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In this material, we show detailed calculations and derivations which appear in the main text.
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I. DETAILED EXPLANATION OF THE DIRECT METHOD

Let us show a simple example of the derivation process of the direct method for the six qubits in Fig. 1. In
Fig. 1, the x and y inside the circles show the applications of π/2-pulses around the x and y axes to the qubit of the
corresponding sites, respectively. More specifically, the x inside the circle at site i indicates

H → exp[−i(π/2)Xi]H exp[i(π/2)Xi]. (1)

Similar operations for the y and z rotations are also applied. The Heisenberg Hamiltonian of the six qubits is given
by

HS = x12 + y12 + z12 + x23 + y23 + z23 + x34 + y34 + z34

+ x45 + y45 + z45 + x56 + y56 + z56 + x61 + y61 + z61, (2)

where xjk ≡ JjkXjXk, yjk ≡ JjkYjYk, and zjk ≡ JjkZjZk. The process Hx
r1 = P x†

1 HSP
x
1 , shown in Fig. 1(a), rotates

the directions of the qubits 2, 4, and 6, and we obtain

Hx
r1 = x12 − y12 − z12 + x23 − y23 − z23 + x34 − y34 − z34

+ x45 − y45 − z45 + x56 − y56 − z56 + x61 − y61 − z61. (3)

Thus we can generate an XX Ising interaction given by

Hx ≈ HS +Hx
r1

= 2x12 + 2x23 + 2x34 + 2x45 + 2x56 + 2x61. (4)
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FIG. 1: Direct method to dynamically produce a Kitaev Hamiltonian from the Heisenberg model. The symbols x in the
lattice sites show the application of π/2-pulses around x. The bonds with dotted lines indicate that there is no interaction
between the connected sites. (a) Pulse mapping of P x

1 to create the Ising Hamiltonian, Hx
step1 =

∑
i,j JxXiXj in exp[itHx

step1] =

exp[itHS ] exp[itP
x†
1 HSP

x
1 ]. (b) Pulse mapping to select only the x-link of the Kitaev Hamiltonian from the Ising Hamiltonian

of (a). These figures are part of Fig.2 (a,b) of the main text

In the next process, P x
2 rotates the directions of the qubits 1, 2, 4, and 5 [Fig. 1(b)] around the y-axis. The transformed

Hamiltonian Hx
r2 is given by

Hx
r2 = P x†

2 Hx
step1P

x
2 ≈ P x†

2 (HS +Hx
r1)P

x
2 , (5)

because of Hx
step1 = log[exp(itHS) exp(itH

x
r1)]/(it). Then, we obtain

Hx
r2 ≈ 2x12 − 2x23 − 2x34 + 2x45 − 2x56 − 2x61. (6)

In this second process, the rotation can be carried out around the z-axis, instead of the y-axis. Now, we have

Hx
step2 = log[exp(itHx

step1) exp(itH
x
r2)]/(it),

≈ Hx
step1 +Hx

r2 ≈ 4x12 + 4x45. (7)

These are x-links in the ten qubits of Fig. 1 of the main text. Similarly, we can obtain y- and z-links.

II. DETAILED EXPLANATION OF THE EFFICIENT METHOD

In the efficient method to create the Kitaev Hamiltonian, the honeycomb lattice sites are divided into small units,
as shown in Fig. 2 (a) and (b) in this supplemental material. In Fig. 2, the x, y and z inside the circles show the
applications of π/2-pulses around the x, y and z axes to the qubit of the corresponding sites, respectively. Heff

R is
produced by applying the appropriate pulses, given by

Heff
R = P †

effHSPeff . (8)

Here Peff means the product of these operations, such as

Peff = Πi,j,k exp[i(π/2)Xi] exp[i(π/2)Yj ] exp[i(π/2)Zk]. (9)

The qubit sites without the rotations are the boundary qubits of the unit of Fig. 2(b). Let us look at the twelve
qubits in Fig. 2(b). The original Heisenberg Hamiltonian is expressed as

HS = x12 + y12 + z12 + x23 + y23 + z23 + x34 + y34 + z34

+ x45 + y45 + z45 + x56 + y56 + z56 + x61 + y61 + z61

+ x11a+y11a+z11a +x22a+y22a+z22a +x33a+y33a+z33a

+ x44a+y44a+z44a +x55a+y55a+z55a +x66a+y66a+z66a,

where

xjk ≡ JjkXjXk, yjk ≡ JjkYjYk, zjk ≡ JjkZjZk. (10)

When (1) π/2-pulses around the z axis are applied to the qubits 1 and 4, (2) π/2-pulses around the y axis are applied
to the qubits 2 and 5, and (3) π/2-pulses around the x axis are applied to the qubits 3 and 6, the Heisenberg spin
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FIG. 2: The efficient pulse distribution Peff , for Heff
R = P †

effHSPeff , in order to dynamically produce, via one step, a Kitaev
Hamiltonian1 from the Heisenberg model. The x, y and z on the lattice sites show the application of π-pulses around x, y and
z, respectively. (a) A honeycomb lattice. (b) A unit of the transformation.

Hamiltonian HS is changed into the rotated Hamiltonian HR given by

HR = x12 − y12 − z12 − x23 − y23 + z23 − x34 + y34 − z34

+ x45 − y45 − z45 − x56 − y56 + z56 − x61 + y61 − z61

− x11a−y11a+z11a −x22a+y22a−z22a +x33a−y33a−z33a

− x44a−y44a+z44a −x55a+y55a−z55a +x66a−y66a−z66a. (11)

By applying Eq. (45), we obtain the Kitaev Hamiltonian of the unit cell, shown in Fig. 2(b), given by

HK = HS +HR, (12)

such as

HK = 2[x12 + z23 + y34 + x45 + z56 + y61

+ z11a+y22a+x33a +z44a+y55a+x66a]. (13)
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III. UNWANTED TERMS

The BCH formula generates the unwanted terms HBCH
uw . Here we show the concrete form of this term of the unit

of Fig. 2(b) above:

[HS ,HR] = [H12,K
z
23] + [H23,K

x
12] + [H12,K

y
61] + [H61,K

x
12]

+ [H12,K
z
11a] + [H11a,K

x
12] + [H12,K

y
22a] + [H22a,K

x
12]

+ [H23,K
y
34] + [H34,K

z
23]

+ [H23,K
y
22a] + [H22a,K

z
23] + [H23,K

x
33a] + [H33a,K

z
23]

+ [H34,K
x
45] + [H45,K

y
34] + [H34,K

x
33a] + [H33a,K

y
34] + [H34,K

z
44a] + [H44a,K

y
34]

+ [H45,K
z
56] + [H56,K

x
45]

+ [H45,K
z
44a] + [H44a,K

x
45] + [H45,K

y
55a] + [H55a,K

x
45]

+ [H56,K
y
61] + [H61,K

z
56] + [H56,K

y
55a] + [H55a,K

z
56] + [H56,K

x
66a] + [H66a,K

z
56]

+ [H61,K
z
11a] + [H11a,K

y
61] + [H61,K

x
66a] + [H66a,K

y
61]

+ [H1a3lu,K
z
11a] + [H11a,K

x
1a3lu] + [H11a,K

y
1a5ru] + [H1a5ru,K

z
11a]

+ [H1a5ru,K
x
1a3lu] + [H1a3lu,K

y
1a5ru]

+ [H22a,K
x
2a6rm] + [H2a6rm,K

y
22a] + [H2a4ru,K

y
22a] + [H22a,K

z
2a4ru]

+ [H2a6rm,K
z
2a4ru] + [H2a4ru,K

x
2a6rm], (14)

where

Hij = xij + yij + zij , (15)

Kx
ij = xij − yij − zij , (16)

Ky
ij = −xij + yij − zij , (17)

Kz
ij = −xij − yij + zij . (18)

The ‘lu’, ‘lm’, ‘ld’, ‘ru’, ‘rm’ and ‘rd’ show the relative positions of the honeycomb lattices around the center green
honeycomb lattice in Fig. 2(a). This equation can be written in a more compact manner when using equations such
as

[H12,K
z
23] + [H23,K

x
12] = [x12 + y12 + z12,−x23 − y23 + z23] + [x23 + y23 + z23, x12 − y12 − z12]

= −2[X1X2, Y2Y3] + 2[Y1Y2, Z2Z3]

= 4i [Y1X2Z3 −X1Z2Y3] , (19)

[H61,K
x
12] + [H21,K

y
16] = [x61 + y61 + z61, x12 − y12 − z12] + [x21 + y21 + z21,−x16 + y16 − z16]

= 2[y61,−z12] + 2[x61 + z61, x12]

= 4i [Z6Y1X2 − Y6X1Z2] . (20)

The unwanted terms which includes the qubits of the single honeycomb lattice are given by

(123; z, x) = 4iJzJx[Y1X2Z3 −X1Z2Y3]

(234; y, z) = 4iJzJy[X2Z3Y4 − Z2Y3X4]

(345;x, y) = 4iJxJy[Z3Y4X5 − Y3X4Z5]

(456; z, x) = 4iJzJx[Y4X5Z6 −X4Z5Y6]

(561; y, z) = 4iJzJy[X5Z6Y1 − Z5Y6X1]

(612;x, y) = 4iJxJy[Z6Y1X2 − Y6X1Z2]

(211a; z, x) = 4i[Y2X1Z1a −X2Z1Y1a ]

(11a5ru; y, z) = 4i[X1Z1aY5ru − Z1Y1aX5ru ]

(4ru2a2; y, z) = 4i[X4ruZ2aY2 − Z4ruY2aX2]

.... (21)
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For example, the unwanted terms of a single honeycomb lattice [upper part of Eqs. (21)] are given by

H
(l;z,x)
a1 = (t0/n)JzJx[YlXl+1Zl+2 −XlZl+1Yl+2], (22)

H
(l+1;y,z)
a1 = (t0/n)JzJy[Xl+1Zl+2Yl+3 − Zl+1Yl+2Xl+3], (23)

H
(l+2;x,y)
a1 = (t0/n)JxJy[Zl+2Yl+3Xl+4 − Yl+2Xl+3Zl+4], (24)

for l = 1, 4.

IV. EFFECT OF SPIN-ORBIT INTERACTION

Here we show a detailed derivation of the effect of the spin-orbit (SO) interactions. The spin-orbit interaction is
described by

Vso =
∑
jk

V so
jk ,

V so
jk = [cso · (σj − σk) + dso · σj × σk] (25)

where σj = (Xj , Yj , Zj), and the magnitudes of the spin-orbit vectors cso = (cx, cy, cz) and dso = (dx, dy, dz) are 10
−2

smaller than Jz
2. Let us first consider the effective Hamiltonian of the spin-orbit interaction in the center honeycomb

lattice of Fig. 2(b). We express the spin-orbit interaction after the single-qubit rotations by V R
so =

∑
jk V

R,so
jk . Then

Vso and V R
so are given by

V so
12 = cx(X1 −X2) + cy(Y1 − Y2) + cz(Z1 − Z2) + dx(Y1Z2 − Z1Y2) + dy(Z1X2 −X1Z2) + dz(X1Y2 − Y1X2)

V R,so
12 = cx(−X1 +X2) + cy(−Y1 − Y2) + cz(Z1 + Z2) + dx(Y1Z2 − Z1Y2) + dy(−Z1X2 −X1Z2) + dz(−X1Y2 − Y1X2)

V so
23 = cx(X2 −X3) + cy(Y2 − Y3) + cz(Z2 − Z3) + dx(Y2Z3 − Z2Y3) + dy(Z2X3 −X2Z3) + dz(X2Y3 − Y2X3)

V R,so
23 = cx(−X2 −X3) + cy(Y2 + Y3) + cz(−Z2 + Z3) + dx(−Y2Z3 − Z2Y3) + dy(−Z2X3 −X2Z3) + dz(X2Y3 − Y2X3)

V so
34 = cx(X3 −X4) + cy(Y3 − Y4) + cz(Z3 − Z4) + dx(Y3Z4 − Z3Y4) + dy(Z3X4 −X3Z4) + dz(X3Y4 − Y3X4)

V so
34 = cx(X3 +X4) + cy(−Y3 + Y4) + cz(−Z3 − Z4) + dx(−Y3Z4 − Z3Y4) + dy(Z3X4 −X3Z4) + dz(−X3Y4 − Y3X4)

V so
11a = cx(X1 −X1a) + cy(Y1 − Y1a) + cz(Z1 − Z1a) + dx(Y1Z1a − Z1Y1a) + dy(Z1X1a −X1Z1a) + dz(X1Y1a − Y1X1a)

V R,so
11a

= cx(−X1 −X1a) + cy(−Y1 − Y1a) + cz(Z1 − Z1a) + dx(−Y1Z1a − Z1Y1a) + dy(Z1X1a +X1Z1a)

+ dz(−X1Y1a + Y1X1a)

V so
22a = cx(X2 −X2a) + cy(Y2 − Y2a) + cz(Z2 − Z2a) + dx(Y2Z2a − Z2Y2a) + dy(Z2X2a −X2Z2a) + dz(X2Y2a − Y2X2a)

V R,so
22a

= cx(−X2 −X2a) + cy(Y2 − Y2a) + cz(−Z2 − Z2a) + dx(Y2Z2a + Z2Y2a) + dy(−Z2X2a +X2Z2a)

+ dz(−X2Y2a − Y2X2a)

V so
33a = cx(X3 −X3a) + cy(Y3 − Y3a) + cz(Z3 − Z3a) + dx(Y3Z3a − Z3Y3a) + dy(Z3X3a −X3Z3a) + dz(X3Y3a − Y3X3a)

V so
33a = cx(X3 −X3a) + cy(−Y3 − Y3a) + cz(−Z3 − Z3a) + dx(−Y3Z3a + Z3Y3a) + dy(−Z3X3a −X3Z3a)

+ dz(X3Y3a + Y3X3a)

Thus, the effective Hamiltonian of the spin-orbit interaction in the center honeycomb lattice is given by

Hso
eff,center = 2dx(−Z6Y1 − Z1Y2 − Z2Y3 − Z3Y4 − Z4Y5 − Z5Y6 + Y1Z2 + Y4Z5)

+ 2dy(−X6Z1 −X1Z2 −X2Z3 −X3Z4 −X4Z5 −X5Z6 + Z6X1 + Z3X4)

+ 2dz(−Y6X1 − Y1X2 + [X2Y3 − Y2X3]− Y3X4 − Y4X5 + [X5Y6 − Y5X6]) (26)
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Similarly, the effective Hamiltonian of the spin-orbit interactions in the honeycomb lattice of the right-up (ru), left-up
(lu), and right-middle (rm) positions are given by

Hso
eff,ru = 2dx(−Z2Y1 + Y2Z1 − Z1Y1a − Z1aY5ru − Z5ruY4ru + Y5ruZ4ru − Z4ruY2a − Z2aY2)

+ 2dy(Z2X1 + Z1X1a + Z5ruX4ru + Z4ruX2a)

+ 2dz(X2Y1 +X1aY5ru +X5ruY4ru +X2aY2), (27)

Hso
eff,lu = 2dx(Y1Z6 + Y6aZ4lu + Y4luZ3lu + Y1aZ1)

+ 2dy(−X1Z6 + Z1X6 −X6Z6a −X6aZ4lu −X4luZ3lu + Z4luX3lu −X3luZ1a −X1aZ1)

+ 2dz(X1Y6 +X6Y6a +X4luY3lu +X3luY1a) (28)

Hso
eff,rm = 2dx(Z5rmY6rm + Z2Y3 + Y2Z2a + Y5rmZ3a)

+ 2dy(X2Z3 + Z6rmX5rm + Z2aX6rm + Z3aX3)

+ 2dz(−Y3X2 +X3Y2 − Y2X2a − Y2aX6rm − Y5rmX3a − Y3aX3 − Y6rmX5rm +X6rmY5rm). (29)

These are independent of the center honeycomb lattice, which can be understood by considering the transformation
given by 1 → 5, 2 → 4, 2a → 3, 4ru → 2, 5ru → 1, and 1a → 6. By this transformation, for example, Hso

eff,ru is written
by

Hso
eff,ru ⇒ 2dx(−Z4Y5 + Y4Z5 − Z5Y6 − Z6Y1 − Z1Y2 + Y1Z2 − Z2Y3 − Z3Y4)

+ 2dy(Z4X5 + Z5X6 + Z1X2 + Z2X3)

+ 2dz(X4Y5 +X6Y1 +X1Y2 +X3Y4) (30)

This expression is different from Hso
eff,center. Similarly, Hso

eff,lu, H
so
eff,rm and other terms are different from Hso

eff,center.
As an example, the 2nd-order perturbation result of Hso

eff,center of a single honeycomb lattice is given by

Hso
eff =

2dxdy
Jz

(Xe
2 +Xe

4). (31)

V. EFFECT OF THE HYPERFINE INTERACTION

In the non-Abelian B phase without the hyperfine field, the external magnetic fields (hx, hy, hz) play the role of
opening the gap, where the effective Hamiltonian is expressed by

H
(3)
eff ∼ −[(hxhyhz)/J

2]
∑
jkl

XjYkZl. (32)

Thus, the hyperfine (HF) interaction directly affects the gap of the Hamiltonian unless the applied magnetic field is
sufficiently larger than the local hyperfine effective fields3. When we go back to the phase A, the effect of the hyperfine
interaction is expressed by

Hhp
eff =

1

2Jz
(δhx2δhx3 − δhy2δhy3)X

e
2

+
1

2Jz
(δhx2δhy3 + δhy2δhx3)Y

e
2

+
1

2Jz
(δhx5δhx6 − δhy5δhy6)X

e
4

+
1

2Jz
(δhx5δhy6 + δhy5δhx6)Y

e
4 . (33)

Assuming the uniformity of the hyperfine interaction, such as ⟨δhx2δhx3⟩ = ⟨δhy2δhy3⟩, we have

Hhp
eff =

1

Jz
⟨δhx2δhy3⟩Y e

2 +
1

Jz
⟨δhx5δhy6⟩Y e

4 . (34)
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VI. TORIC CODE HAMILTONIAN AND PERTURBATION TERMS

The unperturbed Hamiltonian of the A phase is given by H0 = −Jz
∑

z−links ZjZk, whose ground state is a
degenerate dimer state. The Hamiltonian in the dimer state can be expressed by “effective spin operators”, Xe, Y e

and Ze, by pairing the original spin operators, such as4

P [X × Y ] → Y e, P [X ×X] → Xe,

P [Y × Y ] → −Xe, P [Z × I] → Ze,

P [Z × Z] → Ie. (35)

These pairs are taken between sites 2-3 and 5-6 in Fig. 2. The spins of the sites 1 and 4 are paired with the spins of
another honeycomb lattice. Then, V0 = −Jx

∑
x−links XjXk − Jy

∑
y−links YjYk acts as a perturbation and generates

an effective Hamiltonian

HK
eff = −JK

eff

∑
p

Y e
p,4Y

e
p,2Z

e
p,1Z

e
p,4, (36)

with

JK
eff = (J2

xJ
2
y/16J

3
z ), (37)

in their forth-order effects. Therefore, here we have to compare HK
eff with the perturbation terms in the BCH formula,

the spin-orbit interaction, and the hyperfine interaction in the same framework as the Kitaev perturbation theory. It
is obvious that smaller magnitudes of the spin-orbit terms and the hyperfine interactions are desirable to achieve the
condition that

Jz > {Jx, Jy, |⃗h|} > {|δh⃗hf |, cso, dso}. (38)

Here we show that we have more constraints to realize the TQC. We also consider the commutation relation with a
plaquette operator given by

Wp = Z1Y2X3Z4Y5X6, (39)

where Wp commutes with the Hamiltonian Eq. (1) of the main text, and is described by W e
p = Ze

1Y
e
2 Z

e
3Y

e
4 .

Let us start with the first-order unwanted terms in the BCH formula, given by Huw = −it[HS , HR]/4. Many terms
appear from these commutation relations (see Sec. III). In order to see their typical effect, here we choose the unwanted
terms that originate from the single honeycomb whose six qubits are rotated (the center honeycomb in Fig. 2).
These terms are explicitly expressed by Eq.(22-24). Because these terms do not commute with Wp nor the Kitaev
Hamiltonian [Eq. (1) of the main text], they are unwanted terms in the topological quantum computation. The effective

Hamiltonian of Eqs.(22-24) appears in the second-order perturbation given by ⟨a|H(2)
eff |b⟩ =

∑′
j [⟨a|V |j⟩⟨j|V |b⟩/(E0 −

Ej)], which is expressed as

Huw
eff ≈ t2{Jz

[
J2
x(X

e
1X

e
2 +Xe

3X
e
4)+J2

y (X
e
2X

e
3 +Xe

4X
e
1)
]

+ J2
xJy(2Z

e
2Z

e
4 − Ze

1X
e
2Z

e
4 − Ze

3Z
e
2X

e
4)

+ JxJ
2
y (2Z

e
2Z

e
4 + Ze

1Z
e
2X

e
4 + Ze

3X
e
2Z

e
4)}. (40)

Thus, this term commutes neither with HK
eff nor with W e

p . From this approximation, to realize a TQC, we have a
constraint on the time, given by

t2J2
αJz < JK

eff . (41)

When Jx = Jy, this corresponds to t < Jx/(4J
2
z ).

The effective spin-orbit terms are derived in a similar manner. As an example, the effective spin-orbit terms of the
center honeycomb lattice of Fig. 2 are given by Eq. (31). The perturbation terms do not commute with HK

eff nor W e
p .

The effect of the hyperfine interaction is expressed by Eq. (34). Assuming the uniformity of the hyperfine interaction,

such as ⟨δhx2δhx3⟩ = ⟨δhy2δhy3⟩. The term Hhp
eff also does not commute with HK

eff nor W e
p . From these estimates,

in order to realize the TQC, both the spin-orbit and the hyperfine interactions should be small and we have the
constraint

{2dxdy/Jz, ⟨δhx5δhy6⟩/Jz} < JK
eff . (42)
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VII. ITERATIVE BAKER-CAMPBELL-HAUSDORFF (BCH) FORMULA

Here we show that iterating the Baker-Campbell-Hausdorff (BCH) formula5 decreases the effect of the unwanted
terms in the BCH formula. When the desirable target Hamiltonian Htgt is written using the original Hamiltonian
Hori and the transformed Hamiltonian HR, such that

Htgt = Hori +HR, (43)

we can use the BCH formula effectively. For

A = iτHori, B = iτHR, (44)

the BCH formula iterating n times yields

(expA expB)n ≈ exp(it0{Htgt − (it0/[2n])[Hori,HR]})
= exp(it0{Htgt +HBCH

uw }), (45)

where t0 ≡ nτ is the duration of the n-pulse sequence6. The perturbed term HBCH
uw is given by

HBCH
uw = −i

t0
[2n]

[Hori,HR]. (46)

Thus, as long as

(t0/2n)||Hori −HR|| ≪ 1, (47)

where ||A|| = [Tr(A†A)/d]1/2 is the standard operator norm in a Hilbert space of dimension d, we can reduce the
effect of HBCH

uw . As the number n of repetitions for constant t0 increases, this approximation becomes progressively
better. For the efficient method described in the main text, Htgt is the Heisenberg spin Hamiltonian and HR is a
rotated Hamiltonian depicted in Fig. 2.
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