Supplementary Information for Frequency conversion in ultrastrong cavity QED

Anton Frisk Kockum, ${ }^{1}$ Vincenzo Macrì, ${ }^{2,1}$ Luigi Garziano, ${ }^{3,2,1}$ Salvatore Savasta, ${ }^{2,1}$ and Franco Nori ${ }^{1,4}$
${ }^{1}$ Center for Emergent Matter Science, RIKEN, Saitama 351-0198, Japan
${ }^{2}$ Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166 Messina, Italy
${ }^{3}$ School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
${ }^{4}$ Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

S1. ANALYTICAL CALCULATIONS OF CONVERSION RATES

In this Supplementary Information, we present the full adiabatic-elimination calculations for the effective couplings in the three processes considered in this article: $|1,0, g\rangle \leftrightarrow|0,1, e\rangle,|1,0, g\rangle \leftrightarrow|0,2, e\rangle$, and $|1,0, e\rangle \leftrightarrow|0,2, g\rangle$. For each case, we compare the analytical results with numerical simulations to determine in what parameter regimes the analytical calculations constitute a good approximation.

$$
\text { A. }|1,0, g\rangle \leftrightarrow|0,1, e\rangle
$$

Starting from the truncated Hamiltonian in Eq. (3), we move to a frame rotating with $\left(\omega_{a}-\frac{\omega_{q}}{2}\right)$, i.e., subtracting ($\omega_{a}-\frac{\omega_{q}}{2}$) from the diagonal of the Hamiltonian, giving

$$
\hat{H}=\left(\begin{array}{cccccc}
-\omega_{a} & 0 & -g_{a} \sin \theta & g_{b} \cos \theta & 0 & 0 \tag{S1}\\
0 & -\left(\omega_{a}-\omega_{q}\right) & g_{a} \cos \theta & g_{b} \sin \theta & 0 & 0 \\
-g_{a} \sin \theta & g_{a} \cos \theta & 0 & 0 & -g_{b} \sin \theta & g_{b} \cos \theta \\
g_{b} \cos \theta & g_{b} \sin \theta & 0 & \omega_{b}+\omega_{q}-\omega_{a} & g_{a} \cos \theta & g_{a} \sin \theta \\
0 & 0 & -g_{b} \sin \theta & g_{a} \cos \theta & \omega_{b} & 0 \\
0 & 0 & g_{b} \cos \theta & g_{a} \sin \theta & 0 & \omega_{b}+\omega_{q}
\end{array}\right) .
$$

Denoting the amplitudes of the six states by $c_{1}-c_{6}$, respectively, the Schrödinger equation gives

$$
\begin{align*}
i \dot{c}_{1} & =-\omega_{a} c_{1}-g_{a} \sin \theta c_{3}+g_{b} \cos \theta c_{4} \tag{S2}\\
i \dot{c}_{2} & =-\left(\omega_{a}-\omega_{q}\right) c_{2}+g_{a} \cos \theta c_{3}+g_{b} \sin \theta c_{4} \tag{S3}\\
i \dot{c}_{3} & =-g_{a} \sin \theta c_{1}+g_{a} \cos \theta c_{2}-g_{b} \sin \theta c_{5}+g_{b} \cos \theta c_{6} \tag{S4}\\
i \dot{c}_{4} & =\left(\omega_{b}+\omega_{q}-\omega_{a}\right) c_{4}+g_{b} \cos \theta c_{1}+g_{b} \sin \theta c_{2}+g_{a} \cos \theta c_{5}+g_{a} \sin \theta c_{6} \tag{S5}\\
i \dot{c}_{5} & =\omega_{b} c_{5}-g_{b} \sin \theta c_{3}+g_{a} \cos \theta c_{4} \tag{S6}\\
i \dot{c}_{6} & =\left(\omega_{b}+\omega_{q}\right) c_{6}+g_{b} \cos \theta c_{3}+g_{a} \sin \theta c_{4} \tag{S7}
\end{align*}
$$

Assuming that $\omega_{a} \approx \omega_{b}+\omega_{q}$, and that $g_{a}, g_{b} \ll \omega_{a}, \omega_{b},\left|\omega_{a}-\omega_{q}\right|, \omega_{b}+\omega_{q}$, we can adiabatically eliminate the four intermediate levels (their population will not change significantly), i.e., set $\dot{c}_{1}=\dot{c}_{2}=\dot{c}_{5}=\dot{c}_{6}=0$. This gives

$$
\begin{align*}
& c_{1}=-\frac{g_{a} \sin \theta}{\omega_{a}} c_{3}+\frac{g_{b} \cos \theta}{\omega_{a}} c_{4} \tag{S8}\\
& c_{2}=\frac{g_{a} \cos \theta}{\omega_{a}-\omega_{q}} c_{3}+\frac{g_{b} \sin \theta}{\omega_{a}-\omega_{q}} c_{4} \tag{S9}\\
& c_{5}=\frac{g_{b} \sin \theta}{\omega_{b}} c_{3}-\frac{g_{a} \cos \theta}{\omega_{b}} c_{4} \tag{S10}\\
& c_{6}=-\frac{g_{b} \cos \theta}{\omega_{b}+\omega_{q}} c_{3}-\frac{g_{a} \sin \theta}{\omega_{b}+\omega_{q}} c_{4} \tag{S11}
\end{align*}
$$

which we then insert into the equations for c_{3} and c_{4} to arrive at

$$
\begin{align*}
i \dot{c}_{3}= & \left(\frac{g_{a}^{2} \sin ^{2} \theta}{\omega_{a}}+\frac{g_{a}^{2} \cos ^{2} \theta}{\omega_{a}-\omega_{q}}-\frac{g_{b}^{2} \sin ^{2} \theta}{\omega_{b}}-\frac{g_{b}^{2} \cos ^{2} \theta}{\omega_{b}+\omega_{q}}\right) c_{3} \\
& +\frac{1}{2} g_{a} g_{b} \sin 2 \theta\left(\frac{1}{\omega_{a}-\omega_{q}}+\frac{1}{\omega_{b}}-\frac{1}{\omega_{a}}-\frac{1}{\omega_{b}+\omega_{q}}\right) c_{4} \tag{S12}
\end{align*}
$$

$$
\begin{align*}
i \dot{c}_{4}= & \frac{1}{2} g_{a} g_{b} \sin 2 \theta\left(\frac{1}{\omega_{a}-\omega_{q}}+\frac{1}{\omega_{b}}-\frac{1}{\omega_{a}}-\frac{1}{\omega_{b}+\omega_{q}}\right) c_{3} \\
& +\left(\omega_{b}+\omega_{q}-\omega_{a}+\frac{g_{b}^{2} \cos ^{2} \theta}{\omega_{a}}+\frac{g_{b}^{2} \sin ^{2} \theta}{\omega_{a}-\omega_{q}}-\frac{g_{a}^{2} \cos ^{2} \theta}{\omega_{b}}-\frac{g_{a} \sin \theta}{\omega_{b}+\omega_{q}}\right) c_{4} \tag{S13}
\end{align*}
$$

While the energy level shifts in these equations are not final (they can be affected by processes involving more energy levels), the effective coupling rate between $|1,0, g\rangle$ and $|0,1, e\rangle$ is shown to be

$$
\begin{equation*}
g_{\mathrm{eff}}=\frac{1}{2} g_{a} g_{b} \sin 2 \theta\left(\frac{1}{\omega_{a}-\omega_{q}}+\frac{1}{\omega_{b}}-\frac{1}{\omega_{a}}-\frac{1}{\omega_{b}+\omega_{q}}\right) . \tag{S14}
\end{equation*}
$$

Assuming that we are exactly on resonance, the qubit frequency can be eliminated from this expression using $\omega_{q}=$ $\omega_{a}-\omega_{b}$, leading to

$$
\begin{equation*}
g_{\mathrm{eff}}=g_{a} g_{b} \sin 2 \theta\left(\frac{1}{\omega_{b}}-\frac{1}{\omega_{a}}\right)=\frac{g_{a} g_{b}\left(\omega_{a}-\omega_{b}\right) \sin 2 \theta}{\omega_{a} \omega_{b}} \tag{S15}
\end{equation*}
$$

the first part of which is given in Eq. (5). We note that the result agrees with the perturbation-theory calculations performed in Ref. [1]. In general, the adiabatic elimination is more exact, but for a second-order process the result for the effective coupling is the same with both methods.

$$
\text { B. }|1,0, g\rangle \leftrightarrow|0,2, e\rangle
$$

Starting from the truncated Hamiltonian in Eq. (7), we move to a frame rotating with $\left(\omega_{a}-\frac{\omega_{q}}{2}\right)$, i.e., subtracting $\left(\omega_{a}-\frac{\omega_{q}}{2}\right)$ from the diagonal of the Hamiltonian, giving

$$
\hat{H}_{\mathrm{R}}=\left(\begin{array}{cccccc}
\omega_{q}-\omega_{a} & g_{b} & g_{a} & 0 & 0 & 0 \tag{S16}\\
g_{b} & \omega_{b}-\omega_{a} & 0 & \sqrt{2} g_{b} & g_{a} & 0 \\
g_{a} & 0 & 0 & 0 & g_{b} & 0 \\
0 & \sqrt{2} g_{b} & 0 & 2 \omega_{b}-\omega_{a}+\omega_{q} & 0 & g_{a} \\
0 & g_{a} & g_{b} & 0 & \omega_{b}+\omega_{q} & \sqrt{2} g_{b} \\
0 & 0 & 0 & g_{a} & \sqrt{2} g_{b} & 2 \omega_{b}
\end{array}\right)
$$

Denoting the amplitudes of the six states by $c_{1}-c_{6}$, the Schrödinger equation gives

$$
\begin{align*}
i \dot{c}_{1} & =\left(\omega_{q}-\omega_{a}\right) c_{1}+g_{b} c_{2}+g_{a} c_{3}, \tag{S17}\\
i \dot{c}_{2} & =\left(\omega_{b}-\omega_{a}\right) c_{2}+g_{b} c_{1}+\sqrt{2} g_{b} c_{4}+g_{a} c_{5}, \tag{S18}\\
i \dot{c}_{3} & =g_{a} c_{1}+g_{b} c_{5} \tag{S19}\\
i \dot{c}_{4} & =\left(2 \omega_{b}-\omega_{a}+\omega_{q}\right) c_{4}+\sqrt{2} g_{b} c_{2}+g_{a} c_{6}, \tag{S20}\\
i \dot{c}_{5} & =\left(\omega_{b}+\omega_{q}\right) c_{5}+g_{a} c_{2}+g_{b} c_{3}+\sqrt{2} g_{b} c_{6} \tag{S21}\\
i \dot{c}_{6} & =2 \omega_{b} c_{6}+g_{a} c_{4}+\sqrt{2} g_{b} c_{5} . \tag{S22}
\end{align*}
$$

Assuming that $\omega_{a} \approx 2 \omega_{b}+\omega_{q}$, and that $g_{a}, g_{b} \ll \omega_{b}+\omega_{q},\left|\omega_{b}-\omega_{q}\right|,\left|\omega_{a}-\omega_{q}\right|$, we can adiabatically eliminate the four intermediate levels, i.e., set $\dot{c}_{1}=\dot{c}_{2}=\dot{c}_{5}=\dot{c}_{6}=0$. This gives

$$
\begin{align*}
i \dot{c}_{3}= & \frac{g_{a}^{4} \omega_{b}+g_{a}^{2}\left[\omega_{b}\left(\omega_{a}-\omega_{b}\right)^{2}-g_{b}^{2}\left(\omega_{a}+\omega_{b}\right)\right]+g_{b}^{2} \omega_{b}\left[g_{b}^{2}+2 \omega_{b}\left(\omega_{b}-\omega_{a}\right)\right]}{2 \omega_{b}^{2}\left[g_{a}^{2}+\left(\omega_{a}-\omega_{b}\right)^{2}\right]+g_{b}^{4}+3 g_{b}^{2} \omega_{b}\left(\omega_{b}-\omega_{a}\right)} c_{3} \\
& +\frac{g_{a} g_{b}^{2}\left[g_{a}^{2}-3 g_{b}^{2}+4 \omega_{b}\left(\omega_{a}-2 \omega_{b}\right)\right]}{\sqrt{2}\left\{2 \omega_{b}^{2}\left[g_{a}^{2}+\left(\omega_{a}-\omega_{b}\right)^{2}\right]+g_{b}^{4}+3 g_{b}^{2} \omega_{b}\left(\omega_{b}-\omega_{a}\right)\right\}} c_{4} \tag{S23}
\end{align*}
$$

where we simplified the expressions somewhat by setting $\omega_{q}=\omega_{a}-2 \omega_{b}$. While the energy level shift in this equation is not final (they can be affected by processes involving more energy levels), the effective coupling rate between $|1,0, g\rangle$ and $|0,2, e\rangle$ is shown to be

$$
\begin{equation*}
g_{\mathrm{eff}}=\frac{g_{a} g_{b}^{2}\left[g_{a}^{2}-3 g_{b}^{2}+4 \omega_{b}\left(\omega_{a}-2 \omega_{b}\right)\right]}{\sqrt{2}\left\{2 \omega_{b}^{2}\left[g_{a}^{2}+\left(\omega_{a}-\omega_{b}\right)^{2}\right]+g_{b}^{4}+3 g_{b}^{2} \omega_{b}\left(\omega_{b}-\omega_{a}\right)\right\}} \tag{S24}
\end{equation*}
$$

Setting $g_{a}=g_{b} \equiv g$, this reduces to

$$
\begin{equation*}
g_{\mathrm{eff}}=\frac{\sqrt{2} g^{3}\left[2 \omega_{b}\left(\omega_{a}-2 \omega_{b}\right)-g^{2}\right]}{2 \omega_{b}^{2}\left(\omega_{a}-\omega_{b}\right)^{2}+g^{2} \omega_{b}\left(5 \omega_{b}-3 \omega_{a}\right)+g^{4}} \tag{S25}
\end{equation*}
$$

which is Eq. (8). We can simplify the expression for the coupling further by only keeping terms to leading order in g / ω; the result is

$$
\begin{equation*}
g_{\mathrm{eff}}=\frac{\sqrt{2} g^{3}\left(\omega_{a}-2 \omega_{b}\right)}{\omega_{b}\left(\omega_{a}-\omega_{b}\right)^{2}} \tag{S26}
\end{equation*}
$$

which is Eq. (9). This agrees with the perturbation-theory calculation in Ref. [1], which only captures the leading-order term.

$$
\text { C. }|1,0, e\rangle \leftrightarrow|0,2, g\rangle
$$

For the process $|1,0, e\rangle \leftrightarrow|0,2, g\rangle$, we perform adiabatic elimination starting from both the quantum Rabi Hamiltonian and the JC Hamiltonian.

1. Quantum Rabi Hamiltonian

Starting from the truncated Hamiltonian in Eq. (10), we move to a frame rotating with $\left(\omega_{a}+\frac{\omega_{q}}{2}\right)$, i.e., subtracting $\left(\omega_{a}+\frac{\omega_{q}}{2}\right)$ from the diagonal of the Hamiltonian, giving

$$
\hat{H}_{\mathrm{R}}=\left(\begin{array}{cccccc}
-\omega_{a}-\omega_{q} & g_{b} & g_{a} & 0 & 0 & 0 \tag{S27}\\
g_{b} & \omega_{b}-\omega_{a} & 0 & \sqrt{2} g_{b} & g_{a} & 0 \\
g_{a} & 0 & 0 & 0 & g_{b} & 0 \\
0 & \sqrt{2} g_{b} & 0 & 2 \omega_{b}-\omega_{a}-\omega_{q} & 0 & g_{a} \\
0 & g_{a} & g_{b} & 0 & \omega_{b}-\omega_{q} & \sqrt{2} g_{b} \\
0 & 0 & 0 & g_{a} & \sqrt{2} g_{b} & 2 \omega_{b}
\end{array}\right)
$$

Denoting the amplitudes of the six states by $c_{1}-c_{6}$, the Schrödinger equation gives

$$
\begin{align*}
i \dot{c}_{1} & =-\left(\omega_{a}+\omega_{q}\right) c_{1}+g_{b} c_{2}+g_{a} c_{3} \tag{S28}\\
i \dot{c}_{2} & =\left(\omega_{b}-\omega_{a}\right) c_{2}+g_{b} c_{1}+\sqrt{2} g_{b} c_{4}+g_{a} c_{5} \tag{S29}\\
i \dot{c}_{3} & =g_{a} c_{1}+g_{b} c_{5} \tag{S30}\\
i \dot{c}_{4} & =\left(2 \omega_{b}-\omega_{a}-\omega_{q}\right) c_{4}+\sqrt{2} g_{b} c_{2}+g_{a} c_{6} \tag{S31}\\
i \dot{c}_{5} & =\left(\omega_{b}-\omega_{q}\right) c_{5}+g_{a} c_{2}+g_{b} c_{3}+\sqrt{2} g_{b} c_{6} \tag{S32}\\
i \dot{c}_{6} & =2 \omega_{b} c_{6}+g_{a} c_{4}+\sqrt{2} g_{b} c_{5} \tag{S33}
\end{align*}
$$

Assuming that $\omega_{a}+\omega_{q} \approx 2 \omega_{b}$, and that $g_{a}, g_{b} \ll\left|\omega_{b}-\omega_{q}\right|, \omega_{b}+\omega_{q}, \omega_{a}+\omega_{q},\left|\omega_{a}-\omega_{q}\right|$, we can adiabatically eliminate the four intermediate levels, i.e., set $\dot{c}_{1}=\dot{c}_{2}=\dot{c}_{5}=\dot{c}_{6}=0$. This gives

$$
\begin{align*}
i \dot{c}_{3}= & \frac{g_{a}^{4} \omega_{b}+g_{a}^{2}\left[\omega_{b}\left(\omega_{a}-\omega_{b}\right)^{2}-g_{b}^{2}\left(\omega_{a}+\omega_{b}\right)\right]+g_{b}^{2} \omega_{b}\left[g_{b}^{2}+2 \omega_{b}\left(\omega_{b}-\omega_{a}\right)\right]}{2 \omega_{b}^{2}\left[g_{a}^{2}+\left(\omega_{a}-\omega_{b}\right)^{2}\right]+g_{b}^{4}+3 g_{b}^{2} \omega_{b}\left(\omega_{b}-\omega_{a}\right)} c_{3} \\
& +\frac{g_{a} g_{b}^{2}\left[g_{a}^{2}-3 g_{b}^{2}+4 \omega_{b}\left(\omega_{a}-2 \omega_{b}\right)\right]}{\sqrt{2}\left\{2 \omega_{b}^{2}\left[g_{a}^{2}+\left(\omega_{a}-\omega_{b}\right)^{2}\right]+g_{b}^{4}+3 g_{b}^{2} \omega_{b}\left(\omega_{b}-\omega_{a}\right)\right\}} c_{4} \tag{S34}
\end{align*}
$$

where we simplified the expressions somewhat by setting $\omega_{q}=2 \omega_{b}-\omega_{a}$. While the energy level shift in this equation is not final (it can be affected by processes involving more energy levels), the effective coupling rate between $|1,0, e\rangle$ and $|0,2, g\rangle$ is shown to be

$$
\begin{equation*}
g_{\mathrm{eff}}=\frac{g_{a} g_{b}^{2}\left[g_{a}^{2}-3 g_{b}^{2}+4 \omega_{b}\left(\omega_{a}-2 \omega_{b}\right)\right]}{\sqrt{2}\left\{2 \omega_{b}^{2}\left[g_{a}^{2}+\left(\omega_{a}-\omega_{b}\right)^{2}\right]+g_{b}^{4}+3 g_{b}^{2} \omega_{b}\left(\omega_{b}-\omega_{a}\right)\right\}} \tag{S35}
\end{equation*}
$$

Setting $g_{a}=g_{b} \equiv g$, this reduces to

$$
\begin{equation*}
g_{\mathrm{eff}}=\frac{\sqrt{2} g^{3}\left[2 \omega_{b}\left(\omega_{a}-2 \omega_{b}\right)-g^{2}\right]}{2 \omega_{b}^{2}\left(\omega_{a}-\omega_{b}\right)^{2}+g^{2} \omega_{b}\left(5 \omega_{b}-3 \omega_{a}\right)+g^{4}} \tag{S36}
\end{equation*}
$$

which is Eq. (11). As noted in the main text, this is equal to the coupling for the case $|1,0, g\rangle \leftrightarrow|0,2, e\rangle$, but other values of ω_{a} and ω_{b} are permitted in this case. In particular, the coupling can be increased by letting $\omega_{a} \rightarrow \omega_{b}$, but the approximations we have used here break down when $\left|\omega_{a}-\omega_{b}\right|$ becomes comparable to g. Again, the result agrees with the perturbation-theory calculation in Ref. [1], which only captures the leading-order term.

2. Jaynes-Cummings Hamiltonian

Starting from the truncated Hamiltonian in Eq. (13), we move to a frame rotating with $\left(\omega_{a}+\frac{\omega_{q}}{2}\right)$, i.e., subtracting $\left(\omega_{a}+\frac{\omega_{q}}{2}\right)$ from the diagonal of the Hamiltonian, giving

$$
\hat{H}_{\mathrm{JC}}=\left(\begin{array}{cccc}
\omega_{b}-\omega_{a} & 0 & \sqrt{2} g_{b} & g_{a} \tag{S37}\\
0 & 0 & 0 & g_{b} \\
\sqrt{2} g_{b} & 0 & 2 \omega_{b}-\omega_{a}-\omega_{q} & 0 \\
g_{a} & g_{b} & 0 & \omega_{b}-\omega_{q}
\end{array}\right)
$$

Denoting the amplitudes of the four states by $c_{1}-c_{4}$, the Schrödinger equation gives

$$
\begin{align*}
& i \dot{c}_{1}=\left(\omega_{b}-\omega_{a}\right) c_{1}+\sqrt{2} g_{b} c_{3}+g_{a} c_{4} \tag{S38}\\
& i \dot{c}_{2}=g_{b} c_{4} \tag{S39}\\
& i \dot{c}_{3}=\left(2 \omega_{b}-\omega_{a}-\omega_{q}\right) c_{3}+\sqrt{2} g_{b} c_{1} \tag{S40}\\
& i \dot{c}_{4}=\left(\omega_{b}-\omega_{q}\right) c_{4}+g_{a} c_{1}+g_{b} c_{2} \tag{S41}
\end{align*}
$$

Assuming that $\omega_{a}+\omega_{q} \approx 2 \omega_{b}$, and that $g_{a}, g_{b} \ll \omega_{a}, \omega_{b}, \omega_{q}$, we can adiabatically eliminate the two intermediate levels, i.e., set $\dot{c}_{1}=\dot{c}_{4}=0$. This gives

$$
\begin{equation*}
i \dot{c}_{2}=-\frac{g_{b}^{2}\left(\omega_{a}-\omega_{b}\right)}{g_{a}^{2}+\left(\omega_{a}-\omega_{b}\right)^{2}} c_{2}-\frac{\sqrt{2} g_{a} g_{b}^{2}}{g_{a}^{2}+\left(\omega_{a}-\omega_{b}\right)^{2}} c_{3} \tag{S42}
\end{equation*}
$$

where we set $\omega_{q}=2 \omega_{b}-\omega_{a}$. While the energy level shift in this equation is not final (it can be affected by processes involving more energy levels), the effective coupling rate between $|1,0, e\rangle$ and $|0,2, g\rangle$ is shown to be

$$
\begin{equation*}
g_{\mathrm{eff}}=-\frac{\sqrt{2} g_{a} g_{b}^{2}}{g_{a}^{2}+\left(\omega_{a}-\omega_{b}\right)^{2}} \tag{S43}
\end{equation*}
$$

which is Eq. (14). Setting $g_{a}=g_{b} \equiv g$, this reduces to

$$
\begin{equation*}
g_{\mathrm{eff}}=-\frac{\sqrt{2} g^{3}}{g^{2}+\left(\omega_{a}-\omega_{b}\right)^{2}} \tag{S44}
\end{equation*}
$$

which to leading order in g / ω becomes

$$
\begin{equation*}
g_{\mathrm{eff}}=-\frac{\sqrt{2} g^{3}}{\left(\omega_{a}-\omega_{b}\right)^{2}} \tag{S45}
\end{equation*}
$$

agreeing with the perturbation-theory calculation of Ref. [1].
[1] A. F. Kockum, A. Miranowicz, V. Macrì, S. Savasta, and F. Nori, "Deterministic quantum nonlinear optics with single atoms and virtual photons," arXiv:1701.05038 (2017), arXiv:1701.05038.

