Supplementary Information for
Frequency conversion in ultrastrong cavity QED

3,2, 4

Anton Frisk Kockum,' Vincenzo Macri,> ! Luigi Garziano,>? ! Salvatore Savasta,?! and Franco Noril’

LCenter for Emergent Matter Science, RIKEN, Saitama 351-0198, Japan
2 Dipartimento di Scienze Matematiche e Informatiche,
Scienze Fisiche e Scienze della Terra, Universita di Messina, I-98166 Messina, Italy
3School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
4 Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

S1. ANALYTICAL CALCULATIONS OF CONVERSION RATES

In this Supplementary Information, we present the full adiabatic-elimination calculations for the effective couplings
in the three processes considered in this article: |1,0,¢g) < |0,1,e), |1,0,9) < ]0,2,e), and |1,0,e) < |0,2,g). For
each case, we compare the analytical results with numerical simulations to determine in what parameter regimes the
analytical calculations constitute a good approximation.

A. ]1,0,9) < ]0,1,€)

Starting from the truncated Hamiltonian in Eq. (3), we move to a frame rotating with (w, — %), i.e., subtracting
(wq — %) from the diagonal of the Hamiltonian, giving

—Wg 0 —gqsind gpcosf 0 0
0 —(wa —wg) gacosb gp sin 6 0 0
| 9 sinf g, cosf 0 0 —gpsinf gy cosb (S1)
| gpcosé gpsin 6 0 Wy +Wg —Wg GaCosl ggsinf
0 0 —gpsin @ ga cost wp 0
0 0 gp cos B go Sinf 0 wp + Wq
Denoting the amplitudes of the six states by c¢;—cg, respectively, the Schrédinger equation gives
161 = —WqeC1 — gq SinBcs + gy cos ey, (S2)
i¢e = —(wg — wq)C2 + g4 cOs bcs + gy sin Oey, (S3)
i3 = —(gq sinfcy + g, cosfco — gy sin fcs + g, cos Ocg, (S4)
14 = (wp + wg — wWq)ca + g cos By + gy sinbcg + g4 cos bes + gq sin beg, (S5)
i¢5 = wpCs — gp sinfeg + g4 cos bey, (S6)
i = (wp + wq)ce + gy cosOcs + gq sin bey. (S7)

Assuming that w, =~ wp + wg, and that gq, gp K wWa,ws, |Wa — wy|,ws + wg, we can adiabatically eliminate the four
intermediate levels (their population will not change significantly), i.e., set ¢ = ¢ = ¢5 = ¢¢ = 0. This gives
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Wq Wa
cos 0 sin 6
cy = Ja c3 + L ca, (S9)
We — Wy Wg — Wy
gpsin 6 gq cos
cs = c3 — cy, (S10)
Wp Wy
0 in 0
Cg = — gb cos Cq — ga S Cyq, (Sll)
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Wp + Wy wp + Wy
which we then insert into the equations for c¢3 and ¢4 to arrive at
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While the energy level shifts in these equations are not final (they can be affected by processes involving more energy

levels), the effective coupling rate between |1,0, g) and |0,1, e) is shown to be

1 1 1 1 1
Gett = 5 9ae sin 26 (w + — - — - ) . (S14)

Assuming that we are exactly on resonance, the qubit frequency can be eliminated from this expression using wq, =
wa — Wy, leading to

1 1 a o — in 260
Gett = Jagp Sin 260 < — ) _9 gb(wWa — wp) sin 7 (S15)
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the first part of which is given in Eq. (5). We note that the result agrees with the perturbation-theory calculations
performed in Ref. [1]. In general, the adiabatic elimination is more exact, but for a second-order process the result
for the effective coupling is the same with both methods.
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Starting from the truncated Hamiltonian in Eq. (7), we move to a frame rotating with (w, — %), i.e., subtracting
(wq — %) from the diagonal of the Hamiltonian, giving

Wq — Wq b Ja 0 0 0
@B wp—we O V2g, Ja 0
» Ya 0 0 0 b 0
Hr = 0 V2g, 0 2w —w, + Wy 0 Ja (516)
0 9a G 0 wp +wyg V29
0 0 0 Ja V2g, 2wy

Denoting the amplitudes of the six states by c1—cg, the Schrodinger equation gives
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Assuming that w, ~ 2wy + wy, and that gq, gy < Wy + Wy, [wy — wq|, |we — wq|, we can adiabatically eliminate the four
intermediate levels, i.e., set ¢ = é3 = é5 = ég = 0. This gives
o — Gaws + g2 [wp(wa — wp)? — g7 (wa + wp)] + giws [g7 + 2wp(wp — wa)]
2wi [92 + (wa — wp)?] + gy + 3g5wp(Wb — wa)
N 9a3; (92 — 395 + 4wy (wa — 20wp)]
V2 {2w} [92 + (wa — wp)?] + g + 3g5wp(wp — wa)}
where we simplified the expressions somewhat by setting w, = w, — 2w,. While the energy level shift in this equation

is not final (they can be affected by processes involving more energy levels), the effective coupling rate between |1, 0, g)
and |0, 2, e) is shown to be

C3

Cy, (823)

9092 [92 — 397 + 4wy (wa — 2wp)]

T V2{202 92 + (wa — wn)?] + g3 + BgRwn(wh — wa)} (S524)
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Setting g, = g» = g, this reduces to

(S25)

V24¢° [Zwb(wa — 2wp) — g2]
g(Eff - 2

2w (wq — wp)? + 92w (Bwp — 3w,) + g4

which is Eq. (8). We can simplify the expression for the coupling further by only keeping terms to leading order in
g/w; the result is

ot = ———— (S26)

which is Eq. (9). This agrees with the perturbation-theory calculation in Ref. [1], which only captures the leading-order
term.
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For the process |1,0,¢e) < |0,2, g), we perform adiabatic elimination starting from both the quantum Rabi Hamil-
tonian and the JC Hamiltonian.

1. Quantum Rabi Hamiltonian

Wq

5*), i.e., subtracting

Starting from the truncated Hamiltonian in Eq. (10), we move to a frame rotating with (w, +
(wa + %) from the diagonal of the Hamiltonian, giving

—Wq — Wq b Ja 0 0 0
o wWp—wa O V2gy 9a 0
o YGa 0 0 0 gp 0
Hy = 0 \/igb 0 2wy —wg — Wq 0 Ja (827)
0 g O 0 wp = wq V29
0 0 0 Ja V29, 2wy
Denoting the amplitudes of the six states by c¢;—cg, the Schrodinger equation gives
iél = _<wa + Wq)cl + gnrC2 + 9aC3, (828)
ity = (wp — wa)c2 + o1 + V2904 + aCs, (529)
itz = gaC1 + GuCs, (S30)
ieq = (2wy — wWa — wWq)a + V2g5C2 + gaCo, (S31)
its = (Wp — wq)Cs5 + gaC2 + guC3 + V2g1cs, (S32)
ite = 2wpC6 + GaCa + V2055 (S33)

Assuming that wg + wy ~ 2wy, and that gq, gy <K |wp — Wl , wp + Wy, Wa + Wy, |we — Wy, we can adiabatically eliminate
the four intermediate levels, i.e., set ¢, = ¢ = é5 = ¢g = 0. This gives

_ gawy + g2 [wp(we — wp)? — g2 (wa + wp)] + giws [ + 2wi(ws — wa)]
2w3 [92 + (wa — wb)?] + g5 + 3g7wn(Wb — Wa)
N 9092 (92 — 397 + 4wy (we — 2wp)]
V2 {207 [92 + (wa — wb)?] + g5 + 3gZws(wp — wa)}
where we simplified the expressions somewhat by setting wg, = 2wy — w,. While the energy level shift in this equation

is not final (it can be affected by processes involving more energy levels), the effective coupling rate between |1,0, e)
and 0,2, g) is shown to be
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_ 9a3 |92 — 395 + 4w (wa — 2wp)]
V2{203 [92 + (wa — wp)?] + gj + Bg5wn(ws — wa)}

Geft (835)



Setting g, = g» = g, this reduces to

V243 [2wb(wa — 2wp) — gQ]
202 (wq — wp)? + g%ws (Bwp — 3w,) + g4

Jeft = (836)

which is Eq. (11). As noted in the main text, this is equal to the coupling for the case |1,0, g) <> |0,2,e), but other
values of w, and wp are permitted in this case. In particular, the coupling can be increased by letting w, — wp, but
the approximations we have used here break down when |w, — ws| becomes comparable to g. Again, the result agrees
with the perturbation-theory calculation in Ref. [1], which only captures the leading-order term.

2. Jaynes—Cummings Hamiltonian

Wq

5¢), i.e., subtracting

Starting from the truncated Hamiltonian in Eq. (13), we move to a frame rotating with (w, +
(wa + %) from the diagonal of the Hamiltonian, giving

Wy —wa 0 V2gs Ya

ﬁ o 0 0 0 gy

JC = V20, 0 2wy —w, —wy 0
9a b 0 Wy — Wy

Denoting the amplitudes of the four states by c¢;—c4, the Schrodinger equation gives

i¢1 = (wp — wa)e1 + V20u¢3 + gaca, (S38)
iég = gpC4, (839)
it3 = (2wy — W — wWq)es + V2gpc1, (540)
is = (wp — wg)ea + gaC1 + GoCa- (S41)
Assuming that w, +wq ~ 2wy, and that g4, gy K we,ws, wq, we can adiabatically eliminate the two intermediate levels,
ie., set ¢y = ¢4 = 0. This gives
Gy (wa —wp) V29a9;
_ y —
o + (wa — wp)? 9o + (wa — ws)

1Cy =

B) C3, (842)

where we set wg = 2wy, — w,. While the energy level shift in this equation is not final (it can be affected by processes
involving more energy levels), the effective coupling rate between |1,0,e) and |0, 2, g) is shown to be

V29a97

= — , S43
9ot = = T (e — )2 (543)
which is Eq. (14). Setting g, = g» = g, this reduces to
V2g°
= 7 S44
which to leading order in g/w becomes
V243
Goit = ——7 (945)
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agreeing with the perturbation-theory calculation of Ref. [1].
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