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S1. ANALYTICAL CALCULATIONS OF CONVERSION RATES

In this Supplementary Information, we present the full adiabatic-elimination calculations for the effective couplings
in the three processes considered in this article: |1, 0, g〉 ↔ |0, 1, e〉, |1, 0, g〉 ↔ |0, 2, e〉, and |1, 0, e〉 ↔ |0, 2, g〉. For
each case, we compare the analytical results with numerical simulations to determine in what parameter regimes the
analytical calculations constitute a good approximation.

A. |1, 0, g〉 ↔ |0, 1, e〉

Starting from the truncated Hamiltonian in Eq. (3), we move to a frame rotating with (ωa − ωq

2 ), i.e., subtracting

(ωa − ωq

2 ) from the diagonal of the Hamiltonian, giving

Ĥ =


−ωa 0 −ga sin θ gb cos θ 0 0

0 −(ωa − ωq) ga cos θ gb sin θ 0 0
−ga sin θ ga cos θ 0 0 −gb sin θ gb cos θ
gb cos θ gb sin θ 0 ωb + ωq − ωa ga cos θ ga sin θ

0 0 −gb sin θ ga cos θ ωb 0
0 0 gb cos θ ga sin θ 0 ωb + ωq

 . (S1)

Denoting the amplitudes of the six states by c1–c6, respectively, the Schrödinger equation gives

iċ1 = −ωac1 − ga sin θc3 + gb cos θc4, (S2)

iċ2 = −(ωa − ωq)c2 + ga cos θc3 + gb sin θc4, (S3)

iċ3 = −ga sin θc1 + ga cos θc2 − gb sin θc5 + gb cos θc6, (S4)

iċ4 = (ωb + ωq − ωa)c4 + gb cos θc1 + gb sin θc2 + ga cos θc5 + ga sin θc6, (S5)

iċ5 = ωbc5 − gb sin θc3 + ga cos θc4, (S6)

iċ6 = (ωb + ωq)c6 + gb cos θc3 + ga sin θc4. (S7)

Assuming that ωa ≈ ωb + ωq, and that ga, gb � ωa, ωb, |ωa − ωq| , ωb + ωq, we can adiabatically eliminate the four
intermediate levels (their population will not change significantly), i.e., set ċ1 = ċ2 = ċ5 = ċ6 = 0. This gives

c1 = −ga sin θ
ωa

c3 + gb cos θ
ωa

c4, (S8)

c2 = ga cos θ
ωa − ωq

c3 + gb sin θ
ωa − ωq

c4, (S9)

c5 = gb sin θ
ωb

c3 −
ga cos θ
ωb

c4, (S10)

c6 = − gb cos θ
ωb + ωq

c3 −
ga sin θ
ωb + ωq

c4, (S11)

which we then insert into the equations for c3 and c4 to arrive at

iċ3 =
(
g2

a sin2 θ

ωa
+ g2

a cos2 θ

ωa − ωq
− g2

b sin2 θ

ωb
− g2

b cos2 θ

ωb + ωq

)
c3

+1
2gagb sin 2θ

(
1

ωa − ωq
+ 1
ωb
− 1
ωa
− 1
ωb + ωq

)
c4, (S12)
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iċ4 = 1
2gagb sin 2θ

(
1

ωa − ωq
+ 1
ωb
− 1
ωa
− 1
ωb + ωq

)
c3

+
(
ωb + ωq − ωa + g2

b cos2 θ

ωa
+ g2

b sin2 θ

ωa − ωq
− g2

a cos2 θ

ωb
− ga sin θ
ωb + ωq

)
c4. (S13)

While the energy level shifts in these equations are not final (they can be affected by processes involving more energy
levels), the effective coupling rate between |1, 0, g〉 and |0, 1, e〉 is shown to be

geff = 1
2gagb sin 2θ

(
1

ωa − ωq
+ 1
ωb
− 1
ωa
− 1
ωb + ωq

)
. (S14)

Assuming that we are exactly on resonance, the qubit frequency can be eliminated from this expression using ωq =
ωa − ωb, leading to

geff = gagb sin 2θ
(

1
ωb
− 1
ωa

)
= gagb(ωa − ωb) sin 2θ

ωaωb
, (S15)

the first part of which is given in Eq. (5). We note that the result agrees with the perturbation-theory calculations
performed in Ref. [1]. In general, the adiabatic elimination is more exact, but for a second-order process the result
for the effective coupling is the same with both methods.

B. |1, 0, g〉 ↔ |0, 2, e〉

Starting from the truncated Hamiltonian in Eq. (7), we move to a frame rotating with (ωa − ωq

2 ), i.e., subtracting

(ωa − ωq

2 ) from the diagonal of the Hamiltonian, giving

ĤR =



ωq − ωa gb ga 0 0 0
gb ωb − ωa 0

√
2gb ga 0

ga 0 0 0 gb 0
0

√
2gb 0 2ωb − ωa + ωq 0 ga

0 ga gb 0 ωb + ωq

√
2gb

0 0 0 ga

√
2gb 2ωb

 . (S16)

Denoting the amplitudes of the six states by c1–c6, the Schrödinger equation gives

iċ1 = (ωq − ωa)c1 + gbc2 + gac3, (S17)

iċ2 = (ωb − ωa)c2 + gbc1 +
√

2gbc4 + gac5, (S18)

iċ3 = gac1 + gbc5, (S19)

iċ4 = (2ωb − ωa + ωq)c4 +
√

2gbc2 + gac6, (S20)

iċ5 = (ωb + ωq)c5 + gac2 + gbc3 +
√

2gbc6, (S21)

iċ6 = 2ωbc6 + gac4 +
√

2gbc5. (S22)

Assuming that ωa ≈ 2ωb +ωq, and that ga, gb � ωb +ωq, |ωb − ωq| , |ωa − ωq|, we can adiabatically eliminate the four
intermediate levels, i.e., set ċ1 = ċ2 = ċ5 = ċ6 = 0. This gives

iċ3 =
g4

aωb + g2
a

[
ωb(ωa − ωb)2 − g2

b (ωa + ωb)
]

+ g2
bωb

[
g2

b + 2ωb(ωb − ωa)
]

2ω2
b [g2

a + (ωa − ωb)2] + g4
b + 3g2

bωb(ωb − ωa) c3

+
gag

2
b

[
g2

a − 3g2
b + 4ωb(ωa − 2ωb)

]
√

2 {2ω2
b [g2

a + (ωa − ωb)2] + g4
b + 3g2

bωb(ωb − ωa)}
c4, (S23)

where we simplified the expressions somewhat by setting ωq = ωa − 2ωb. While the energy level shift in this equation
is not final (they can be affected by processes involving more energy levels), the effective coupling rate between |1, 0, g〉
and |0, 2, e〉 is shown to be

geff =
gag

2
b

[
g2

a − 3g2
b + 4ωb(ωa − 2ωb)

]
√

2 {2ω2
b [g2

a + (ωa − ωb)2] + g4
b + 3g2

bωb(ωb − ωa)}
. (S24)
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Setting ga = gb ≡ g, this reduces to

geff =
√

2g3 [2ωb(ωa − 2ωb)− g2]
2ω2

b (ωa − ωb)2 + g2ωb(5ωb − 3ωa) + g4 , (S25)

which is Eq. (8). We can simplify the expression for the coupling further by only keeping terms to leading order in
g/ω; the result is

geff =
√

2g3 (ωa − 2ωb)
ωb (ωa − ωb)2 , (S26)

which is Eq. (9). This agrees with the perturbation-theory calculation in Ref. [1], which only captures the leading-order
term.

C. |1, 0, e〉 ↔ |0, 2, g〉

For the process |1, 0, e〉 ↔ |0, 2, g〉, we perform adiabatic elimination starting from both the quantum Rabi Hamil-
tonian and the JC Hamiltonian.

1. Quantum Rabi Hamiltonian

Starting from the truncated Hamiltonian in Eq. (10), we move to a frame rotating with (ωa + ωq

2 ), i.e., subtracting

(ωa + ωq

2 ) from the diagonal of the Hamiltonian, giving

ĤR =



−ωa − ωq gb ga 0 0 0
gb ωb − ωa 0

√
2gb ga 0

ga 0 0 0 gb 0
0

√
2gb 0 2ωb − ωa − ωq 0 ga

0 ga gb 0 ωb − ωq

√
2gb

0 0 0 ga

√
2gb 2ωb

 . (S27)

Denoting the amplitudes of the six states by c1–c6, the Schrödinger equation gives

iċ1 = −(ωa + ωq)c1 + gbc2 + gac3, (S28)

iċ2 = (ωb − ωa)c2 + gbc1 +
√

2gbc4 + gac5, (S29)

iċ3 = gac1 + gbc5, (S30)

iċ4 = (2ωb − ωa − ωq)c4 +
√

2gbc2 + gac6, (S31)

iċ5 = (ωb − ωq)c5 + gac2 + gbc3 +
√

2gbc6, (S32)

iċ6 = 2ωbc6 + gac4 +
√

2gbc5. (S33)

Assuming that ωa +ωq ≈ 2ωb, and that ga, gb � |ωb − ωq| , ωb +ωq, ωa +ωq, |ωa − ωq|, we can adiabatically eliminate
the four intermediate levels, i.e., set ċ1 = ċ2 = ċ5 = ċ6 = 0. This gives

iċ3 =
g4

aωb + g2
a

[
ωb(ωa − ωb)2 − g2

b (ωa + ωb)
]

+ g2
bωb

[
g2

b + 2ωb(ωb − ωa)
]

2ω2
b [g2

a + (ωa − ωb)2] + g4
b + 3g2

bωb(ωb − ωa) c3

+
gag

2
b

[
g2

a − 3g2
b + 4ωb(ωa − 2ωb)

]
√

2 {2ω2
b [g2

a + (ωa − ωb)2] + g4
b + 3g2

bωb(ωb − ωa)}
c4, (S34)

where we simplified the expressions somewhat by setting ωq = 2ωb − ωa. While the energy level shift in this equation
is not final (it can be affected by processes involving more energy levels), the effective coupling rate between |1, 0, e〉
and |0, 2, g〉 is shown to be

geff =
gag

2
b

[
g2

a − 3g2
b + 4ωb(ωa − 2ωb)

]
√

2 {2ω2
b [g2

a + (ωa − ωb)2] + g4
b + 3g2

bωb(ωb − ωa)}
. (S35)
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Setting ga = gb ≡ g, this reduces to

geff =
√

2g3 [2ωb(ωa − 2ωb)− g2]
2ω2

b (ωa − ωb)2 + g2ωb(5ωb − 3ωa) + g4 , (S36)

which is Eq. (11). As noted in the main text, this is equal to the coupling for the case |1, 0, g〉 ↔ |0, 2, e〉, but other
values of ωa and ωb are permitted in this case. In particular, the coupling can be increased by letting ωa → ωb, but
the approximations we have used here break down when |ωa − ωb| becomes comparable to g. Again, the result agrees
with the perturbation-theory calculation in Ref. [1], which only captures the leading-order term.

2. Jaynes–Cummings Hamiltonian

Starting from the truncated Hamiltonian in Eq. (13), we move to a frame rotating with (ωa + ωq

2 ), i.e., subtracting

(ωa + ωq

2 ) from the diagonal of the Hamiltonian, giving

ĤJC =


ωb − ωa 0

√
2gb ga

0 0 0 gb√
2gb 0 2ωb − ωa − ωq 0
ga gb 0 ωb − ωq

 .

(S37)

Denoting the amplitudes of the four states by c1–c4, the Schrödinger equation gives

iċ1 = (ωb − ωa)c1 +
√

2gbc3 + gac4, (S38)

iċ2 = gbc4, (S39)

iċ3 = (2ωb − ωa − ωq)c3 +
√

2gbc1, (S40)

iċ4 = (ωb − ωq)c4 + gac1 + gbc2. (S41)

Assuming that ωa +ωq ≈ 2ωb, and that ga, gb � ωa, ωb, ωq, we can adiabatically eliminate the two intermediate levels,
i.e., set ċ1 = ċ4 = 0. This gives

iċ2 = − g2
b (ωa − ωb)

g2
a + (ωa − ωb)2 c2 −

√
2gag

2
b

g2
a + (ωa − ωb)2 c3, (S42)

where we set ωq = 2ωb − ωa. While the energy level shift in this equation is not final (it can be affected by processes
involving more energy levels), the effective coupling rate between |1, 0, e〉 and |0, 2, g〉 is shown to be

geff = −
√

2gag
2
b

g2
a + (ωa − ωb)2 , (S43)

which is Eq. (14). Setting ga = gb ≡ g, this reduces to

geff = −
√

2g3

g2 + (ωa − ωb)2 , (S44)

which to leading order in g/ω becomes

geff = −
√

2g3

(ωa − ωb)2 , (S45)

agreeing with the perturbation-theory calculation of Ref. [1].

[1] A. F. Kockum, A. Miranowicz, V. Macr̀ı, S. Savasta, and F. Nori, “Deterministic quantum nonlinear optics with single
atoms and virtual photons,” arXiv:1701.05038 (2017), arXiv:1701.05038.

http://arxiv.org/abs/1701.05038
http://arxiv.org/abs/1701.05038

	Supplementary Information for  Frequency conversion in ultrastrong cavity QED
	Analytical calculations of conversion rates
	|1,0,g"526930B  |0,1,e"526930B 
	|1,0,g"526930B  |0,2,e"526930B 
	|1,0,e"526930B  |0,2,g"526930B 
	Quantum Rabi Hamiltonian
	Jaynes–Cummings Hamiltonian


	References


