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Frequency conversion in ultrastrong 
cavity QED
Anton Frisk Kockum  1, Vincenzo Macrì1,2, Luigi Garziano1,2,3, Salvatore Savasta  1,2 & 
Franco Nori  1,4

We propose a new method for frequency conversion of photons which is both versatile and deterministic. 
We show that a system with two resonators ultrastrongly coupled to a single qubit can be used to 
realise both single- and multiphoton frequency-conversion processes. The conversion can be exquisitely 
controlled by tuning the qubit frequency to bring the desired frequency-conversion transitions on or off 
resonance. Considering recent experimental advances in ultrastrong coupling for circuit QED and other 
systems, we believe that our scheme can be implemented using available technology.

Frequency conversion in quantum systems1, 2, is important for many quantum technologies. The optimal work-
ing points of devices for transmission, detection, storage, and processing of quantum states are spread across a 
wide spectrum of frequencies3, 4. Interfacing the best of these devices is necessary to create quantum networks5 
and other powerful combinations of quantum hardware. Examples of frequency-conversion setups developed 
for such purposes include upconversion for photon detection6 and storage7, since both these things are easier to 
achieve at a higher frequency than what is optimal for telecommunications. Downconversion in this frequency 
range has also been demonstrated8–10, and recently even strong coupling between a telecom and a visible optical 
mode11. Additionally, advances in quantum information processing with superconducting circuits at microwave 
frequencies12, 13, is driving progress on frequency conversion between optical and microwave frequencies14–17. 
We note that several types of quantum systems, suited for different tasks in quantum information processing, can 
operate at microwave frequencies4. To connect these systems, frequency conversion within this frequency range is 
important. Furthermore, frequency conversion can be used to create entangled states, which have applications in 
virtually all areas of quantum information processing, including quantum computing, quantum key distribution, 
and quantum teleportation18.

Circuit quantum electrodynamics (QED)12, 19–22, offers a wealth of possibilities for frequency conversion at 
microwave frequencies; some of these schemes can also be generalised to optical frequencies. By modulating the 
magnetic flux through a superconducting quantum interference device (SQUID) in a transmission-line resonator, 
the frequency of the photons in the resonator can be changed rapidly23–25, or two modes of the resonator can be 
coupled26, 27. Other driven Josephson-junction-based devices can also be used for microwave frequency conver-
sion28, 29. Downconversion has been proposed for setups with Δ-type three-level atoms30–32, and demonstrated 
with an effective three-level Λ system33. Upconversion of a two-photon drive has been shown for a flux qubit 
coupled to a resonator in a way that breaks parity symmetry34. Indeed, the Δ-type level structure in a flux qutrit35 
even makes possible general three-wave mixing36. Recently, frequency conversion was also demonstrated for two 
sideband-driven microwave LC-resonators coupled through a mechanical resonator37.

The approach to frequency conversion that we propose in this article is based on two cavities or resonator 
modes coupled ultrastrongly to a two-level atom (qubit). The regime of ultrastrong coupling (USC), where the 
coupling strength starts to become comparable to the bare transition frequencies in the system, has only recently 
been reached in a number of solid-state systems38–56. Among these, a few circuit-QED experiments provide 
some of the clearest examples39, 40, 49–52, 54–56, including the largest coupling strength reported51. While the USC 
regime displays many striking physical phenomena57–66, we are here only concerned with the fact that it enables 
higher-order processes that do not conserve the number of excitations in the system, an effect which has also been 
noted for a multilevel atom coupled to a resonator67. Examples of such processes include multiphoton Rabi oscil-
lations68, 69, and a single photon exciting multiple atoms70. Indeed, almost any analogue of processes from non-
linear optics is feasible71; this can be regarded as an example of quantum simulation72, 73. Just like the analytical 
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solution for the quantum Rabi model74 is now being extended to multiple qubits75, 76, and multiple resonators77–79, 
we here extend the exploration of non-excitation-conserving processes to multiple resonators.

In our proposal, the qubit frequency is tuned to make various frequency-converting transitions resonant. For 
example, making the energy of a single photon in the first resonator equal to the sum of the qubit energy and the 
energy of a photon in the second resonator enables the conversion of the former (a high-energy photon) into the 
latter (a low-energy photon plus a qubit excitation) and vice versa. In the same way, a single photon in the first 
resonator can be converted into multiple photons in the second resonator (and vice versa) if the qubit energy is 
tuned to make such a transition resonant. The proposed frequency-conversion scheme is deterministic and allows 
for a variety of different frequency-conversion processes in the same setup. The setup should be possible to imple-
ment in state-of-the-art circuit QED, but the idea also applies to other cavity-QED systems.

We note that the process of parametric down-conversion in this type of circuit-QED setup has been consid-
ered previously80, but in a regime of weaker coupling and without using the qubit to control the process. Also, 
it has been shown that a beamsplitter-type coupling between two resonators can be controlled by changing the 
qubit state81 or induced for weaker qubit-resonator coupling by driving the qubit82, but the proposal presented 
here offers greater versatility and simplicity for frequency conversion.

Model
We consider a setup where a qubit with transition frequency ωq is coupled to two resonators with resonance fre-
quencies ωa and ωb, respectively, as sketched in Fig. 1. The Hamiltonian is (ħ = 1)

ω ω
ω

σ σ θ σ θ= + + + + + + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †
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where ga (gb) denotes the strength of the coupling between the qubit and the first (second) resonator. The creation 
and annihilation operators for photons in the first (second) resonator are â and ˆ†a  (b̂ and ˆ

†
b ), respectively. The 

angle θ parameterises the amount of longitudinal and transverse coupling as, for example, in experiments with 
flux qubits34, 39, 40, 49, 56, 83; σ̂x and σ̂z are Pauli matrices for the qubit.

Note that we do not include a direct coupling between the two resonators. Such a coupling is seen in exper-
iments49, but here we will only be concerned with situations where the resonators are far detuned from each 
other, meaning that this coupling term can safely be neglected. Likewise, we do not include higher modes of the 
resonators. While they may contribute in experiments with cavities and transmission-line resonators, they can be 
avoided by using lumped-element resonators56, 84.

The crucial feature of Eq. (1) for our frequency-conversion scheme is that some of the coupling terms do not 
conserve the number of excitations in the system. The σ̂z coupling terms act to change the photon number in one 
of the resonators by one, while keeping the number of qubit excitations unchanged. Likewise, the σ̂x coupling 
contains terms like σ−ˆ ˆa  and σ+

ˆ ˆ
†

b  that change the number of excitations in the system by two. For weak coupling 
strengths, all such terms can be neglected using the rotating-wave approximation (RWA), but in the USC regime 
the higher-order processes that these terms enable can become important and function as second- or third-order 
nonlinearities in nonlinear optics71.

To include the effect of decoherence in our system, we use a master equation on the Lindblad form in our 
numerical simulations. The master equation reads

∑ρ ρ ρ= − + Γ + Γ + Γ
>

ˆ ˆ ˆ ˆ( )i H j k[ , ] [ ] ,
(2)j k j

a
jk
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Figure 1. A sketch of the system. A qubit (green) is coupled to two resonator modes (blue, a, and red, b). 
Decoherence channels for the qubit (relaxation rate γ) and the resonators (relaxation rates κa, κb) are included.



www.nature.com/scientificreports/

3Scientific RepoRts | 7: 5313  | DOI:10.1038/s41598-017-04225-3

where ρ̂ is the density matrix of the system, ρ ρ ρ ρ= − −ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †c c c c c c c[ ] 1
2

1
2

 , and the states in the sum are eigen-
states of the USC system. The relaxation rates are given by κΓ = Xa

jk
a a

jk 2
, κΓ = Xb

jk
b b

jk 2
, and γΓ = Cq

jk jk 2
, 

where κa, κb, and γ are the relaxation rates for the bare states of the resonators and the qubit, respectively, and 
= ˆc j c kjk  with = +ˆ ˆ ˆ†X a aa , = +ˆ ˆ ˆ†

X b bb , and σ=ˆ ˆC x
85, 86, Writing the master equation in the eigenbasis of 

the full system avoids unphysical effects, such as emission of photons from the ground state. Similarly, to correctly 
count the number of photonic and qubit excitations we use 

− +ˆ ˆX Xa a , 
− +ˆ ˆX Xb b , and 

− +ˆ ˆC C , where the plus and 
minus signs denote the positive and negative frequency parts, respectively, of the operators in the system eigen-
basis, instead of ˆ ˆ†a a , 〈 〉ˆ ˆ†

b b , and σ σ+ −ˆ ˆ 86.
In the simulations presented in the next section, we use parameters that can be reached in circuit-QED exper-

iments. In such experiments, the bare transition frequencies are usually in the range ωa/b/q ~ 2π × 1 − 10 GHz. 
When it comes to coupling strengths, several experiments have demonstrated ga/b ≳ 0.1ωa/b

39, 40, 49, 52, and recently 
even ga/b ~ ωa/b was reached51, 56. In all these experiments, superconducting flux qubits are coupled either to 
lumped-element LC oscillators39, 51, 56, or transmission-line resonators40, 49, 52. For transmission-line resonators, 
quality factors Q = ωa/b/κa/b exceeding 106 have been demonstrated87, and flux qubit relaxation rates γ can now 
be as small as ~2π × 10 kHz88–90. This brief survey of parameters indicates that γ,κa/b ~ 10−6ωa/b/q is possible and 
that ga/b can be a large fraction of ωa/b/q if needed. In the numerical simulations for different frequency-conversion 
processes, we choose more conservative values for the decoherence rates (more than an order of magnitude larger 
than the best values discussed here), at the same time restricting the coupling strengths ga/b to as small values as 
possible (10–20% of the qubit frequency, depending on the setup) while still achieving high conversion efficiency. 
We note that the ga/b values we chose make the coupling ultrastrong with respect to ωq, but not ultrastrong with 
respect to ωa/b.

Results
Single-photon frequency conversion. We first consider single-photon frequency conversion, where one 
photon in the first resonator is converted into one photon of a different frequency in the second resonator, or 
vice versa. The conversion is aided by the qubit. Without loss of generality, we take ωa > ωb. For the conversion to 
work, we then need ωa ≈ ωb + ωq, such that the states |1, 0, g〉 and |0, 1, e〉 are close to resonant. Due to the pres-
ence of longitudinal coupling in the Hamiltonian in Eq. (1), transitions between these two states are possible even 
though their excitation numbers and parity differ.

The intermediate states and transitions contributing (in lowest order) to the |1, 0, g〉 ↔ |0, 1, e〉 transition are 
shown in Fig. 2. Virtual transitions to and from one of the four intermediate states |0, 0, g〉, |0, 0, e〉, |1, 1, g〉, and 
|1, 1, e〉 connect |1, 0, g〉 and |0, 1, e〉 in two steps. This is the minimum number of steps possible, since the terms 
in the Hamiltonian in Eq. (1) can only create or annihilate a single photon at a time. From the figure, it is also clear 
that no path exists between |1, 0, g〉 and |0, 1, e〉 that does not involve longitudinal coupling (dashed red arrows 
in the figure).

To calculate the effective coupling between the states |1, 0, g〉 and |0, 1, e〉, we truncate the Hamiltonian from 
Eq. (1) to the six states shown in Fig. 2. Written on matrix form, this truncated Hamiltonian becomes

Figure 2. The four lowest-order processes contributing to a transition between |1, 0, g〉 and |0, 1, e〉. For this 
illustration, the parameter values ωa = 3ωq and ωb = 2ωq were used to set the positions of the energy levels. The 
transitions that do not conserve excitation number are shown as dashed lines, and the excitation-number-
conserving transitions are shown as solid lines. Red lines correspond to σ̂z (longitudinal) coupling and blue lines 
to σ̂x (transverse) coupling in the Hamiltonian given in Eq. (1). Each transition is labelled by its matrix element.



www.nature.com/scientificreports/

4Scientific RepoRts | 7: 5313  | DOI:10.1038/s41598-017-04225-3

ω
θ θ

ω
θ θ

θ θ ω
ω

θ θ

θ θ ω
ω

θ θ

θ θ ω ω
ω

θ θ ω ω
ω

=







− −

− − −

+

− + −

+ +







Ĥ
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where the states are ordered from left to right as |0, 0, g〉, |0, 0, e〉, |1, 0, g〉, |0, 1, e〉, |1, 1, g〉, and |1, 1, e〉. When the 
condition ωa ≈ ωb + ωq is satisfied, the four intermediate states |0, 0, g〉, |0, 0, e〉, |1, 1, g〉, and |1, 1, e〉 can be adia-
batically eliminated, i.e., provided that the bare coupling strengths are sufficiently small compared to the energy 
difference between the intermediate states and the initial and final states, we can assume that the population of 
the intermediate states will not change significantly, such that the effective dynamics will only involve the initial 
and final states. This calculation, shown in the Supplementary Information, gives an effective Hamiltonian with 
a coupling term

= +Ĥ g g e e g( 1, 0, 0, 1, 0, 1, 1, 0, ), (4)c,eff eff

where the effective coupling between the states |1, 0, g〉 and |0, 1, e〉 has the magnitude
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ω ω
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−
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on resonance. Compared to the direct resonator-qubit coupling in Eq. (1), geff is weaker by a factor of order g/ω, 
which is why we need to at least approach the USC regime to observe the single-photon frequency conversion. 
We note that the effective coupling is maximised when the longitudinal and transverse coupling terms in Eq. (1) 
have equal magnitude. Interestingly, Eq. (5) suggests that frequency conversion can be more efficient if ωb ≪ ωa. 
However, going too far in this direction violates the assumptions behind the adiabatic approximation, which relies 
on ga,gb ≪ ωa,ωb.

The existence of this effective coupling suggests at least two ways to perform single-photon frequency con-
version. The first is to use adiabatic transfer, starting in |1, 0, g〉 (|0, 1, e〉) with the qubit frequency sufficiently far 
detuned from the resonance ωa = ωb + ωq and then slowly [adiabatically, i.e., slow enough that the probability of 
a Landau-Zener transition back to the initial state is small; note that this is a different notion of adiabaticity than 
that used in the adiabatic elimination used to derive Eq. (4)] changing the qubit frequency until the system ends 
up in the state |0, 1, e〉 (|1, 0, g〉), following one of the energy levels shown in Fig. 3(a). In this way, a single photon 
in the first (second) resonator is deterministically down-converted (up-converted) to a single photon of lower 
(higher) frequency in the second (first) resonator. We note that such adiabatic transfer has been used for robust 
single-photon generation in circuit QED, tuning the frequency of a transmon qubit to achieve the transition  
|0, e〉 → |1, g〉91. It has also been suggested as a method to generate multiple photons from a single qubit excitation 
in the USC regime of the standard quantum Rabi model68.

The second approach, exemplified by a simulation including decoherence in Fig. 3(b), is to initialise the sys-
tem in one of the states |1, 0, g〉 or |0, 1, e〉, far from the frequency-conversion resonance such that the effective 
coupling is negligible, quickly tune the qubit into resonance for the duration of half a Rabi oscillation period (set 
by the effective coupling to be π/2geff), and then detune the qubit again (or send a pulse to deexcite it) to turn off 
the effective interaction. This type of scheme is, for example, commonly used for state transfer between resonators 
and/or qubits in circuit QED92–96. Letting the resonance last shorter or longer times, any superposition of |1, 0, g〉 
or |0, 1, e〉 can be created. The potential for creating superpositions of photons of different frequencies (similar to 
ref. 27) with such a method will be explored in future work.

Since the relevant timescales for both these approaches are determined by geff, it is important to know in which 
parameter range the expression for geff given in Eq. (5) remains a good approximation. In Fig. 4, we show that the 
expression is valid up to at least ga = gb = 0.2ωq,0 for the parameters used in Fig. 3.

We note that both protocols for frequency-conversion given here can be used to transfer superposition states. 
For example, starting in the superposition state a|0, 0, g〉 + b|1, 0, g〉 = (a|0〉 + b|1〉)|0, g〉, where a and b are com-
plex numbers satisfying |a|2 + |b|2 = 1, both protocols will convert this state into a|0, 0, g〉 + b|0, 1, e〉 = |0〉(a|0, 
g〉 + b|1, e〉). If one wishes to disentangle the qubit from the second resonator mode after the transfer of the super-
position, a photon-number-dependent qubit rotation, which can be implemented in the strong-dispersive regime 
of circuit QED97, is one option. The remarks given here also apply to the multi-photon frequency-conversion 
processes studied in the next section.

Multi-photon frequency conversion. We now turn to multi-photon frequency conversion, where, aided 
by the qubit, one photon in the first resonator is converted into two photons in the second resonator, or vice versa. 
We continue to adopt the convention that ωa > ωb. In contrast to the single-photon frequency conversion case 
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above, there are now two possibilities for how the qubit state can change during the conversion process. Below, 
we will study both |1, 0, g〉 ↔ |0, 2, e〉 and |1, 0, e〉 ↔ |0, 2, g〉. Since we wish to use the qubit to control the process, 
we do not consider the process |1, 0, g〉 ↔ |0, 2, g〉, which to some extent was already included in ref. 80, although 
that work considered a setup with ωq ≈ ωb and mainly studied the squeezing produced by a strong external drive.

The |1, 0, g〉 ↔ |0,2,e〉 process. For the process |1, 0, g〉 ↔ |0, 2, e〉, we first of all note one more difference 
compared to the single-photon frequency conversion case: it changes the number of excitations from 1 to 3, which 
means that excitation-number parity is conserved. This makes the longitudinal coupling of Eq. (1) redundant for 
achieving the conversion, and to simplify our calculations we therefore hereafter work with the standard quantum 
Rabi Hamiltonian98 extended to two resonators,

Figure 3. Two frequency conversion methods. (a) The figure shows the energy levels of our system plotted as a 
function of the qubit frequency ωq, using the parameters ga = gb = 0.15ωq,0, θ = π/6, ωa = 3ωq,0, and ωb = 2ωq,0, 
where ωq,0 is a reference point for the qubit frequency, set such that ωa = ωb + ωq,0. In the zoom-in, close to the 
resonance ωa = ωb + ωq, we see the anticrossing between |1, 0, g〉 and |0, 1, e〉 with splitting 2geff. Up- or down-
conversion of single photons can be achieved by adiabatically tuning ωq to follow one of the energy levels in the 
figure from |1, 0, g〉 to |0, 1, e〉, or vice versa. (b) A rapid frequency conversion can be achieved by starting in |1, 
0, g〉, far from the resonance ωa = ωb + ωq, tuning the qubit frequency (pink solid curve) into resonance for half a 
Rabi period (π/2geff) and then sending a pulse (green solid curve) to deexcite the qubit. The pink solid curve is 
given by ω ω δω= + − Θ − + − Θ −t A t t t t A t t t t( ) {sin [ ( )] ( ) sin [ ( )] ( )}q q i q i i f f,

2 2 , a smoothed step function, 
where ωq,i is the initial qubit frequency, δωq is the change of the qubit frequency, Θ is the Heaviside step 
function, ti is the time when the qubit frequency starts to change, tf = ti + π/(2A), and A is a frequency setting 
the smoothness. The figure shows the number of excitations in the two resonators (red dashed-dotted curve for 
a, black dashed curve for b) and the qubit (blue solid curve) during the process, including decoherence in the 
form of relaxation from the resonators and the qubit. The parameters used for the decoherence are 
κa = κb = γ = 4 × 10−5ωq,0.

Figure 4. Comparison of analytical (red curve) and numerical (black dots) results for the effective coupling 
between the states |1, 0, g〉 and |0, 1, e〉. The graph shows the minimum energy splitting 2geff/ωq,0 as a function of 
g/ωq,0, where g = ga = gb, using the same parameters as in Fig. 3.
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Placing the system close to the resonance ωa = 2ωb + ωq, virtual transitions involving the intermediate states 
|0, 0, e〉, |0, 1, g〉, |1, 1, e〉, and |1, 2, g〉 (to lowest order), contribute to the process |1, 0, g〉 ↔ |0, 2, e〉, as shown 
in Fig. 5. The most direct path between |1, 0, g〉 and |0, 2, e〉 involves three steps, since only one photon can be 
created or annihilated in each step. We note that all the paths include at least one transition that is due to terms in 
the Hamiltonian that do not conserve excitation number (dashed arrows in the figure).

Retaining only the states shown in Fig. 5, we can write the quantum Rabi Hamiltonian from Eq. (6) on matrix 
form as
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where the states are ordered as |0, 0, e〉, |0, 1, g〉, |1, 0, g〉, |0, 2, e〉, |1, 1, e〉, and |1, 2, g〉. Just like before, we can 
adiabatically eliminate the intermediate states when the condition ωa ≈ 2ωb + ωq is satisfied. The result of this 
calculation, the details of which are given in the Supplementary Information, is an effective coupling between the 
states |1, 0, g〉 and |0, 2, e〉 with magnitude

ω ω ω
ω ω ω ω ω ω

=
− −

− + − +
g g g
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2 [2 ( 2 ) ]

2 ( ) (5 3 ) (8)
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on resonance. Here, we have set ga = gb ≡ g to simplify the expression slightly. We note that, to leading order, the 
coupling scales like g3/ω2; indeed, the leading-order term is

ω ω
ω ω ω

=
−

−
.g g2 ( 2 )

( ) (9)
a b

b a b
eff

3

2

This is a factor g/ω weaker than for the single-photon frequency conversion, and reflects the fact that an addi-
tional intermediate transition is required for the two-photon conversion. We also note that the coupling becomes 

Figure 5. The lowest-order processes contributing to a transition between |1, 0, g〉 and |0, 2, e〉 in the quantum 
Rabi model. The transitions that do not conserve excitation number are shown as dashed blue lines and the 
excitation-number-conserving transitions are shown as solid blue lines. The label of each line is the term in Eq. 
(6) that gives rise to that transition. The parameters ωa = 5ωq and ωb = 2ωq were used to set the positions of the 
energy levels.



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 5313  | DOI:10.1038/s41598-017-04225-3

small in the limit of small ωq, i.e., when 2ωb → ωa. The coupling would become large if ωa → ωb, but this is impos-
sible since ωa = 2ωb + ωq in this scheme.

The two-photon frequency conversion can be performed either by adiabatic transfer or by tuning the qubit 
into resonance for half a Rabi oscillation period, as explained in the section on single-photon frequency conver-
sion. In the first approach, one adiabatically tunes the qubit energy to follow one of the energy levels shown in 
Fig. 6(a). A simulation of the second approach, including decoherence, is shown in Fig. 6(b). The timescale for 
these processes is set by the effective coupling. In Fig. 7, we show that the expression for the effective coupling 
given in Eq. (8) remains a good approximation up to at least g = 0.3ωq,0 for the parameters used in Fig. 6.

The |1, 0, e〉 ↔ |0, 2, g〉 process. For the process |1, 0, e〉 ↔ |0, 2, g〉, we show in Fig. 8 the virtual transi-
tions from the quantum Rabi Hamiltonian that contribute to lowest order. We note that this process conserves the 
excitation number, which means that there is a path between the states that can be realised using only terms from 

Figure 6. Two-photon frequency conversion via transitions between |1, 0, g〉 and |0, 2, e〉. (a) The energy 
levels of our system, given in Eq. (6), plotted as a function of the qubit frequency ωq, using the parameters 
ga = gb = 0.2ωq,0, ωa = 5ωq,0, and ωb = 2ωq,0, where the reference point ωq,0 is set such that ωa = 2ωb + ωq,0. In 
the zoom-in, close to the resonance ωa = 2ωb + ωq, we see the anticrossing between |1, 0, g〉 and |0, 2, e〉 with 
the splitting 2geff given by Eq. (8). Up-conversion of a photon pair into a single photon, or down-conversion 
of a single photon into a photon pair, can be achieved by adiabatically tuning ωq to follow one of the energy 
levels in the figure from |0, 2, e〉 to |1, 0, g〉, or vice versa. (b) A rapid frequency conversion can be achieved 
by starting in |1, 0, g〉 or |0, 2, e〉, far from the resonance ωa = 2ωb + ωq, tuning the qubit frequency (pink solid 
curve, a smoothed step function as explained in Fig. 3) into resonance for half a Rabi period (π/2geff) and 
then tuning it out of resonance again. The figure shows the number of excitations in the two resonators (red 
solid curve for a, black dashed-dotted curve for b) and the qubit (blue dashed curve) during such a process, 
including decoherence in the form of relaxation from the resonators and the qubit. The parameters used for the 
decoherence are κa = κb = γ = 2 × 10−5ωq,0.

Figure 7. Comparison of analytical (red curve) and numerical (black dots) results for the effective coupling 
between the states |1, 0, g〉 and |0, 2, e〉. The graph shows the minimum energy splitting 2geff/ωq,0 as a function of 
g/ωq,0, using the same parameters as in Fig. 6.
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the Jaynes–Cummings (JC) Hamiltonian99 (solid arrows in the figure). Below, we analyse the effective coupling 
both for the full quantum Rabi Hamiltonian and for the JC Hamiltonian. Usually, the JC Hamiltonian is obtained 
by performing the RWA on the quantum Rabi Hamiltonian when g ≪ ωa/b/q, in which case the low coupling 
strength would make it very challenging to observe the frequency conversion process. However, we note that a 
circuit QED setup has been proposed where the pure JC Hamiltonian with ultrastrong coupling can be realised100.

Quantum Rabi Hamiltonian. Retaining only the states shown in Fig. 8, we can write the quantum Rabi 
Hamiltonian from Eq. (6) on matrix form as
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where the states are ordered as |0, 0, g〉, |0, 1, e〉, |1, 0, e〉, |0, 2, g〉, |1, 1, g〉, and |1, 2, e〉. As in previous calculations, 
we can perform adiabatic elimination close to the resonance, which in this case is ωa + ωq ≈ 2ωb. The details of 
the elimination are given in the Supplementary Information. The result is an effective coupling between the states  
|1, 0, e〉 and |0, 2, g〉 with magnitude
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on resonance. We have set ga = gb ≡ g to simplify the expression slightly. Note that this expression for the coupling 
is actually exactly the same as the one for the process |1, 0, g〉 ↔ |0, 2, e〉 given in Eq. (8). Even though the two 
processes use different intermediate states, the truncated Hamiltonians in Eqs (7) and (10) only differ in the sign 
of ωq. Since ωq is replaced on resonance by (ωa − 2ωb) in the first case and by (2ωb − ωa) in the second case, the 
formula for the effective coupling ends up being the same in both cases. The two cases still differ, however. For 
example, while the limit ωa → ωb, which enhances the coupling, could not occur for the process |1, 0, g〉 ↔ |0, 2, 
e〉, it is possible for |1, 0, e〉 ↔ |0, 2, g〉. However, in this limit the approximations behind the adiabatic elimination 
break down, since the states |1, 1, g〉 and |0, 1, e〉 would also be on resonance and become populated.

The two-photon frequency conversion can again be performed either by adiabatic transfer or by tuning the 
qubit into resonance for half a Rabi oscillation period, as explained in the section on single-photon frequency 

Figure 8. The lowest-order processes contributing to a transition between |1, 0, e〉 and |0, 2, g〉 in the quantum 
Rabi model. The transitions that do not conserve excitation number are shown as dashed blue lines and the 
excitation-number-conserving transitions are shown as solid blue lines. The label of each line is the term in Eq. 
(6) that gives rise to that transition. The parameters ωa = 3ωq and ωb = 2ωq were used to set the positions of the 
energy levels.
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conversion. The energy levels to follow in the first approach are plotted in Fig. 9(a) and a simulation of the second 
approach, including decoherence, is shown in Fig. 9(b).

Jaynes–Cummings Hamiltonian. For completeness, we calculate the effective coupling using only the 
JC Hamiltonian for two resonators and one qubit, i.e., we eliminate the non-excitation-conserving terms in the 
quantum Rabi Hamiltonian of Eq. (6), giving
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Retaining only the states connected by solid arrows in Fig. 8, we can write the Hamiltonian from Eq. (12) on 
matrix form as
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where the states are ordered as |0, 1, e〉, |1, 0, e〉, |0, 2, g〉, and |1, 1, g〉. Again, we perform adiabatic elimination 
close to the resonance ωa + ωq ≈ 2ωb. The details of the elimination are given in the Supplementary Information. 
The result is an effective coupling between the states |1, 0, e〉 and |0, 2, g〉 with magnitude
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on resonance. Just as for the other two-photon frequency-conversion processes, the coupling scales like g3/ω2 to 
leading order. In fact, Eq. (14) is a good approximation to Eq. (11), since the path given by the JC terms (solid 
lines) in Fig. 8 is far less detuned in energy from the initial and final states than all the other paths and thus gives 
the largest contribution to the result in Eq. (11). The remarks on the limit ωa → ωb given after Eq. (11) apply here 
as well. The schemes for implementing the frequency conversion are already given in Fig. 9.

Figure 9. Two-photon frequency conversion via transitions between |1, 0, e〉 and |0, 2, g〉. (a) The energy 
levels of our system, given in Eq. (6), plotted as a function of the qubit frequency ωq, using the parameters 
ga = gb = 0.125ωq,0, ωa = 3ωq,0, and ωb = 2ωq,0, where the reference point ωq,0 is set such that ωa + ωq,0 = 2ωb. In 
the zoom-in, close to the resonance ωa + ωq = 2ωb, we see the anticrossing between |1, 0, e〉 and |0, 2, g〉 with 
the splitting 2geff given by Eq. (11). Up-conversion of a photon pair into a single photon, or down-conversion 
of a single photon into a photon pair, can be achieved by adiabatically tuning ωq to follow one of the energy 
levels in the figure from |0, 2, g〉 to |1, 0, e〉, or vice versa. (b) A rapid frequency conversion can be achieved 
by starting in |1, 0, e〉 or |0, 2, g〉, far from the resonance ωa + ωq = 2ωb, tuning the qubit frequency (pink solid 
curve, a smoothed step function as explained in Fig. 3) into resonance for half a Rabi period (π/2geff) and 
then tuning it out of resonance again. The figure shows the number of excitations in the two resonators (red 
solid curve for a, black dashed-dotted curve for b) and the qubit (blue dashed curve) during such a process, 
including decoherence in the form of relaxation from the resonators and the qubit. The parameters used for the 
decoherence are κa = κb = γ = 4 × 10−5ωq,0.
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In Fig. 10, we compare the results from Eqs (11) and (14) with a full numerical calculation using the quantum 
Rabi Hamiltonian. The contribution from the JC part dominates the coupling up until around ga = gb = g = 0.03ωq,0 
and gives a good approximation until then. For higher values of the coupling, using the approximation from the 
quantum Rabi Hamiltonian instead works fine up until around ga = gb = g = 0.15ωq,0. It is interesting to note that 
a pure JC Hamiltonian in the USC regime would give higher effective coupling for this frequency-conversion 
process than the quantum Rabi Hamiltonian.

Discussion
We have shown how a system consisting of two resonators ultrastrongly coupled to a qubit can be used to realise 
a variety of frequency-conversion processes. In particular, we have shown how to convert a single photon into 
another photon of either higher or lower frequency, as well as how to convert a single photon into a photon pair 
and vice versa. All these processes are deterministic, can be implemented within a single setup, and do not require 
any external drives. The conversion is controlled by tuning the frequency of the qubit to and from values that 
make the desired transitions resonant.

Given the recent advances in USC circuit QED, we believe that our proposal can be implemented in such a 
setup. Indeed, two resonators have already been ultrastrongly coupled to a superconducting flux qubit49. Also, 
our proposal does not require very high coupling strengths. We only need that g2/ω is appreciable (larger than the 
relevant decoherence rates) to realise single-photon frequency conversion; multi-photon frequency conversion 
can be demonstrated if g3/ω2 is large enough.

A straightforward extension of the current work is to extend the calculations to processes with more pho-
tons in the second resonator or to add more resonators to the setup. Some of these possibilities are discussed 
in ref. 71, where we explore analogies of nonlinear optics in USC systems, including the fact that the pro-
cesses in the current work can be considered analogies of Raman and hyper-Raman scattering if the qubit is 
thought of as playing the role of a phonon. More general three-wave mixing, such as |1, 0, 0, e〉 ↔ |0, 1, 1, g〉, or 
third-harmonic and -subharmonic generation such as |1, 0, e〉 ↔ |0, 3, g〉, are examples of schemes that can be 
considered, but it must be kept in mind that higher-order processes with more photons involved will have lower 
effective coupling strengths. Another direction for future work is to investigate how the precise qubit control 
of the frequency-conversion processes discussed here can be used to prepare photon bundles101 or interesting 
quantum superposition states with photons of different frequencies, a topic currently being explored in several 
frequency ranges26, 27, 102.
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