculation we give bounds
for the best case by calculating the theoretical optimum.

Fig. 1 LS translation. Here, multi-target CNOTs are implemented
using LS. During initialization three patches of surface code with N
by 7N qubits are created, which are then split and merged to
perform the computation. The faded boxes indicate ancillary qubits.
An optimized version of this circuit is shown at the bottom where
the placement of the patches ensures a minimal bounding box of
the whole circuit area. This circuit can achieve the theoretical
optimality

Fig. 2 Steane code. This circuit is the Steane code, to be used for
the distillation of Yj i states. This is an iterative procedure where the
error-prone Y are used during the application of the S-gates
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Furthermore, the worst case bounds are given by calculating an
unoptimized placement, where each qubit corresponds to one
row of patches in LS. The definitions for both worst-case and best-
case bounds are given in the “Methods” section. However, a
previous manual optimization26 has shown that the Yj i-state
distillation circuit cannot reach theoretical optimality, such that
the best possible solution lies somewhere in between these
bounds. In the following back-of-the-envelope calculation we
assume that the basis transformation of the measurement step
can be applied without movement, which would correspond to a
solution of a more complex optimization problem.
The first round of the Yj i-state distillation circuit consists of

seven distillations. Each distillation consists of four CNOTs from
the Steane-code with three target qubits each. Furthermore, for
the application of one S-gate an additional qubit is needed for the
injection procedure. Thus, an additional 7 × 7 qubits are needed.
In a second round, an additional distillation needs to be
performed, requiring eight more qubits and four more CNOTs.
Furthermore, each distillation circuit consists of eight qubits, and
initially 7 × 7 noisy Yj i-states need to be injected. Thus, the total
number of qubits needed in this double distillation is NQ = 8 × 7 +
7 × 7 + 8 = 113.
The optimal costs can be calculated with Eq. (2) and lead to

32 × 4 + 7 × 7 = 177 encoded patches of the planar code. A
suboptimal placement, Eq. (3), where each qubit is fixed to one
row, requires 32 × 113 = 3616 patches. This difference is a factor of
roughly 20, with the difference only growing for larger circuits.
Since this optimization has to be performed by a compiler,

which is likely to run on classical hardware, the nature of the
optimization being a NP-hard problem will restrict the size of the
exactly optimizable instance. To show that it would be unfeasible
to exactly optimize even a small amount of individual CNOTs, we
look at an exact solution of the number-partitioning problem. An
exact algorithm has to loop through all valid configurations to find
the best one. We do not consider a dynamic programming
solution here, because such an algorithm is unlikely to be devised
for the optimization of LS. The reason is that dynamic program-
ming relies on the solution of subproblems. However, connections
between different surface code patches required by merges break
the structure exploited by dynamic programming approaches.
Furthermore, one should note that this optimization needs to be
general, such that each circuit can be optimized. Any circuit-
specific optimization is therefore discouraged, which makes our
claims valid despite the symmetry of the current exemplary circuit.
Assuming the same double Yj i-state distillation circuit as before,
we would have 46 numbers and want to partition these into
15 subsets. The nature of the 3-partitioning problem only allows
three numbers per set, such that we only have to consider these
configurations. The assignment of 3N elements to N sets such that
each set contains exactly three elements has

Nconfig ¼
YN�1

i¼0

3N � 3ið Þ!
3! 3N � 3i � 3ð Þ! ¼

3Nð Þ!
3!ð ÞN (1)

configurations. These would equal ~1044 possible configurations
for the distillation circuit. A computer with 3.5 GHz and an ability
to check one configuration per cycle would still need ~1034

processor hours to complete this task. Thus, it is not feasible to
find the optimal solution with exact algorithms. The scaling of LS
should be even worse, because individual qubits of the CNOTs
have to be checked for eventual merges with horizontal neighbors
adding an additional layer of complexity. Thus, this rough
calculation indicates that the NP-hardness of this problem makes
it impossible to optimize any meaningful quantum algorithms
exactly and efficient heuristic algortihms have to be developed.
We have proven that the decision problem of whether a circuit

is perfectly optimizable using the LS-translation devised in ref. 26
is NP-complete and that the optimization problem has to be NP-

hard. Furthermore, we have given some rough estimates on how
hard exact optimization for LS would be, and have shown that
even small circuits cannot be optimized exactly. For practical
purposes, however, the optimal configuration is not needed
because an optimization protocol can get reasonably close. This
urges further research in the development of efficient heuristics to
optimize circuits in LS, that are as close to optimality as possible.
Furthermore, the inclusion of the measurement step introduces an
additional layer of complexity which has not yet been considered
in our analysis. This will increase the space of possible configura-
tions and likely decrease even further the efficiency of prospective
optimization algorithms.

METHODS
In this section we will detail the proof of this work. In order to do so, we
need to define optimality in the context of the LS translation. Furthermore,
the optimization problem is presented in an abstracted, non-physical
description.

Optimality
A usual definition of optimality is reaching a (computational) goal with
minimal physical requirements. In our case these physical requirements
correspond to a minimal space-time volume, which is defined by the
product of error-correcting cycles and physical qubits. We will further
restrict this definition such that the bounding box of this space-time
volume (within which all computation happens) needs to be minimal,
while the placement still retains the same output state. Another way at
looking at this definition is that every patch of the surface code inside the
bounding box is initialized to a computational qubit and no ancillary
patches are needed. We focus on the generation of the algorithmically
specific stabilizer-state and prove that even the optimization of this part is
NP-hard. Such a stabilizer-state can be prepared in constant time (as all
circuit elements are Clifford), which allows a simplified optimality condition
to be the mapping that results in the “least surface area”.

(Non-physical) problem description
The LS translation creates a problem where each CNOT has to be fitted into
a surface code area that contains all computations. This area should be
minimized. However, this can be viewed as an abstract problem,
completely detached from the LS picture. We will now introduce the
problem that needs to be solved.
The problem consists of minimizing the surface area of a square lattice

which consists of individual patches. Some of these patches are assigned
an integer qij, but they do not necessarily need one. Furthermore, multiple
patches can have the same integer. A horizontal (vertical) neighbor of a
patch is defined as the next non-empty patch (i.e., a patch that contains an
integer) to the right or left (up or down). A set of boxes Ci containing
patches with integers qij are given and can be implemented on the lattice
by a chain of vertical neighbors, where the order of the {qij}j can be chosen
freely. Furthermore, empty patches can be added freely. The following
criteria have to be met to obtain a valid configuration: (1) Patches for all
boxes need to be placed (vertical neighbors); (2) Patches with the same
integers need to be placed such that they are horizontal neighbors.
Thus, the problem consists of an optimal placement of these numbered

patches such that the area of the bounding box of the total arrangement is
minimized. The less empty patches are required, the more optimized is the
configuration.
For a circuit that has been prepared in the universal, inverted ICM-

representation each multi-target CNOT operation will contribute to one
box Ci. The numbers qij of box Ci are given by the qubits that partake in this
operation. Figure 1 shows how a sample circuit is mapped to the LS
representation.
If a circuit reaches optimality, the number of patches needed in LS can

be calculated by:

NPatch ¼
X#CNOT

i¼1

Ntargeti þ 1
� �

: (2)

Here, #CNOT denotes the number of multi-target CNOTs with different
qubits as their control, in the original circuit specification, and Ntargeti is the
number of target qubits for the ith CNOT. However, due to incompatibility
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during the merge step, this can (in the worst case) lead to a non-optimal
placement with a patch-requirement of

NPatch ¼ NQ �#CNOT; (3)

where NQ represents the total number of qubits in the circuit.
Due to the structure of the high-level circuit that needs to be compiled,

it is not always possible to reach the theoretical optimum. A general
optimized algorithm needs resources between the two bounds given
above.

Proof
In the 3-partitioning problem34 a set of non-negative integers {ai}1≤i≤3s is
given. With another non-negative integer L, two further requirements are:
(i) L

4 � ai � L
3 ∀i, such that 1≤ i≤ 3s, and (ii)

P3s
i¼1 ai ¼ sL.

The NP-complete decision problem for 3-partitioning answers the
following question: Can {ai}1≤i≤3s be partitioned into s disjoint subsets A1,
…, As, such that

P
i2Aj ai ¼ L for j∈{1, …, s}?

Mapping
We can translate the problem of 3-partitioning to the problem of deciding
whether a corresponding circuit can reach optimality in LS. The main idea
of this mapping is to encode each of the integers of the 3-partitioning
problem ai into a single multi-target CNOT, where the number of qubits
that partake in the ith CNOT is given by ai. Therefore, a box Ci of the non-
physical problem description contains ai integers which will then be
translated to blocks of width 1 and height ai in the LS model. Furthermore,
each qubit is only acted on by one CNOT, such that no further constraints
apply to the placement of these boxes. The solution of the 3-partitioning
problem is given by finding an arrangement of these CNOT blocks in a
rectangle of height L and width s. We will call this rectangle the compute

area. In Fig. 3 we show a possible circuit, where the qubits in part (b)
implement the CNOTs corresponding to ai.
The qubits from part (a) are needed to ensure that a compute area of L

by s is optimal. To ensure a width of at least s, one can devise a chain of
CNOTs that have different control qubits but operate on the same target
qubit. This is encoded in the qubits starting from the second and ending at
qubit (s + 2) of part (a). An additional column has to be created here,
because one also has to ensure a height of L in the compute area.
This can be performed by adding a single multiple target qubit CNOT

with L + 1 target qubits. One of these qubits is used to link the vertical with
the horizontal constraints. This qubit is the (s + 2)nd qubit in the circuit of
Fig. 3. The following L qubits are used to increase the height by L. This
results in the optimal placement of LS patches shown in Fig. 4. If that
circuit cannot reach theoretical optimality, the compute area cannot
contain all 3-partitioning CNOT-patches and thus additional qubits are
needed. Holes (i.e., patches of surface code that do not correspond to any
qubit in the circuit) are created and the bounding box of the calculation
increases.
The number of qubits that are needed for this mapping is s(L + 1) + L + 2.

With the algorithmic ancillary patches, the circuit requires (L + 2)(s + 1)
patches in LS. Thus, this mapping only needs resources linearly in the
number of integers of the original problem.
By construction, each column in the compute area corresponds to one

of the sets Ai, such that the requirement of each set summing to L is
equivalent to the requirement that each column in the compute area has a
height of exactly L. Furthermore, checking whether each column exactly
contains L qubits can be performed in polynomial time, such that the
problem is in the complexity class NP.
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Fig. 4 Translated circuit. The circuit from Fig. 3 is now translated to
the LS model of quantum computing. Here, the numbers indicate
which qubit of the original circuit each patch represents. If the
circuit can reach the theoretical optimum, the last sL qubits can be
fit in the compute area space. Each column then consists of L
patches of surface code, which are all filled with qubits that partake
in CNOT operations. If each of these columns is completely filled, s
sets are found, which have elements that sum to L

Fig. 3 Circuit for the optimization problem. The optimization for
both parts of this circuit corresponds to solving the 3-partitioning
problem. b Implements the 3-partitioning problem only. Each CNOT
corresponds to a number ai and will be translated into a separate
patch of variable height in the LS representation of Fig. 4. The
compute area is the area in the LS representation which only
consists for the CNOTs from b. a (of this circuit) Used to force the
compute area to be a rectangle of height L and width s and the
qubits in the compute area are responsible of encoding the original
NP-complete problem
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