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Spatio-Temporal Steering for 
Testing Nonclassical Correlations in 
Quantum Networks
Shin-Liang Chen1,2, Neill Lambert3, Che-Ming Li4, Guang-Yin Chen3,5, Yueh-Nan Chen  1,3,6, 
Adam Miranowicz3,7 & Franco Nori  3,8

We introduce the concept of spatio-temporal steering (STS), which reduces, in special cases, to Einstein-
Podolsky-Rosen steering and the recently-introduced temporal steering. We describe two measures of 
this effect referred to as the STS weight and robustness. We suggest that these STS measures enable a 
new way to assess nonclassical correlations in an open quantum network, such as quantum transport 
through nano-structures or excitation transfer in a complex biological system. As one of our examples, 
we apply STS to check nonclassical correlations among sites in a photosynthetic pigment-protein 
complex in the Fenna-Matthews-Olson model.

Quantum steering is an intriguing quantum phenomenon, which enables one party (usually referred to 
as Alice) to use her different measurement settings to remotely prepare the set of quantum states of another 
spatially-separated party (say Bob). This ability, which is not achievable without quantum resources, was first 
described by Schrödinger1 in his response to the work of Einstein, Podolsky, and Rosen (EPR)2 on quantum 
entanglement and the related question about the completeness of quantum mechanics. As recently shown3, 
quantum steering (also refereed to as EPR steering) is, in general, weaker than Bell’s nonlocality4, 5 but stronger 
than quantum entanglement6. After eighty years, quantum steering has been gradually formulated mathemat-
ically3, 7–10 and observed experimentally7, 11–20. Other developments include: using steering as a resource for 
quantum-information processing, quantifying steering9, 10, 21–23, clarifying its relationship to the problem of the 
incompatibility of measurements24–28, connecting steering with quantum computation29, 30, and multipartite 
quantum steering30–34, among various other generalizations and applications (see ref. 35 and references therein).

Nonclassical temporal correlations (like photon antibunching) play a fundamental role in quantum optics 
research, since the Hanbury-Brown and Twiss experiments36 and the Glauber theory of quantum coherence37. 
While there is as yet no clear temporal analog of quantum entanglement, attempts at defining such have led to 
new ideas about quantum causality (see, e.g., refs 38–40 and references therein). Recently, temporal steering41 was 
introduced as a temporal analog of EPR steering, which refers to a nonclassical correlation of a single object at 
different times. Contrary to temporal entanglement, temporal steering has a clear operational meaning29, 41–47. In 
particular, temporal steering was used for testing the security of quantum key distribution protocols41, 46 and for 
quantifying the non-Markovian dynamics of open systems44. Recently, temporal steering was also experimentally 
demonstrated47 by measuring the violation of the temporal inequality presented in ref. 41. Moreover, a measure 
of temporal steering was proposed44, 46 and experimentally determined47.

Here, we introduce the concept of spatio-temporal steering (STS) as a natural unification of the EPR and 
temporal forms of steering. In addition, we propose two measures of STS, specifically, its robustness and weight. 
We also show the usefulness of STS in testing and quantifying nonclassical correlations of quantum networks 
by analyzing two examples, including the decay of nonclassical correlations in quantum excitation transfers in 
the Fenna-Matthews-Olson (FMO) protein complex, which is one of the most widely studied photosynthetic 
complexes48. Note that STS can also be applied to test quantum-state transfer in quantum networks like those 
described in refs 49, 50.
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Results
Temporal steering: From temporal hidden-variable model to temporal hidden-state 
model. Let us briefly review the so-called temporal hidden-state model for a single system at two moments 
of time29, 41, 44. Consider that, during the evolution of the system from time 0 to time t, one can perform meas-
urements using different settings {x} and {y} to obtain outcomes {a} and {b} at times 0 and t, respectively. If one 
makes two assumptions: (A1) noninvasive measurability at time 0, which means that one can obtain a measure-
ment outcome without disturbing the system, and (A2) macrorealism (macroscopic realism)51, which means 
that the outcome of the system pre-exists, no matter if a measurement has been performed or not. Under these 
conditions, there exist some hidden variables λ, which a priori determine the joint probability distributions52–57

∑ λ λ λ= .
λ

p a b x y p p a x p b y( , , ) ( ) ( , ) ( , )
(1)

Now, if one replaces the assumption (A2) with (A2’), which means that during each moment of time the system 
can be described by a quantum state σλ, which is determined by some hidden variables λ independent of the 
measurements performed before, then the hidden variables determine not only the observed data table 

λ λ= ∑λp a x p p a x( ) ( ) ( , ) at time t = 0, but also a priori the quantum state ρ λ σ= ∑λ λp( )  at time t. It is conven-
ient to define the temporal assemblage

σ σ≡
{ }t p a x t( ) ( ) ( ) ,a x a x

a x
T

,

where σ


t( )a x  is the observed quantum state at time t conditioned on the earlier measurement event a|x at time 0. 
Thus, the temporal assemblage is a set of subnormalized states, which characterizes the joint behaviour: (1) 

σ= 



p a x t( ) tr ( )a x

T  and (2) σ σ σ=


t t t( ) ( )/tr[ ( )]a x a x a x
T T . Furthermore, the formulation of the temporal hidden-state 

model can be written as

∑σ λ λ σ= .
λ

λt p p a x( ) ( ) ( , )
(2)a x

T

Quantum mechanics predicts some assemblages, which do not admit the temporal hidden-state model, and 
we refer to this situation as temporal steering44. Note that since the hidden-state model is a strict subset of the 
hidden-variable model, using the former model may admit an easier detection of the nonclassicality of the quan-
tum dynamics than using the hidden-variable model.

Spatio-temporal steering. Similarly, we can also generalize the hidden-state model to the hybrid spatio 
and temporal scenario. That is, we would like to consider the hidden-state model for a system B at time t, after the 
local measurement has been performed on a system A at time 0. Then, under the assumptions of non-invasive 
measurement for the system A at time 0 and the hidden state for the system B at time t, the spatio-temporal 
hidden-state model is written as (for brevity, the term “spatio-temporal” will be sometimes omitted hereafter).

∑σ λ λ σ= ∀
λ

λt p p a x a x( ) ( ) ( , ) , ,
(3)a x

ST,B
A

B

where σ σ≡
∼t p a x t( ) ( ) ( )a x

B
a x

ST,
A

ST,B , with σ


t( )a x
ST,B  being the observed quantum state of the system B at time t, condi-

tioned on the measurement event a|x [with corresponding data table pA(a|x)] of the system A at time 0. When 
there is no risk of confusion, we will abbreviate σ t( )a x

ST,B  as σ t( )a x
ST , pA(a|x) as p(a|x), and σλ

B as σλ. The set of sub-
normalized states σ t{ ( )}a x a x

ST
,  is refereed to as a spatio-temporal assemblage having the property σ=p a x t( ) tr[ ( )]a x

ST  
and σ σ σ=

∼ t t t( ) ( )/tr[ ( )]a x a x a x
ST ST ST , and can be certified if it admits the model, given by equation (3), via the following 

semidefinite programming (SDP) (see ref. 58 for SDP, and refs 8, 9, 27 for dealing with the certification of the 
hidden-state model for a given assemblage):

∑
∑

ρ

σ λ ρ

ρ ρ λ

= | ∀

= ≥ ∀

λ

λ λ

λ λ λ

| t p a x a x

find { }

subject to ( ) ( , ) , ,

tr 1, 0 , (4)

a x
ST

where ρ λ σ≡λ λp( ) , and the notation ρλ ≥ 0 denotes that ρλ is a positive-semidefinite operator. Quantum mechan-
ics predicts that

σ ρ= Λ


⊗ ⊗ 
{ }( ) ( )t F F( ) tr ,a x a x a x

ST
A 0� �

with ρ0 being the initial quantum state shared by the systems A and B at time 0, {Fa|x}a being the 
positive-operator-valued measure representing the measurement x. The quantum channel Λ describes the time 
evolution of the post-measurement composite system from time 0 to time t see the schematic diagram in Fig. 1(a).

With an appropriately designed ρ0, {Fa|x}a,x, and Λ, the assemblage cannot be written in the form of  
equation (3) i.e., there is no feasible solution of the SDP problem given in equation (4). In this situation, the 
assemblage is said to be spatio-temporal steerable. To quantify the degree of such steerability, we would like to 
introduce the quantifier called the STS weight (STSW), which is defined as 
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µ σ µσ µ σ= − = + −| | |STSW t t tmin (1 ) subject to { ( ) ( ) (1 ) ( )}a x a x a x
S

a x
ST ST,US ST,

,

(the same techniques have been demonstrated in refs 9, 44). σ t{ ( )}a x a x
ST,US

,  stands for the unsteerable (US) assem-
blage i.e., one admits equation (3), σ t{ ( )}a x

S
a x

ST,
,  represents the steerable assemblage, and 0 ≤ μ ≤ 1. This can be 

formulated as the following SDP problem:

∑
∑

ρ ρ λ

σ λ ρ

= − ≥ ∀

− | ≥ ∀ .
λ λ λ

λ λ|

STSW

t p a x a x

min (1 tr ), with 0

subject to ( ) ( , ) 0 , (5)a x
ST

In addition, we would like to introduce another measure, referred to as the STS robustness (ST SR), which can be 
viewed as a generalization of the EPR steering robustness10 to the present spatio-temporal scenario. The STS 
robustness ST SR can be defined as the minimum noise τ t( )a x

ST  to be added to σ t( )a x
ST , such that the mixed assem-

blage is unsteerable. That is, α σ τ σ= + =
α

α
α+ +{ }ST SR t tmin subject to ( ) ( )a x a x a x

a x

1
1

ST
1

ST ST,US

,
. This can also be 

formulated as an SDP problem. Specifically,

∑
∑

ρ ρ λ

λ ρ σ

= − ≥ ∀

− ≥ ∀ .
λ λ λ

λ λ

( )ST SR

p a x t a x

min tr 1 , with 0

subject to ( , ) ( ) 0 , (6)a x
ST

The STS robustness and weight, analogously to their EPR counterparts, have different operational meanings and 
properties. For example, one could expect that these measures can imply different orderings of states, analogously 
to this property exhibited by various measures of entanglement59–61, Bell nonlocality62, and nonclassicality63. A 
detailed comparison of these two STS measures will be given elsewhere64. Here, we have calculated the STS weight 
for Example 1, and the STS robustness for Example 2 in the following sections, just to show that these measures 
can easily be computed and interpreted.

Examining nonclassical correlations within a quantum network. A possible application of STS is that it 
can be used to witness whether two nodes of a quantum network are nonclassically correlated (or quantum connected). 
Consider two qubits on the opposite ends of a quantum network, as shown in Fig. 1(b). There may be a damage some-
where in the network, such that the quantum coherent interaction between distant nodes may be inhibited. To verify 
this, one can initially perform measurements at time tA = 0 on site-A. On site-B, one performs measurements at a later 
time t. If the value of the STS weight (or, equivalently, the STS robustness) is always zero for the whole range of time 
t, one can say that the influence of the quantum measurement at site-A is not transmitted to site-B in a steerable way.

Example 1: The spatio-temporal steering weight in a three-qubit network. As an example of STS in a quantum net-
work, let us apply a simplified model of two qubits coherently coupled via a third qubit Fig. 2(b). The interaction 
Hamiltonian of the entire system is

 σ σ σ σ σ σ σ σ= + + ++ − − + + − − +H J J( ) ( ), (7)int 12
1 2 1 2

23
2 3 2 3

where σ+
i  (σ−

i) is the raising (lowering) operator of the ith qubit respectively, while J12 (J23) is the coupling strength 
between qubits 1 (2) and 2 (3). To simulate the damage in the network, and quantify it, we assume qubit 2 may 
suffer noise-induced dephasing. For simplicity, the two coupling strengths are equal, i.e., = ≡J J J12 23 . The STS 
weight, calculated as described above, is plotted in Fig. 2(b). We can see that if the dephasing rate γ is very small, 

Figure 1. (a) Schematic diagram of spatio-temporal steering. At time t = 0, a system A (which may be 
entangled with a system B) is subject to a local measurement with one of the measurement settings {x}, which is 
described by a positive-operator-valued measure {Fa|x}a. After this measurement, the post-measurement 
composite state ρa|x is sent into a quantum channel Λ and evolves for a time period t. After many rounds of the 
experiment, the set of subnormalized quantum states of the system B is denoted as σ t{ ( )}a x a x

ST
, . With some 

appropriate ρ0, {Fa|x}a,x, and Λ, the assemblage σ t{ ( )}a x a x
ST

,  does not admit the spatio-temporal hidden-state 
model equation (3). We call this spatio-temporal steering and refer the assemblage σ t{ ( )}a x a x

ST
,  as spatio-temporal 

steerable. (b) A schematic example of a quantum network with damage (strong dissipation or dephasing, or an 
entirely broken link). The STS weight and robustness can be employed as diagnostic tools to check whether 
site-A and site-B are nonclassically correlated.
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the STS weight oscillates with time t, revealing the coherent interaction between qubits 1 and 3 via the middle 
qubit. If γ is large (i.e. the middle node is damaged), one sees the growth of the STS weight at a later time. One can 
imagine that if the dephasing is very strong, it can inhibit the appearance of the STS weight. However, several 
caveats arise in that the apparent correlations may be transmitted via other means than the network itself (via 
some environment or eavesdropper). A possible opening for future research in this area is to consider a 
multi-partite extension, and whether it can be used as a measure of quantum communities in networks65.

Example 2: The spatio-temporal steering robustness in the Fenna-Matthews-Olson complex. Much attention has 
been devoted to the possible functional role of quantum coherence66, 67 in photosynthesis bacteria, since the 
observation of possible quantum coherent motion of an excitation within the FMO complex – a photosynthetic 

Figure 2. The STS weight versus time in a simple quantum network model described in example 1 in the text. 
(a) Three identical qubits, with coherent coupling J12 (J23) between qubit 1 (2) and 2 (3). To simulate the 
damaged node, we assume qubit 2 suffers a phase damping γ. (b) The blue-solid, black-dashed, and red-dotted 
curves show the STS weight (ST SW) of the assemblage σ t{ ( )}a x a x

ST
,  of qubit-3 for different dephasing rates of the 

middle qubit γ/J = 0.01, 1, and 20, respectively. The measurement settings {x} on qubit-1 at time 0 are the Pauli 
set X, Y, and Z. The initial condition is ⊗ ⊗1 0 0 , and = ≡J J J12 23 . The time t is in units of J−1. From the 
figure, we can see that when the dephasing rate increases from 0.01J to 1J, the amplitude of the ST SW decreases. 
This means that when dephasing rate increases from 1J to 20J, the dephasing mechanism dominates the 
dynamics of the system, leading to a disappearance of the oscillatory behavior. Although the dephasing rate is 
large (e.g., the red-dotted curve), the effect of the measurement on qubit-1 at time 0 can still be transited to 
qubit-3 via the coherent coupling between the qubits, making the ST SW gradually increase. For brevity, we are 
omitting analogous plots for the STS robustness.

Figure 3. (a) Schematic diagram of a single monomer of the FMO protein complex. This monomer contains 
eight sites (here we show only seven of them). In the bacterial photosynthesis, the excitation from the light-
harvesting antenna enters the FMO complex at sites 6 or 1 and is then transferred from one site to another. 
The excitation can irreversibly jump to the reaction center, when it reaches site-3. In this work, the initial 
condition is set as site-6 in a mixed excited state while the other sites are in ground states. BChl stands for 
a bacteriochlorophyll molecule. (b) Schematics of how the monomer exists in a trimer, and acts as a wire 
connecting a large antenna complex to the reaction center.
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pigment-protein complex68–70. A simple treatment of the excitation transfer in the FMO complex normally con-
siders seven coupled sites (chromophores), as shown in Fig. 3, and their interaction with the environment. The 
hierarchy method71–75 or other open-quantum system models76, 77 can be used to explain the presence of quantum 
coherence and predict the physical quantities observed in experiments.

Empowered by STS, one can ask the following questions for a network like the FMO protein complex: When 
an excitation arrives at site-6, and propagates through the network, how large is its quantum influence, if any, 
to other sites? When do such nonclassical correlations vanish? Previously, quantum entanglement in the FMO 
complex has been theoretically analyzed78. Given the fact that the excitation transfer is dynamic in nature, with 
a specific starting site (site-1 or site-6), it is more natural to examine the nonclassical correlation between sites at 
different times by using the STS measures. However, we point out that evaluating these measures requires meas-
urements in different “excitation” bases at both source and target sites. Thus, evaluating these measures represents 
an analysis of the network itself, and how quantum correlations propagate through it, much akin to the approach 
taken in ref. 79.

The model Hamiltonian of the single FMO monomer containing N sites can be written as (see, e.g. ref. 80 and 
references therein):

∑ ∑
ε

σ σ σ σ σ= + +
= < ′

′ + −
′

− +
′H J

2
( )

(8)n

N
n

z
n

n n
n n

n n n n

1

( )
,

( ) ( ) ( ) ( )

where the state Pauli operators represent an electronic excitation at site n, (n ∈ 1, …, 7), such that 
σ = −e e g gz

n n n n n( ) ( ) ( ) ( ) ( ) , εn is the site energy of chromophore n, and Jn,n′ is the excitonic coupling between 
the nth and n′th sites. In the literature, because of the rapid recombination of multiple excitations in such a com-
plex, it is common to simplify drastically this model by assuming that the whole complex only contains a single 
excitation. In that case the 27 dimensional Hilbert space is reduced to a 7 dimensional Hilbert space. Here, while 
we also assume only a single-excitation, we keep the full 27 dimensional Hilbert space to enable us to consider 
measurements in a basis which represent superpositions of excitations at various sites. (Note that for simplicity, 
we omit the recently discovered eighth site81).

In the regime that the excitonic coupling Jn,n′ is large compared with the reorganization energy, the 
electron-nuclear coupling can be treated perturbatively82, and the open-system dynamics of the system can be 
described by the Haken-Strobl master-type equation83, 84,


ρ ρ ρ= − +


t i H L( ) [ , ] [ ], (9)

where ρ is the system density matrix, and L[ρ] denotes the Lindblad operators

ρ ρ ρ= +L L L[ ] [ ] [ ], (10)sink deph

where the Lindblad superoperator Lsink describes the irreversible excitation transfer from site-3 to the reaction 
center:

ρ ρ ρ ρ= Γ − −† † †L s s s s s s[ ] [2 ], (11)sink

where σ σ= + −s R( ) (3), with σ+
R( ) representing the creation of an excitation in the reaction center, and Γ denotes the 

transfer rate. The other Lindblad superoperator, Ldeph, describes the temperature-dependent dephasing with the 
rate γdp:

∑ρ γ ρ ρ ρ= − −† † †L A A A A A A[ ] [2 ],
(12)n

n n n n n ndeph dp

where σ=An z
n( ). This dephasing Lindblad operator leads to the exponential decay of the coherences between 

different sites in the system density matrix. The pure-dephasing rate γdp can be estimated by applying the standard 
Born-Markov system-reservoir model85, 86. We assume an Ohmic spectral density, which, combined with the 
Born-Markov approximations, leads to a dephasing rate directly proportional to the temperature86. While more 
complex treatments are necessary to fully describe the true dynamics of the FMO complex, here we restrict our-
selves to this weak-coupling Lindblad form for numerical efficiency and easier interpretation of results. Note that 
there exists a factor 1/8 between the dephasing rate γdp here and the orthodox one in the 7-site model.

In the FMO monomer, the excitation transferring from site-3 to the reaction center takes place on a time scale 
of ~1 ps, and the dephasing occurs on a time scale of ~100 fs86. These two time scales are both much faster than 
that of the excitonic fluorescence relaxation (~1 ns), which is, thus, omitted here for simplicity. Here we present 
the values used for the system Hamiltonian in calculating the excitation transfer87:

′ =







− . . − . . − . − .
− . . . . . .

. . − . . − . .
− . . − . − . − . − .

. . . − . . − .
− . . − . − . . .
− . . . − . − . .







H

215 104 1 5 1 4 3 4 7 15 1 7 8
104 1 220 32 6 7 1 5 4 8 3 0 8
5 1 32 6 0 46 8 1 0 8 1 5 1
4 3 7 1 46 8 125 70 7 14 7 61 5
4 7 5 4 1 0 70 7 450 89 7 2 5
15 1 8 3 8 1 14 7 89 7 330 32 7
7 8 0 8 5 1 61 5 2 5 32 7 280
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Here the diagonal elements correspond to εn, and the off-diagonals to Jn,n′. We omit the large ground-state off-set, 
as it does not influence the results. This FMO dynamics description is based on our former work80.

In Fig. 4, we numerically calculated the STS robustness of site-6 to other sites by using the Haken-Strobl 
equation of motion80, 84. In plotting this figure, the temperature is chosen to be T = 15 K with the corresponding 
dephasing rate γdp = 7.7 cm−1 and the decay rate (into the reaction center from site-3 only) Γ = 5.3 cm−1. As seen 
from this figure, the largest STS robustness occurs from site-6 to site-5. This is because site-6 and site-5 have the 
second largest intersite coupling (≈89.7 cm−1) in the whole network. Another interesting fact is that the robust-
ness of site-6 to site-7 has the second largest magnitude (with a time delay) and the longest vanishing time (death 
time) of the STS robustness. In view of the coupling strength of the Hamiltonian, this may be due to the relative 
strong couplings of site-5 to site-4 (≈70.7 cm−1) and site-4 to site-7 (≈61.5 cm−1), such that the influence from 
site-6 is transferred through these sites with a time delay. In other words, the STS robustness not only gives the 
magnitude of the nonclassical correlations between two sites, but also gives the information of how long the non-
classical correlation takes to arrive, and how long it can be sustained.

Conclusions
Although the concept of spatio-temporal quantum entanglement is fundamentally difficult to be described con-
sistently, we showed that STS, describing a certain type of spatio-temporal nonclassical correlations, can indeed 
be defined and quantified in an operational way. We hope that this may provide a wider view than the purely 
spatial or temporal correlations separately. In addition, we showed that STS, with its measures, including the 
STS weight and STS robustness, can be useful to assess nonclassical correlations in quantum networks or other 
open quantum systems. As an application, we described two examples of testing nonclassical correlations in a toy 
model of a three-qubit quantum network and in a more realistic model of the excitation transfer in the seven-site 
FMO complex. We believe that STS can be useful also for testing nonclassical correlations of more complex 
biological systems66, 79 and for describing quantum transport through artificial nano-structures88–91. Finally, we 
mention that a possible experimental demonstration of STS can be based on a delayed-time modified version of 
the experiment on temporal steering reported in ref. 47.
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at time 0 are the Pauli set X, Y, and Z. We assumed that the FMO is cooled down to T = 15 K, the FMO initial 
state is completely mixed at site-6 while the other sites are in ground state, the dephasing rate is 7.7 cm−1, and 
the decay rate is 5.3 cm−1. Again, for brevity, we do not present analogous plots for the STS weight.
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