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Using non-Markovian measures 
to evaluate quantum master 
equations for photosynthesis
Hong-Bin Chen1, Neill Lambert2, Yuan-Chung Cheng3, Yueh-Nan Chen1 & Franco Nori2,4

When dealing with system-reservoir interactions in an open quantum system, such as a 
photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of 
the system. One question immediately arises: how good are these approximations, and in what ways 
can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as 
benchmarks for the deviation of approximate methods from exact results. We apply two frequently-
used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare 
their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables 
us to explore both entanglement and non-Markovianity measures as means to reveal how the 
approximations either overestimate or underestimate memory effects and quantum coherence. In 
addition, we show that both the approximate and exact results suggest that non-Markonivity can, 
counter-intuitively, increase with temperature, and with the coupling to the environment.

Modelling and understanding the non-equilibrium dynamics of open quantum systems is a ubiquitous 
problem in physics, chemistry and biology1–9. In such systems, the environment is usually composed of 
a huge number of microscopic constituents, an exact description of which is challenging. One can invoke 
intensive computational techniques, such as path-integral formalisms1,2,10,11, Monte Carlo algorithms12, 
the hierarchy equations of motion (HEOM)13–16, the reaction-coordinate method17,18 and others, to 
explicitly and exactly propagate the quantum state of a complete system-environment model. However, 
a common drawback of these exact numerical solutions is their demanding computational resource 
requirements, which can scale badly depending on the spectral density of the environment being mod-
elled, the number of independent baths the system is coupled to, or the complexity of the system itself.

To simplify the problem and gain useful physical insights, approximations are usually made to reduce 
the system dynamics to that of a relatively few degrees of freedom. In that regard, much effort has 
been devoted to develop quantum master equations (QMEs) which describe these reduced degrees of 
freedom in various limits. Redfield theory19 provides one with QME based on (together with a secular 
approximation) a second-order perturbation approximation in the system-environment coupling. For the 
strong-coupling limit, Förster theory20–22 adopts a diffusion-rate equation23 to describe the incoherent 
transport phenomenon. Nevertheless, these conventional Markovian QME treatments cannot capture the 
memory effects of the bath.

In order to take into account the memory effects, many attempts at improving these Markovian 
QMEs have been made. The second-order time-convolution (TC2)24 equation is known as a 
chronological-ordering prescription25 or time-nonlocal equation26,27. It is a direct generalization of 
Redfield QME without performing the Markov and secular approximations. The second-order time-local 
(TL2) equation is another frequently used QME, sometimes called a partial-time-ordering prescription25 
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or time-convolutionless equation. Some works suggest that TL2 shows better performance than TC2 at 
numerically approximating exact results28. Nevertheless, their respective domains of applicability have 
not been thoroughly investigated yet.

In each QME model (TC2, TL2), certain approximations and simplifications are introduced to obtain 
solvable equations. To investigate the deviation of each approximate QME model from the exact results, 
we first compare the explicit dynamics of these two approximative QMEs with that of the HEOM. The 
HEOM approach is considered to be numerically exact for the models with the Drude-Lorentz spectral 
density function investigated here. For more general bath models and dynamics at low temperatures, 
the need to truncate at a certain level of the hierarchy equations can lead to errors, and thus the exact-
ness of the HEOM approach requires further scrutiny in such cases29–31. We focus on the intermediate 
system-environment coupling regime, which has proven to be the most challenging and relevant to the 
dynamics in realistic systems such as the photosynthetic Fenna-Matthews-Olson complex. Notably, the 
intermediate regime is also the one at which the region of validity of most approximations breaks down. 
Both approximate methods are perturbative in the system-bath coupling, but can in principle harbor 
memory effects of the environment.

Recently, much effort has been devoted to the quantification of memory effects32–35 which has subse-
quently been studied in the context of various physical systems36–38. To investigate how well the models 
we study here capture the memory effect, we utilize the concept of the Choi-Jamiołkowski isomor-
phism39,40 to encode complete information on the dynamics of the system into the entanglement with 
an ancilla. By comparing the time evolution of the entanglement between system and ancilla, and an 
associated measure of non-Markovianity33, one can find out to what extent the memory effects and 
coherence predicted by each approximate QME deviates from being numerically exact. Our results sug-
gest that entanglement and non-Markovianity provide a useful benchmark for the performance of such 
approximative treatments, providing a more fine-grained insight into the deviation from exact results 
than quantities like the fidelity alone.

In performing this analysis we also discuss several interesting physical trends, including a 
counter-intuitive increase of non-Markovianity with both temperature and with the coupling strength 
to the environment. We attribute this increase to an enhancement of system-environment correlations 
when both the coupling and temperature are increased. Additionally, evidence from other studies41–43 
suggests that non-Markovian environments are capable of sustaining quantum coherence. The interplay 
of these factors finally results in the increase of non-Markovianity with both temperature and coupling 
strength that we see in our results.

Results
The spin-boson model. The spin-boson model1 is one of the most extensively studied models of 
open quantum systems, and is the one we employ here. It describes a spinor-like two-state system inter-
acting with a bosonic environment. First, let us consider this standard model, which can be divided into 
three components

H H H H 1tot sys env int= + + . ( )ˆ ˆ ˆ ˆ

The system Hamiltonian, H sys
ˆ , is written as
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where J xσ̂  is the coherent-coupling term, which enables the tunneling between the two system quantum 
states, labeled as |1〉  and |− 1〉 , with the energy level spacing ħω0. Usually, one adopts the delocalized 
basis |χ+〉  and |χ−〉  (exciton), which is defined by the following eigenvalue problem
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The environment, H env
ˆ , is usually modelled as a large collection of harmonic oscillators
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where akˆ †  (akˆ ) is the creation (annihilation) operator of the environment mode k with angular frequency 
ωk. For simplicity, a linear system-environment coupling, H int

ˆ , is adopted throughout this work:
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where gk is the coupling constant between the environment mode k and the system. In most physical 
problems, the details of the microscopic description of gk are not clear, and one usually employs a spectral 
density function, J(ω) =  ∑k|gk|2δ(ω −  ωk), to characterize the coupling strength via the reorganization 
energy J d

0∫λ ω ω ω= ( )/
∞ . The physical meaning of the spectral density function can be understood as 

the density of states of the environment, weighted by the coupling strengths. Moreover the way in which 
the environment modulates the dynamics of the system is described by the correlation function

G t J
k T

t i t dcoth
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cos sin
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∫ ω

ω
ω ω ω( ) = ( )

















−




 . ( )

∞

The real part is related to the dissipation process, while the imaginary part corresponds to the response 
function.

The statistical properties of the entire system can be described by the total density matrix ρtot, which 
contains all the degrees of freedom of the system and environment. If the correlation between the system 
and environment is negligible, the Born approximation can be used and the total density matrix can be 
factorized into

t t 7tot sys envρ ρ ρ( ) = ( ) ⊗ , ( )

where ρsys(t) describes the dynamics of the system and ρ = − / /Ĥ k T Zexp[ ]Benv env  is the environment 
density matrix in thermal equilibrium at temperature T. Here, kB is the Boltzmann constant and 
Z H k TTr exp[ ]Benv= − /ˆ  is the partition function.

One notes that when ω0, J, and λ are comparable, this makes the conventional perturbative treat-
ment unreliable. In the following, we will adopt the two frequently-used perturbative but non-Markovian 
QME formalisms discussed in the introduction and compare their results with the exact one in the 
intermediate-coupling regime, as they both begin to break down, and investigate ways in which to eval-
uate their accuracy.

Second-order time-convolution equation (TC2). For the Hamiltonian defined above, the time 
evolution of the system density matrix ρtot(t) under the TC2 approximation is expressed as

 ∫ρ τ ρ τ ρ τ
∂
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( ), 

( ), ( ) ⊗ 




.

( )
∼ ∼

t
t H t H d1 Tr 8

t

sys 2 env
0

int int sys env

The tilde symbol above an operator denotes the interaction picture with respect to H Hsys env+ˆ ˆ . The 
interaction Hamiltonian in terms of the delocalized basis can be expressed as
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where A zμ σ ν=μ ν, ˆ , and μ, ν =  χ+, χ−. Substituting Eq. (9) into (8) with the explicit expansion leads 
to a set of simultaneous integrodifferential equations of the density matrix elements ρμ,ν(t)
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One notes that the memory effects are taken into account in terms of the convolution of the memory 
kernel fμ,ν(t −  τ). A detailed expression for this kernel is given in the Appendix.

To solve the simultaneous integrodifferential components of Eq. (10), we invoke the Laplace transfor-
mation f f t e dt{ }: st

0
 ∫= ( )

∞ − , and transform them into a set of algebraic equations. After carefully 
analyzing the properties of the poles, the conventional residual theorem enables one to accomplish the 
inverse Laplace transformation and move back from Laplace space into the time-domain.

Second-order time-local equation (TL2). In the TL2 formalism, the system is considered to be 
sluggish, hence the bath feedback on the system dynamics can be neglected by approximating 

t iH t iHexp expsys sys sys sys ρ τ τ ρ τ( − ) ≈ 
 /  ( ) 

− / 
ˆ ˆ . This assumption is reasonable because it is impos-

sible for a system to change its configuration instantaneously. Consequently the system density matrix 
should be pulled out from the integral to obtain the following QME
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Similarly, substituting Eq. (9) into (11) with the explicit expansion leads to a set of simultaneous differ-
ential equations of the density matrix elements ρμ,ν(t)
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The detailed expression of the memory kernel hμ,ν(t −  τ) is given in the Appendix. It should be 
emphasized that although ρμ,ν(t) is pulled out from the integral, Eq. (12) is capable of predicting a 
non-Markovian dynamics because the time integral of hμ,ν(t) results in time-varying coefficients in front 
of ρμ,ν(t). Whether or not such differential equations behave non-Markovianly crucially depends on these 
time-varying coefficients.

Comparisons with exact results. To illustrate the differences of the approximations explicitly, 
we apply these two QMEs to a photosynthetic dimer model, which has attracted considerable interest 
recently8,9,44–50. We employ the Drude-Lorentz spectral density function (the over-damped Brownian 
oscillator model)15,51, J(ω) =  (2λγ/π)[ω/(ω2 +  γ2)], which has been widely used for a range of theoret-
ical studies of this type of system46–50. We use it here because it is convenient for the comparison with 
the HEOM. However, in reality, the spectral densities found in real photosynthetic systems tend to be 
much more complex46, and while the HEOM can be extended to model such environments it typically 
involves a substantial additional numerical overhead52. As mentioned in the previous section, within the 
Drude-Lorentz spectral density the reorganization energy, λ, characterizes the coupling strength to the 
environment, while the quantity γ determines the width of the spectral density. These two parameters 
have considerable influence on the dynamics of the system.

In Fig.  1, we show the system dynamics given by (a) TC2, (b) HEOM, and (c) TL2 with varying 
λ and temperature T. The other parameters are fixed at ω0 =  70 cm−1, J =  100 cm−1, and γ =  50 cm−1 
(γ−1 =  106 fs). These parameters are typical in photosynthetic systems. The solid curves in each panel 
denote the populations of the |χ+〉  state with temperatures T =  300 K (black), 250 K (red), and 200 K 
(blue), respectively. It can be seen that, at higher temperatures, the population of the |χ+〉  state transfers 
to the |χ−〉  state faster than at lower temperatures, but there is always a crossing so that the thermal 
equilibrium population of the |χ+〉  state is larger at higher temperatures.

For small values of λ, the results of the two QME models show excellent agreement with that of 
the HEOM, indicating that both TC2 and TL2 perform well in the weak system-environment coupling 
regime and that the bath memory effect is insignificant at small λ. Moreover, the result of TC2 completely 
coincides with that of the HEOM for very small couplings. We show the comparison between TC2 (solid 
curve) and HEOM (dot-dashed curve) methods in the inset of Fig. 1(a) for λ =  5 cm−1, and T =  250 K. 
This is in line with a recent comparative work in Ref. 53. When λ is increased, the TC2 population results 
exhibit vigorous beating and produce oscillatory curves up to 800 fs, which is absent in the HEOM result. 
We attribute these oscillations to the over-estimation of the coherence by TC2. Apart from these beatings, 
the overall magnitude of the population of HEOM is quantitatively better approximated by TC2 than 
TL2. The TL2 model yields monotonically-decaying population dynamics that tends to reach thermal 
equilibrium too rapidly. This leads to a significant over-estimation of the population relaxation rate by 
TL2, especially at large λ. This over-estimation of the population relaxation rate in Redfield theory has 
been reported previously54, and here we gain further insight into its origin by comparing to the TC2 
results.

The dashed curves in Fig. 1 denote the absolute value of the off-diagonal elements of the system density 
matrix, i.e., the coherence between the |χ+〉  and |χ−〉  states. The results from the TC2 method manifestly 
show the over-estimation of the coherence even if λ is small. When λ is increased, the over-estimation 
of the coherence becomes quite pronounced. On the other hand, the coherence in the TL2 model decays 
more rapidly, leading to the sluggish dynamics discussed above. In summary, the coherence dynamics is 
better approximated by TL2, and the TC2 model may fail in approximating the true coherence for large 
λ. However, the overall population decay rate predicted by the TC2 is generally more correct than that 
of TL2. It is interesting to note that the TL2 model yields an exact QME for a pure dephasing spin-boson 
model (i.e. J =  0)28 while the TC2 model underestimates the pure dephasing rate, which is in line with 
our findings here.

Benchmark of approximative QMEs. In the previous section, we analyzed how the coherence 
terms of the two approximations are qualitatively different from the HEOM exact results. However, those 
comparisons fail in providing an overall intuitive picture about which model performs better as they are 
basis-dependent. In other words, it is possible that one model may perform better or worse than another 
depending on the bases used. In this section, we apply a measure of the non-Markovianity to develop a 
bases-free benchmark which can quantitatively describe the performance of the approximate methods.

Entanglement and non-Markovianity. Let us consider an isolated ancilla possessing the same 
degrees of freedom of the system and with which the system forms a maximally entangled initial state 

j jj
1
2

Ψ = ∑ ⊗χ χ= ,+ −
 (see Fig.  2). If the system evolves according to a process t 0 , , then the 

Choi-Jamiołkowski isomorphism39,40 guarantees that the extended density matrix
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Figure 1. Comparisons between the dynamics given by threes models. Time evolution of the populations 
ρ++(t) (solid) and coherence |ρ−+(t)| (dashed) predicted by (a) TC2, (b) HEOM, and (c) TL2 for the spin-
boson model with different values of λ at temperatures T =  300 K (black), 250 K (red) and 200 K (blue). 
The other parameters are ω0 =  70 cm−1, J =  100 cm−1, and γ =  50 cm−1 (γ−1 =  106 fs). For small λ, both 
QMEs yield excellent results, as expected. The inset in (a) shows the results given by TC2 (solid curve) and 
HEOM(dot-dashed curve) for λ =  5 cm−1, and T =  250 K, illustrating how they almost overlap. However, 
due to over-estimation of the coherence, the result calculated from the TC2 method shows a slightly higher 
beating behavior in the population dynamics. In contrast, for large λ the population dynamics predicted by 
the TC2 method is in better agreement with those of the HEOM, whereas the populations given by the TL2 
method are somewhat sluggish and tend to approach thermal equilibrium a bit faster.
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contains all the necessary information on the dynamics of the system, where anc  is the identity process 
acting on the ancilla. The entanglement, E(ρsys,anc), between the system and the ancilla is a physical quan-
tity which is typically very sensitive to environmental effects.

Another related quantity is the degree of non-Markovianity, NM. Recently, many efforts have been 
devoted to construct a proper measure of the non-Markovianity32,33. Rivas et al.33 combine the concept 
of the divisibility of a quantum process55,56 and the fact that no local completely positive (CP) operation40 
can increase the entanglement E between a system and its corresponding ancilla

E E 14sys anc sys anc sys ancE I( )ρ ρ




≥ 


⊗ ( ) 

. ( ), ,

Consequently, Rivas et al.33 proposed that the degree of non-Markovianity within a given time interval 
[0, t] can be estimated by

d
d

dE E[ ]
15

t

t
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0 ancNM E I∫ τ
τ= ( ⊗ )( Ψ Ψ ) − ∆ ,

( )τ,

where

E E E[ ] [ ] 16t t 0 ancE I∆ = Ψ Ψ − ( ⊗ )( Ψ Ψ ) . ( ),

The non-Markovianity of open-system quantum dynamics can be evaluated at many different theoretical 
levels32–36, and the quantity NM is an extremely strict indicator of non-Markovianity that measures the 
information exchange in time between the system and its environment. For NM to have a non-zero 
value, explicit environmental memory effects must be present.

Here we compare the time evolution of the entanglement, Et, and the corresponding degree of 
non-Markovianity, NM, for the two approximate system-bath models and show how they can provide 
an integrated picture as to what extent their dynamics deviate from the exact results.

Evaluating non-Markovianity. To analyse the behavior of the non-Markovianity in each method, 
in this section we will show how the concurrence, a well-known measure for bipartite entanglement57, 
between system and ancilla evolves in time and how the corresponding non-Markovianity [Eq. (15)] 
depends on the physical parameters of the original spin-boson model.

As an explicit visualization of the integrand in Eq. (15), in Fig. 3, we apply the measure to (a) TC2, 
(b) HEOM, and (c) TL2 and show the time evolution of the concurrence for different values of λ at 
temperatures T =  300 K (black), 250 K (red), and 200 K (blue), respectively. The other parameters are 
ω0 =  70 cm−1, J =  100 cm−1, and γ =  50 cm−1 (γ−1 =  106 fs). It can be seen that, when increasing the 
temperature and λ, the decoherence becomes more pronounced. Hence, the concurrence will die out 
earlier for larger λ and higher temperature. As shown in Fig.  3(a), except for λ =  5 cm−1, which pro-
duces monotonically-decreasing concurrence, the TC2 model produces oscillatory curves, in which 

Environment

|Ψ〉
|χ-〉

|χ+〉

Ancilla

|χ-〉

|χ+〉

System

Figure 2. Schematic illustration of the entanglement measure. We consider a system and a copy of it 
acting as a well-isolated ancilla possessing the same degrees of freedom of the system. Initially, they form a 
maximally-entangled state 0sys ancρ ( ) = Ψ Ψ,

. Then the system starts to feel contact with its environment 
(denoted by the gray shadow) and evolves according to t 0 , , whereas the ancilla is kept isolated.



www.nature.com/scientificreports/

7Scientific RepoRts | 5:12753 | DOi: 10.1038/srep12753

a concurrence revival is exhibited around 100 fs and results in a finite degree of non-Markovianity 
(shown later). A similar entanglement revival can also be seen in biomolecular systems58. While in 
Fig.  3(b,c), HEOM and TL2 produce monotonically-decreasing concurrence and generate no visible 
non-Markovianity with this measure.

In Fig.  4, we show the corresponding measure of the non-Markovianity, NM, calculated using the 
time evolution of the concurrence shown in Fig. 3(a). Only TC2, for larger λ values, leads to non-zero 
non-Markovianity, while TC2 at λ =  5 cm−1, HEOM, and TL2 generate null results due to the 
monotonically-decreasing concurrence. This comparison not only shows that the TL2 yields a better 
approximation to the HEOM dynamics, but also explicitly demonstrates the degree to which TC2 devi-
ates from HEOM. We again attribute this deviation to the over-estimation of coherence shown in Fig. 1. 
In addition, it can be seen in Fig. 4 that NM tends to increase with increasing λ and temperature. We 
will investigate this below in a regime where the HEOM results exhibit similar behavior.

Increase of non-Markovianity with λ and temperature. The other two important parameters in 
our spin-boson model are the level spacing ω0 and the bath relaxation time γ. The former affects to what 
extent the state |χ+〉  is delocalized, while the latter is related to the correlation time of the environment 
and is directly connected to the non-Markovianity of the system.

Figure 3. Time evolution of the concurrence given by threes models. Time evolution of the concurrence 
calculated by (a) TC2, (b) HEOM, and (c) TL2 for different values of λ at temperatures T =  300 K (black), 
250 K (red), and 200 K (blue). The other parameters are ω0 =  70 cm−1, J =  100 cm−1, and γ =  50 cm−1 
(γ−1 =  106 fs). In general, the concurrence will die out faster for larger λ and higher temperatures. The 
coherence over-estimation of the TC2 method is manifested by a concurrence revival around 100 fs for 
larger values of λ, whereas HEOM and TL2 produce a monotonically-decreasing concurrence.



www.nature.com/scientificreports/

8Scientific RepoRts | 5:12753 | DOi: 10.1038/srep12753

In Fig.  5(a), we reduce ω0 to 40 cm−1 and fix the other parameters at λ =  5 cm−1, γ =  50 cm−1, and 
T =  200 K. The reduction of ω0 leads to a manifest concurrence revival around 100 fs in the TC2 concur-
rence dynamics, a result of stronger delocalization and significant enhancement of the coherence effect. 
An analogous result can be seen in Ref. 37. In the mean time, the concurrence of the HEOM result is still 
monotonically decreasing. The TC2 model further over-estimates this enhancement and ends up with 
finite non-Markovianity within all range of temperatures shown in Fig.  5(b). The TL2 model predicts 
almost-Markovian results, besides the very small non-Markovianity at low temperatures, again showing 
a better agreement with the HEOM exact results.

In Fig.  6(a), γ is further reduced to 20 cm−1 (γ−1 =  265 fs) to investigate the effect of slow environ-
ments. As the spectral density function is narrower, the correlation time of the environment becomes 
long compared with the characteristic time of the system dynamics. Hence the information on the system 
dynamics is more likely to be retained in the environment and flow back into the system. This back-flow 
of information in turn affects the behavior of the system and results in beating in the concurrence curves 
for all methods. As shown in Fig. 6(b), the TC2 model predicts a non-Markovianity much larger than the 
exact results. On the other hand, the TL2 model predicts a non-Markovianity in excellent agreement with 
the HEOM results, with only a small under-estimation of the non-Markovianity in this set of parameters.

The above comparisons exhibit an interesting tendency for NM to increase with λ and temperature. 
Several relevant theoretical and experimental works have reported41–43 that strong system-environment 
correlations are helpful for maintaining quantum coherence even at high temperatures. As a result, 
higher temperature may in turn activate more phonon modes in the environment without destroying the 
quantum coherence significantly. This provides more channels via which the system can interact with the 
environment. In the language of quantum information science, smaller γ and strong system-environment 
correlation may help to preserve the dynamical information; while larger λ and higher temperature may 
increase the possibility that this information can flow back into the system from the environment. 
Consequently, this increase of NM with larger temperature and λ is a result of the competition between 
the back-flow of information and thermal fluctuations. Meanwhile, the magnitude of the concurrence is 
reduced by the stronger random fluctuations in the environment.

Discussion
In summary, we first investigate the dynamics of two perturbative second-order QME methods, TC2 and 
TL2, and compare their results with the numerically-exact results calculated by HEOM. We find that 
TC2 can approximate the HEOM population better than TL2. However, a drawback of the TC2 model 
is its over-estimation of the coherence. This drawback results in the TC2 model predicting too much 
beating behavior in the population dynamics and limits the accuracy of TC2. In constrast, the TL2 model 
predicts sluggish dynamics and loss of coherence faster than that of the exact HEOM. As a result, the 
population tends to reach thermal equilibrium too rapidly.

To further investigate the dynamics and establish a benchmark for the performance of perturbative 
QMEs, we combine the concept of Choi-Jamiokowski isomorphism39,40, entanglement with an ancilla57, 
and a measure of non-Markovianity33 to provide a quantitative way to determine how much the coher-
ence dynamics and memory effects are deviating from the exact result. This provides a deep physical 
insight on the effects of each parameter and a single quantity to determine how much the QME dynamics 
deviates from the exact results. Here we find that the non-Markovian measure indicates that the TL2 
approximates HEOM better than TC2 in terms of the coherence dynamics and memory effects for the 

Figure 4. Non-Markovianity, N , obtained by the TC2 method as a function of temperature. The 
parameters are the same as used in Fig. 3. Among the three methods investigated in this work, only TC2 at 
higher λ generates non-zero non-Markovianity for these parameters. At λ =  5 cm−1 TC2 correctly produces 
the expected Markovian dynamics for this regime.
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dimer system studied here. In addition, while it is well understood that the reorganization energy λ and 
temperature enhance the effect of thermal fluctuations in the environment on the system, increasing 
these parameters can have surprising results. In particular, our results show that higher temperature 
increases information back-flow from the environment, thus increasing the non-Markovianity of the 
system dynamics, even though the concurrence itself undergoes faster decay. Note that photosynthetic 
systems and other molecular light-harvesting networks are in general far more complex than the models 
studied here4,5, and more general models should be considered for realistic systems59–62. Nevertheless, 
the focus of this work is the physics revealed in the comparison of the theoretical methods and the 
application of the non-Markovianity measure for revealing new physical insights. The theoretical meth-
ods examined here have often been applied to model real photosynthetic systems, and the quantitative 
measures we employ are themselves model independent. The non-Markovianity analysis proposed here 
could be easily used to investigate coherence dynamics in more complex systems and more general mod-
els. Therefore, these results could have important implications in the theoretical modeling of electronic 
coherence in photosynthetic systems8,9,47.

Methods
Full expressions for the TC2 and TL2 quantum master equations. The detailed expression of the 
TC2 integrodifferential QMEs Eq. (10) is given by

Figure 5. The effects of reduction of ω0. (a) The concurrence obtained from the TC2 method (dot-dashed), 
HEOM (dashed), and TL2 (solid), for ω0 =  40 cm−1. The reduction of ω0 leads to a manifest concurrence 
revival around 100 fs. The concurrence obtained from HEOM is still monotonically decreasing. The other 
parameters are: λ =  5 cm−1, γ =  50 cm−1, and T =  200 K. (b) The corresponding non-Markovianity versus 
temperature. The result of TC2 shows finite non-Markovianity, while that from TL2 shows very small non-
Markovianity and only at low temperatures. The result from HEOM is Markovian due to its monotonically-
decreasing concurrence.
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where G(t) is the correlation function defined by Eq. (6). Whereas the detailed expression of TL2 QME 
in Eq. (12) is given by

Figure 6. The effects of reduction of γ. (a) The concurrence versus time for TC2 (dot-dashed), HEOM 
(dashed), and TL2 (solid). The γ value is further reduced to 20 cm−1 (γ−1 =  265 fs). The other parameters 
are the same as those in Fig. 5(a). The information on the system dynamics can possibly flow back from the 
environment into the system and in turn leads to wavy concurrence curves. (b) The corresponding non-
Markovianity values versus temperature. These non-Markovianity values increase prominently as a result of 
the reduced γ value. TC2 shows larger non-Markovianity values, while TL2 shows good agreement with the 
HEOM.
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