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I. EXPERIMENTAL DEVICE

A. Performance

Our experiments are implemented with a superconducting circuit, with twelve cross-shaped
transmon qubits of the Xmon variety arranged in a linear array with nearly identical nearest-
neighbor couplings via eleven fixed capacitors (Fig. S1), where the quantum coherence of each
qubit is improved by a large shunt capacitor [21–23]. As shown in Table S1, J/2π ≈ 12.5 MHz.
The readout resonator’s frequency ωread/2π spans from 6.503 to 6.838 GHz, well located within the
bandwidth of our Josephson Parametric Amplifier (JPA) [25]. ωidle/2π is the qubit’s idle frequency,
adjusted by the Z DC control line. The energy relaxation time T1 and dephasing time T ∗

2 of the
qubit are measured at the idle point ωidle. The adjacent qubits’ sweet point frequencies are designed
to have a difference of about 500 MHz. With this frequency difference, we can avoid the XY

2



Parameters Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

ωread/2π (GHz) 6.503 6.538 6.567 6.597 6.640 6.646 6.697 6.730 6.762 6.782 6.812 6.838

ωmax/2π (GHz) 5.436 4.918 5.21 5.026 5.455 4.917 5.514 5.016 5.571 5.018 5.597 5.027

ωidle/2π (GHz) 5.436 4.760 5.210 4.840 5.300 4.900 5.480 4.940 5.420 4.980 5.520 4.880

T1 (µs) 12.76 18.2 18.04 14.6 14.34 20.74 17.02 24.62 12.73 10.46 23.19 16.41

T ∗
2 (µs) 9.3 4.6 20.4 4.3 3.7 14.9 10.8 7.3 3.2 11.5 6.1 4.1

J/2π (MHz) 12.1 12.2 12.3 12.4 12.5 12.6 12.6 12.6 12.6 12.5 12.4

η/2π (MHz) −246 −204 −246 −200 −248 −196 −248 −196 −246 −214 −244 −200

χqr/2π (MHz) 0.55 0.17 0.35 0.19 0.39 0.20 0.40 0.22 0.36 0.20 0.36 0.20

f00 0.96 0.95 0.94 0.95 0.95 0.97 0.98 0.97 0.98 0.93 0.97 0.95

f11 0.88 0.86 0.82 0.81 0.84 0.86 0.93 0.88 0.86 0.83 0.83 0.85

Readout visibility 0.84 0.81 0.76 0.76 0.79 0.83 0.91 0.85 0.84 0.76 0.80 0.80

Integration time (ns) 986 1650 1000 1650 936 1500 1250 1750 1500 1750 1750 2000

TABLE S1: Device parameters: ωread/2π is the frequency of the readout resonator; ωmax/2π is the maxi-
mum frequency of the qubit; ωidle/2π is the qubit’s idle frequency; T1 is the qubit’s energy relaxation time;
T ∗
2 is the qubit’s dephasing time; J is the nearest-neighbor qubits’ coupling strength, of which the values are

listed between their neighboring qubits. The on-site nonlinear interaction U equals the qubit’s anharmonic-
ity (η ≡ f12 − f01, with f12 being the transition frequency between |1⟩ and |2⟩ and f01 being the transition
frequency between |0⟩ and |1⟩) measured near the idle points, and can be considered a fixed value as it is
almost constant with the qubit frequency; χqr is the dispersive shift; f00 (f11) is the probability of correctly
identifying the qubit state when it is prepared in |0⟩ (|1⟩). The integration time for the measurements of
each qubit ranges from 986 ns to 2000 ns, which results from the optimization of the readout visibility.

crosstalk-induced unwanted excitation, when adjacent qubits are near their sweet points. This also
helps to avoid the direct coupling between adjacent qubits, when they are both idled around their
sweet points. For our qubit, the m-th eigenenergy is approximately given by

Em ≃ −EJ +
√
8ECEJ(m+ 1/2)− EC(m2 +m+ 1/2)/2. (S1)

The Josephson energies EJ can be controlled by changing the area of the Josephson junctions.
Controlling the capacitors shunted to the Josephson junctions is much easier during fabrication.
Therefore, we choose to keep the area of the Josephson junctions to be the smallest and the same
for all qubits to reduce the density of two-level systems coupled to the qubits, i.e. the EJ for
different qubits are the same. The charging energy EC , controlled by the capacitors shunted to the
Josephson junctions, are designed to be in two groups. For odd and even qubits, EC are designed
to be around 250 MHz and 200 MHz, respectively; and the sweet point frequencies are designed
to be around 5.5 GHz and 5.0 GHz, respectively. A micrograph and simplified schematic circuit
of the device are shown in Fig. S1.

To obtain the coupling strength between the neighboring qubits, we measure the vacuum Rabi
oscillations between these neighboring qubits when they are biased to the working point. The
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FIG. S1: (A) Optical micrograph of the twelve-qubit sample. Each qubit has an independent microwave
line for the XY control and a flux bias line for the Z control. Each qubit couples to a separate λ/4 readout
resonator, which couples to the transmission line for simultaneous and individual readout. Crossovers
were applied to reduce the impact of the parasitic modes. (B) Simplified schematic of the superconducting
quantum circuit. The λ/4 readout resonators inductively couple to the transmission line. The red (yellow)
capacitor to ground is CB , which corresponds to the large shunted capacitor formed by the cross and the
ground to suppress the charge noise in each qubit.
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coupling strength is determined as Ji,j = 2π/2T vR
i,j , where T vR

i,j is the period of vacuum Rabi
oscillations with qubits Qi and Qj being in resonance.

For the superconducting qubits used in our experiments, the nonlinear on-site interaction U is
equal to the anharmonicity η of the qubit and approximately equals the minus charging energy
−EC [22]. The anharmonicity varies very little with the change of the qubit’s frequency. Let us
take Q1 as an example. In our experiments, the measured anharmonicity η1 changes from −242
MHz to −247 MHz when f01 is biased from 5.403 GHz to 4.88 GHz, only giving a very small
difference of 2.1% in η1. This is also in accordance with our theoretically simulated results. Then,
it is found that the dimensionless ratio U/J varies very little when changing the qubit’s frequency.

B. Fabrication

The experimental device is fabricated with the following steps:

(1) A 100 nm aluminum film is deposited directly onto a degassed 2 inch c-plane sapphire wafer
in Plassys MEB 550SL3.

(2) The photo-lithography followed by an evaporation of gold is applied to create alignment
marks for the subsequent lithography steps.

(3) Wet etching is used after photo-lithography by laser direct writing to define the transmission
line, control lines, readout resonators, and large pads of the superconducting qubits.

(4) Electron-beam lithography followed by thermal evaporation of 300 nm GaF2 film is used to
define insulation layer of the crossover.

(5) The upper electrodes of the crossover are fabricated with electron-beam lithography and
evaporation of 300 nm aluminum in Plassys MEB 550SL3.

(6) The wafer is diced into 9 mm by 9 mm chips.

(7) The electron-beam lithography, followed by double-angle evaporations of aluminum in
Plassys MEB 550SL3, is used to fabricate the Al/Al2O3/Al Josephson junctions.

(8) The selected chip is wire bonded in an aluminum sample box after transmission line, and all
control lines are checked .

C. Experimental wiring set-up

The entire experimental wiring set-up, as illustrated in Fig. S2, consists of three parts, which
are: (i) at room temperature, (ii) in the dilution refrigerator (DR), and (iii) under the mixing
chamber (MC) plate.

We use 38 Digital-to-Analog Converter (DAC) channels, 2 Analog-to-Digital Converter (ADC)
channels, 13 DC channels, and 4 microwave (MW) channels to fully control all 12 qubits. To be
more specific, for each qubit, we use two DAC channels connected to an IQ mixer to generate the
modulation signal for the XY control, one DAC channel to perform the Z pulse control and one DC
channel to DC bias the qubit to its idle point. For the XY control, the qubits on the odd sites share
one MW channel and the ones on the even sites share another one. For the readout, we use two
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DAC channels and two ADC channels to perform the multi-tone demodulation with frequency-
domain multiplexing. One MW channel is used for the signal readout. A room temperature
amplifier with over 75 dB gain is used to amplify the readout signal after it gets out of the DR. For
the JPA operation, we use one MW channel together with one DAC channel connected to a mixer
for gated JPA pumping. One DC channel is used to bias the JPA flux line. Note that there is no Z
pulse control line, but only a DC bias line for Q12, due to the shortage of coaxial cables in the DR,
so Q12 can only be DC biased at a certain idle point but cannot perform fast detuning. All DACs,
ADCs and DC sources are customized.

In the DR, the total attenuations for the input of readout signal, XY control and Z control line
are 50 dB, 50 dB, and 30 dB, respectively. The attenuators are installed on the still plate and the
MC plate to reduce the thermal noise from the higher-temperature plates. For DC control lines,
we use RC filters with a 10 KHz cut-off frequency to reduce the high-frequency noise. We install
a low-noise high-electron-mobility transistor (HEMT) at the 4K plate for amplifying the readout
signal.

Under the MC plate, to reduce high-frequency noise, we use 8 GHz low-pass filters on all
XY, Z and readout lines. For Z pulse controls and DC controls, we use 500 MHz and 80 MHz
low-pass filters, respectively, to further reduce the high-frequency noise. The Z pulse controls
and DC controls are combined together by bias-tees, and then connected to the Z control lines
of the quantum device. For the output of the readout signal, we use three circulators to allow
the propagation of microwave signal in one direction. On the second circulator, a JPA is used
to amplify the signal, which is connected to a bias-tee combining the DC control and microwave
pumping signal. The quantum device is placed in a two-layer µ-metal magnetic shield to prevent
flux fluctuations induced by the low-frequency vibrations of the system.

D. Qubit Readout

In our experiments, we use two DAC channels and one MW source to generate a multi-tone
readout pulse achieved by sideband mixing. The readout signal is pre-amplified by a Josephson
Parametric Amplifier (JPA) installed under the MC plate. The design and fabrication details of
the Klopfenstein taper JPA can be found in Ref. [25]. In practice, we use one DC channel to bias
the JPA and one MW channel to generate a pumping signal. The pumping frequency is about
twice of the readout resonator’s. The JPA can be switched on and off by turning on and off the
MW pumping. In our experiments, we optimize the best working parameters, including the bias
amplitude, the pumping frequency and the pumping power, by maximizing the minimum gain at
the 12 tones of the resonators. The optimization is realized by using the Nelder-Mead algorithm.
A minimum gain of 11.3 dB among all 12 tones is achieved after the optimization, as shown in
Fig. S3(A). After the amplification with JPA, the readout signal is then amplified by a HEMT
located in the 4K plate, and then further amplified by a room-temperature amplifier after getting
out of the DR. The readout signal is then down-converted into two signals and captured by two
ADC channels. The signals are converted to digital data by ADC and stored in the Block-RAM
of the FPGA. Then, the stored data symbolizing the down-converter IF (intermediate frequency)
signals are processed in pipeline and then return the pairs of I and Q values to the PC host through
a Gigabit network. For each tone, a pair of I and Q values are returned. The ADC supports
the simultaneous processing of 12 frequency points. As an example, the I-Q data for single-shot
qubit-state differentiation of Q7 are presented in Fig. S3(B). The center of the state |0⟩ (|1⟩) is then
defined as the mean value of all corresponding data of the state |0⟩ (|1⟩) on the I-Q plot. The
distribution histogram along the axis defined by the centers of |0⟩ and |1⟩ states is also shown.
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FIG. S2: Overview of the experimental setup. On the top, from left to right, we show the electronics used
in the JPA control, readout, qubit Z control, and the qubit XY control, respectively. In the readout box,
the DAC and the microwave source generate a twelve-tone microwave pulse targeting all qubits’ readout
frequencies. Through the transmission line, the readout signal is amplified first by the JPA at the MC plate,
then by a HEMT at the 4K plate, and finally by the room temperature amplifier. In the Z control box, each
DC source provides a static offset of the qubit frequency by offering a static flux in the DC SQUID loop of
the qubit, and each DAC enables a fast detuning of the qubit frequency. In the XY control box, the DAC and
the nearby microwave source generate the microwave pulses for the XY control of the qubit. Attenuators
and filters are added to all control lines to prevent unwanted noise from disturbing the operation of the qubit
device.
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FIG. S3: (A) Gain of the JPA at the frequencies of the readout resonators. Rj represents the readout
resonator for Qj . The gain ranges from 11.34 dB to 13.81 dB (12.51 dB on average). (B) I-Q plot of the
signal-shot measurements of Q7 (left) and the corresponding histograms (right). The total repeat count for
each measurement is 12,000. In the histograms, the blue curve is for |0⟩ and the red curve is for |1⟩.

From the data, f j
00 and f j

11, which are defined as the probabilities of correct readout of the qubit
state after being well-initialized in the |0⟩ and |1⟩ on the j-th qubit, are determined. The readout
transition matrix is then obtained by

Tn =

(
f j
00 1− f j

11

1− f j
00 f j

11

)
. (S2)

With the transition matrix, the real probability of |0⟩ and |1⟩, which are represented by P r
0 and P r

1 ,
are corrected as (

P r
0

P r
1

)
= T−1

n

(
P d
0

P d
1

)
, (S3)

where P d
0 and P d

1 are the measured probability of |0⟩ and |1⟩, respectively. For more than one
qubit, the multi-qubit transition matrix is then given by

Tn,m = Tn ⊗ Tn+1 · · ·⊗ Tm, (S4)

which is used to correct the multi-qubit state probability.
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E. Waveform sequences

In our experiments, each qubit (except for Q12) is controlled by two different flux controls for
different purposes. One is the Z DC control, which is fixed during the experiments. The other
is the Z pulse control, which can be used to perform fast detuning. To perform the experiments,
the qubits are first DC biased at their idle points. Then, the Z pulse controls detune the qubits to
the working point for the state evolution and finally back to the idle points rapidly for the state
readout.

To be more specific, the implementation of the experiments consists of four parts: system
initialization, state preparation, free evolution, and readout. In the system initialization, we wait
for 400 µs to cool down all qubits to their ground state |0⟩. Then, in the state preparation, we use
the single qubit gate Xj to excite the j-th qubit to its first excited state |1⟩j . During the system
initialization and the state preparation process, the qubits are biased to their idle points by their
Z DC control lines to avoid unnecessary XY crosstalk. In the state’s free evolution, we detune
the corresponding qubits to the working point rapidly and idle for a certain time t. After that,
we detune these qubits back to their idle points for the state readout. In the state readout, we
have two individual readout methods to obtain the information of the state. The first one is to
perform projective measurements to obtain the σ̂z components of the states, and the second one is
to perform quantum state tomography (QST) to obtain the density matrix of each qubit. For both
methods, we can perform the measurements simultaneously on all qubits.

The idle points are chosen based on the following principles. (i) These idle points should be
different from each other to avoid any XY crosstalk. (ii) The unwanted two-level systems coupled
to the qubits should be avoided. (iii) The qubits should be as close to their symmetric points
as possible to achieve a relatively longer dephasing time. (iv) The f12 and f01 of different qubits
should also not exactly matching, to prevent the XY crosstalk-induced state leakage to their second
excited state.

The choice of the working point is much simpler. The only requirement is that there should
not be any obvious two-level systems coupled to the qubits. Note that, because of the lack of the
Z pulse control line of Q12, it cannot be fast detuned. Thus, in the one-photon experiments, Q12

is DC biased away from the working point. In the two-photon experiments, Q12 is DC biased
to the working point and other qubits are fast detuned to the working point for the system’s free
evolution.

An example of the waveform sequences for the Fig. 4(A) in main text, i.e., the two-photon
experiments, is shown in Fig. S4. Before the waveform sequences, the qubits have been cooled
down for 400 µs. Then, two Gaussian-enveloped sinusoidal pulses, which are used to generate
Gaussian-enveloped microwave pulses with the IQ mixers, are applied on Q6 and Q7 simultane-
ously. Each pulse behaves as an X/2 gate, and we use two of them combined together to build the
X gate. After that, all qubits are detuned to the working point for the system’s free evolution. The
waveforms to detune the qubits are not simple square Z pulses, resulting from the correction of
pulse distortion. Based on our careful correction, each Z pulse is re-modulated so that the qubits
can be exactly in resonance when they are tuned together. Details about the pulse distortion cali-
bration can be found in the following sections. We measure the state of the qubits after tuning the
qubits back to their idle points.
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FIG. S4: Experimental waveform sequences for the twelve-qubit two-photon experiments (Q6 and Q7 are
excited). At first, all the qubits stay at their idle points, while Q6 and Q7 are excited by the X gates (two
Gaussian-enveloped microwave pulses). Then, all qubits are biased to the working point through their Z
pulse control lines. The photons (quasi-particles of the excitations of the qubits) will propagate in the 1D
lattice arrays of 12 qubits. After a delay time t, we turn off the Z pulse controls to rapidly tune these qubits
back to their idle points, and then measure the state.

II. CALIBRATION

A. Z pulse distortion

In our experiments, we need to tune the qubit frequency by applying the pulse through the Z
control line, coupled to the DC-SQUID qubit. Ideally, after applying the Z pulse, we tune the
qubit to its idle point for the state readout. However, the unwanted Z pulse distortion causes a
frequency drift before the state readout. Such an issue is even worse when we need to measure
the ⟨σ̂x⟩ component and the ⟨σ̂y⟩ component, as the frequency drift causes an apparent phase shift
[23]. Therefore, it is necessary to correct the Z pulse distortion.

The pulse sequence we use to measure the Z pulse distortion is shown in Fig. S5(A). Starting
with state |0⟩, the qubit is detuned for a given amplitude V0 for a time longer than 1 µs. Then, an
X/2 microwave pulse is applied after a variable delay time. After waiting for 500 ns for the phase
accumulation, we measure the phase of the qubit. The phase response is directly caused by the
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pulse distortion, and can be expressed into the form

θ(t) =
∑

i

Ai exp(−Bit). (S5)

Based on this, we extract the frequency drift from the phase response by solving

θ(tdelay) =
∑

i

⎡

⎢⎣

tX/2+tdelay∫

tdelay

dt Fi(t) · coff(Bi) +

tX/2+tdelay+tint∫

tX/2+tdelay

dt Fi(t) +

2·tX/2+tdelay+tint∫

tX/2+tdelay+tint

dt Fi(t) · coff(Bi)

⎤

⎥⎦ , (S6)

where tint is 500 ns for the phase accumulation, tX/2 is the X/2 gate time, tdelay is the delay time
before the X/2 gate, and coff(Bi) is the correction parameter to correct the phase accumulated in
the period of the X/2 gate, which is determined from numerical simulations. Here, the frequency
drift in the time domain is extracted from the form of

∑

i

Fi(t) =
∑

i

ai exp(−bit). (S7)

The relationship between the frequency drift
∑

i Fi(t) and the fraction of the pulse height, under-
going a distortion s(t), is

∑

i

Fi(t) = s(t) · V0 · k, (S8)

where k is the derivative of the qubit frequency spectroscopy at the idle point, and V0 is the given
pulse amplitude.

With s(t) determined, we can generate a realistic waveform Vreal(t) from a given ideal wave-
form Videal(t). In frequency domain, we have F(V ′

real(t)) = F (ω) and F(V ′
ideal(t)) = G(ω). Here,

there is a transformation given by F (ω)[1− R(ω)] = G(ω), where R(ω) is the Fourier transform
of r(t) = s′(t). Also, [1−R(ω)] is the response function in the frequency domain. Therefore, we
have

F (ω) =
G(ω)

1−R(ω)
= G(ω)(1 +R +R2 +R3 + · · · ). (S9)

Here, ignoring results greater than third order, as typically R(ω) < 0.1, finally we have

Vreal(t) = Vreal,0(t) + Vreal,1(t) + Vreal,2(t) + Vreal,3(t), (S10)
Vreal,0(t) = Videal(t), (S11)
Vreal,1(t) = [V ′

real,0(t) ∗ s(t)](t), (S12)
Vreal,2(t) = [V ′

real,1(t) ∗ s(t)](t), (S13)
Vreal,3(t) = [V ′

real,2(t) ∗ s(t)](t). (S14)

The comparison of the Z Pulse distortion-induced phase accumulation is shown before and after
the correction in Fig. S5(B).
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FIG. S5: Correction of pulse distortion. (A) The pulse sequence used to measure the pulse distortion. The
X/2 pulse is applied with a delay time tdelay after the Z pulse. Then, waiting for a time (tint = 500 ns) after
the X/2 pulse, we measure the qubit’s tomography to obtain the accumulated phase. (B) Qubit phase as a
function of the delay time tdelay. The blue dashed curve and the red solid curve are for qubit phases before
and after the correction of pulse distortion, respectively.

B. Z pulse crosstalk correction

In our experiments, we need to bias all qubits to their specific working points by applying Z
pulses through Z control lines. Ideally, each Z control line can only bias the corresponding qubit.
However, due to unwanted geometric coupling, one Z pulse control line can slightly bias other
qubits [23]. Such Z pulse crosstalk can induce frequency drifts, so the qubits cannot be biased to
the working point. To correct the crosstalk, we first need to obtain the Z pulse crosstalk matrix.

As illustrated in Fig. S6(A), the procedure we used to measure the crosstalk is to detect the
frequency drift of the target qubit when applying the Z pulse on the bias qubit. We apply a square
pulse with a fixed length and a variable amplitude on the bias qubit. Then, we measure the tran-
sition frequency of the target qubit. We tune the amplitude of the square pulse and obtain the
corresponding frequency drift. Then the ratio of the bias qubit frequency drift to the crosstalk of
the target qubit Z pulse is obtained. The crosstalk matrix element is defined as the ratio of the
bias qubit frequency drift to the crosstalk of the target qubit Z pulse versus that of the bias qubit
frequency drift to the Z pulse amplitude of itself. By traversing every related qubit, the crosstalk
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matrix is determined.
The measured crosstalk matrix is shown in Fig. S6(B), with element values around 1%∼3%.

Based on the matrix, we can eliminate the Z pulse crosstalk effect by applying corresponding
opposite waveforms. When more than two qubits are involved, the Z control pulse is a linear
accumulation of the originally applied waveforms and all related correction waveforms.
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C. Single-qubit rotation gate implementation and optimization

In our experiments, the building block for the implementation of single-qubit rotation gates is
the X/2 gate, which is realized by generating a Gaussian-enveloped microwave pulse. Two 90
degree shifted Gaussian-enveloped sinusoidal waveforms are generated by two DAC channels and
then sent to the I and Q ports of an IQ mixer. The waveforms are defined as

I(t) = A exp[−t2/(2σ2
t )] cos(δf t+ ϕ0), (S15)

and

Q(t) = A exp[−t2/(2σ2
t )] sin(δf t+ ϕ0), (S16)

where A controls the amplitude of the microwave pulse, TX/2 = σt/0.2123 is the gate length, δf
is the sideband frequency, and ϕ0 is the initial phase. With fLO the frequency of the microwave
applied on the LO port of the IQ mixer, the Gaussian-enveloped microwave pulse with frequency
fLO + δf is generated and then sent to the qubit XY control line to drive the qubit.

The transition frequency of the qubit is preliminarily identified by measuring the spectroscopy
of the qubit. Then, by combining two X/2 gates to realize the X gate, we measure the Rabi
oscillations by adjusting the amplitude to obtain the proper AX/2. After that, we correct the qubit
frequency by initializing the qubit to its |+⟩ = (|0⟩ + |1⟩)/

√
2 state and then idle for a series

of times t to observe the phase difference in the idling process. The slope of the phase observed
corresponds to the difference between the actual qubit frequency and the identified frequency.
With the corrected qubit frequency, the X/2 gate amplitude is then corrected by performing the
Rabi oscillations again. A derivative reduction by adiabatic gate (DRAG) protocol [24] is used
to reduce the phase error. After the DRAG parameter is identified, we correct the gate amplitude
AX/2 again by applying 25 X pulses to bring the qubit to its |1⟩ state. This operation enlarges the
error in the gate amplitude and thus can be used to identify the gate amplitude AX/2 with a higher
accuracy.

Based on the well-optimized X/2 gate, we generate the Y/2 gate by adding a 90◦ phase in
ϕ0 in both I(t) and Q(t). Other elements in the single-qubit Clifford group can be realized by
adjusting the initial phase ϕ0 or combining these gates together. For a single X/2 (Y/2) gate, the
pulse duration is 50 ns. For the X (Y) gate obtained by combining two X/2 (Y/2) gates, the pulse
duration is 100 ns.

On this processor, the average single-qubit gate fidelity we determined in the previous exper-
iments is above 0.997, though not at the same idle points in our experiments. With the same
optimization process, the gate quality is believed to be on the same level.

III. ADJUSTING ALL QUBITS TO THE SAME FREQUENCY

In our experiments, all qubits need to be detuned to the same frequency. To achieve that, we
choose one qubit as a reference and then the working frequencies of the nearest-neighbor coupled
qubits by adjusting the corresponding Z pulse amplitudes, as shown in Fig. S7(A). We perform the
vacuum Rabi oscillations between the nearest-neighboring qubits to align the nearest-neighboring
qubits’ frequencies, when one of them is tuned to the working point. To be more specific, let
us take the alignment between Q10 and Q11 as an example. In the measurement of vacuum Rabi
oscillations, Q11 is first detuned to the working point, previously determined by the frequency
alignment with Q12, which is the reference. Then, we sweep the Z pulse amplitude of Q10 to
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measure the vacuum Rabi oscillations between Q10 and Q11. We determine the working point of
Q10 via the corresponding Z pulse amplitude of Q10, when the vacuum Rabi oscillation period is
maximized, as shown in Fig. S7(C). Using this method, we determine the corresponding Z pulse
amplitudes to tune all qubits to the same frequency.

With the Z pulse amplitudes of all qubits determined, we can tune all qubits to the working point
with the Z crosstalk corrected based on the crosstalk matrix obtained previously, as described in
Sec. II B. However, in comparing experimental single-photon quantum-walks results with theoret-
ical predictions, it is found that even though this Z crosstalk correction has been performed, the
frequency of the target qubit still shifts when all the Z control pulses are applied synchronously,
which indicates the imperfection of the above Z crosstalk correction. To further suppress the
crosstalk-induced frequency shift, we perform the in-situ Z pulse correction when other qubits’
Z pulses are applied. In practice, we measure the qubit’s transition frequency when all qubits,
except for the corresponding nearest-neighbor two, are tuned to the working point. Subsequently,
we obtain the qubit’s transition frequency with other qubits’ Z pulses being turned off. The in-situ
Z pulse correction corresponds to the frequency difference under two conditions. Based on the
results, as shown in Fig. S7(B), we correct the frequency shift in order to tune all qubits to the
working point.

IV. ONE-PHOTON QUANTUM WALKS USING ELEVEN SUPERCONDUCTING QUBITS

In one-photon quantum walks, we only need 11 superconducting qubits to allow a sym-
metric propagation. To achieve that, we detuned Q12 away from the working point of other
qubits. By controlling the DC flux applied on the Z control line, we biased the frequency
of Q12 about 288 MHz lower than the working point to avoid interaction with other qubits,
shown in Fig. S7(A). After that, the effective coupling between Q11 and Q12 is estimated to be
Jeff = J2/

√
∆2 + J2 ≃ 2π × 0.533 MHz ≪ J11,12, with J11,12 being the hopping strength be-

tween Q11 and Q12, and ∆ = |ω12 − ω11|.

V. THE BOSE-HUBBARD MODEL OF THE NEAREST-NEIGHBOR COUPLED TRANSMON
QUBITS

A. Derivation of the Bose-Hubbard model

The effective Hamiltonian of the Cooper-pair box (CPB) system is

HCPB = EC(N̂ −N g)2 − EJ cos Φ̂, (S17)

where N̂ and Φ̂ are the number and phase operators of the CPB, respectively, satisfying the com-
mutation relation

[N̂ , Φ̂] = −i, (S18)

N g is the induced offset charge on the box controlled by the gate voltage V g, and EC and EJ are
the charging and Josephson energies, respectively. The transmon qubit is designed to increase the
ratio EJ ≫ EC using a large shunt capacitor, whose benefit is its insensitivity to the charge noise,
but its disadvantage is a decrease in the anharmonicity. The anharmonicity of the transmon qubit
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is defined as

η = f12 − f01. (S19)

Decreased anharmonicity makes it hard to reduce the many-level system of the device to a qubit
[22].

In the transmon regime EJ ≫ EC , we can neglect the periodic boundary condition of the
phase, expand the cosine for small angles up to fourth order, and then rewrite the Hamiltonian in
the form of a Duffing oscillator as [22]

HTr =
√
8ECEJ(n̂+ 1/2)− EC

12
(â+ â†)4 ≃

√
8ECEJ(n̂+ 1/2)− EC

2
n̂(n̂+ 1) (S20)

where n̂ = â†â, with a (a†) being the bosonic annihilation (creation) operator, the rotating-wave
approximation is assumed for the second equality given EC ≪ EJ , and N g can be eliminated by
a gauge transformation. We can rewrite the number and phase operators of Cooper pairs in term
of the new annihilation and creation operators as

N̂ =
−i

2

(
EJ

2EC

) 1
4

(â− â†), Φ̂ =

(
2EC

EJ

) 1
4

(â+ â†). (S21)

As discussed in Ref. [22], the resulting asymptotic expressions for the anharmonicity from numer-
ical simulations is

η ≃ −EC . (S22)

When considering our sample consisting of 12 coupled transmon qubits, with the nearest-
neighbor hopping terms

HI =
11∑

j=1

Jj,j+1(a
†
jaj+1 + h.c.), (S23)

the Hamiltonian can be well described by the Bose-Hubbard model as (also used in Ref. [15])

H =
11∑

j=1

Jj,j+1(â
†
j âj+1 + h.c.) +

12∑

j=1

Uj

2
n̂j(n̂j − 1) +

12∑

j=1

hjn̂j, (S24)

where the nearest-neighbor hopping strength, given in Tab. S1, is measured as Jj,j+1 = 2π/T vR
j,j+1,

with T vR
j,j+1 being the period of vacuum Rabi oscillations when qubits Qj and Qj+1 are in resonance,

the on-site nonlinear interaction equals the anharmonicity Uj ≡ ηj ≃ −EC
j , and the on-site

potential is hj = (8EC
j E

J
j )

1
2 −EC

j . Therefore, each qubit can be regarded as a nonlinear photonic
resonator in the microwave regime [15], and our experiments effectively demonstrates quantum
walks of interacting microwave photons (quasi-particles of the excitations of the qubits) on a 1D
array of transmon qubits (nonlinear photonic resonators).

For single-photon quantum walks, each superconducting qubit can be regarded as a spin-12
system, and the Bose-Hubbard model reduces to a XX model (the low-filling limit of the Bose-
Hubbard model [19])

H =
10∑

j=1

Jj,j+1(σ̂
+
j σ̂

−
j+1 + h.c.) +

11∑

j=1

hjσ̂
−
j σ̂

+
j , (S25)

where σ̂+
j = |0⟩j⟨1|, σ̂−

j = |1⟩j⟨0|, and the transition frequency of the 12-th qubit (Q12) has been
detuned 288 MHz lower than the working point to turn it off.
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FIG. S8: Numerical results for the probability of the doubly occupied state of each superconducting qubit
versus the evolution time for the initial state â†6â

†
7|0⟩.

B. Fermionization of interacting photons

For each transmon qubit, a sufficiently large anharmonicity is required to prevent operations
exciting the qubit to a higher energy level [22]. For a 1D array of transmon qubits effectively
described by the Bose-Hubbard model (S24), we also need to introduce the dimensionless param-
eter u = U/J to measure the strength of the on-site nonlinear interaction in units of the hopping
strength. In the limit |u| → 0, the model corresponds to free bosons. However, for |u| → ∞,
the model describes a system of hard-core bosons (a lattice analogue of the Tonks-Girardeau gas),
of which the thermodynamics and statistics are identical to free fermions’ [19]. In the hard-core
limit, the Bose-Hubbard model (S24) can be mapped to the XX model (S25) and solved exactly
by the Jordan-Wigner transformation to a system of noninteracting spinless fermions [19]. The
fermionization of bosons can be observed by measuring long-range second-order anticorrelations
of the Hanbury Brown-Twiss interference during the quantum walks of few particles [30]. For our
system, |u| ≃ 16 or 20 ≫ 1 and the system is approximately in the hard-core limit. The numer-
ically simulated probability of doubly occupied state against the evolution time given the initial
state â†6â

†
7|0⟩ is shown in Fig. S8. The probabilities of the doubly occupied states at all sites are all

below 3%, showing that the hard-core limit is a good approximation of our system.

C. The effect of unbalanced qubits’ frequencies

Here, we numerically investigate the effect of unbalanced qubits’ frequencies on the quantum
walks using Eq. (S24) with parameters in Tab. S1. We consider that the on-site potential of each
qubit has a disorder hj = h̄ + δhj , with δhj ∈ [−W/2,W/2], and the nearest-neighbor coupling
strength can be written as Jj,j+1(∆j,j+1) = J2

i,j/(J
2
i,j + ∆2

j,j+1)
1
2 , with ∆j,j+1 = hj+1 − hj and

Jj,j+1 in Tab. S1.
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FIG. S9: Density distributions of single-photon experiments versus time, for different strengths of disorder
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results are calculated by running 50 sequences.

For the single-photon experiments with the initial state â†6|0⟩ and a reduced Hamiltonian
(S25), the time evolutions of the density distribution for different strengths of disorder W/2π =
0, 6, 12, 20, 60, 200 MHz are shown in Fig. S9. For the two-photon experiments with the initial
state â†6â

†
7|0⟩ and the Bose-Hubbard Hamiltonian (S24), (S25), the time evolutions of the density

distribution for different strengths of disorder W/2π = 0, 6, 12, 20, 60, 200 MHz are shown in
Fig. S10. We run 50 sequences of simulations and calculate the average of the density distribu-
tions.

In our experiments, the inaccuracy of the frequencies is less than W/2π = 0.5 MHz. Com-
pared to the numerical simulations shown in Figs. S9(B) and S10(B) with W/2π = 6 MHz, the
unbalanced qubits’ frequencies will not affect our experimental results of quantum walks.
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D. Numerical simulations of continuous-time quantum walks

Numerical computations were performed using the QUTIP (the quantum toolbox in PYTHON)
and NUMPY. For continuous-time quantum walks with equal on-site potentials of all qubits
hj = h, the time evolutions of the system with a Hamiltonian in Eq. (S24) after initial states’
preparation were numerically simulated using QUTIP’s master equation solver mesolve, where
the parameters in Tab. S1 were used. We simulated all transmon qubits in the Fock space of cutoff
dimensions D = 2 (qubit space) and D = 3 for single-photon and two-photon quantum walks,
respectively. Because the evolution time is much shorter than the qubits’ energy relaxation time
and dephasing time t ≪ T1, T2, we did not consider the effect of decoherence in simulations.
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E. The effect of the measurement precision of the nearest-neighbor coupling strength

For the numerical simulations, we use the coupling strength presented in Tab. S1. In our ex-
periments, the hopping strength is determined by Ji,j = 2π/2T vR

i,j , where T vR
i,j is the period of

the vacuum Rabi oscillations with qubits Qi and Qj being in resonance. The inaccuracy of the
measured nearest-neighbor coupling strength would affect the fidelity F (t) =

∑11
j=1

√
pj(t)qj(t),

as shown in Fig. 3(A), for the measured and theoretical probability distributions pj(t) and qj(t).
In Fig. S11, we show the numerical results of the fidelity of the ideal theoretical probability dis-
tribution and the one whose coupling strengths have a maximum ±2.5% random error. The nu-
merical results in Fig. S11 agree with the experimental results in Fig. 3(A), which explain the
facts that (i) the fidelity has a fluctuation during the evolution, and (ii) the fidelity starting from
the central-localized state decays faster than the ones starting from the leftmost- and rightmost-
localized states, as a result of the inaccuracy in the determined coupling strengths. The numerical
results, will be slightly changed, if we consider the decoherence of each qubit (using QUTIP with
decoherence time given in Tab. S1) and the unbalanced qubits frequencies (with random disorder
of the width 0.5 MHz), which are not the main reasons for the large fluctuation and decay of the
fidelity from the central-localized state.

We note that the fidelity F (t) of the distribution of the evolved state and the one given by
numerical simulations will vary a lot from the distributions. For example, with the same noise, the
evolved state with a highly concentrated distribution (e.g., a single localized excitation) would have
a larger fidelity than a superposed state with a uniform distribution which is more fragile to the
noise. The fidelity starting from the central-localized state would decay faster than the ones starting
from the leftmost- and rightmost-localized states, because the state from the central-excited qubit
performs the propagation of large coherence and entanglement propagation, of which the fidelity
is more sensitive to the inaccuracy of the measured nearest-neighbor coupling strengths. The large
fluctuations of the fidelity F (t) mainly arise from the inaccuracy of the measured nearest-neighbor
coupling strengths, according to our numerical results in Fig. S11.

VI. LIEB-ROBINSON BOUND

The Lieb-Robinson bound is a theoretical upper limit on the speed at which information can
propagate in non-relativistic quantum systems. For the one-photon quantum walks with system
initialized at |ψ0⟩ = |0⟩ =

⊗11
j=1 |0⟩j , and then prepared at |ψt=0⟩ = σ̂x

i |ψ0⟩, we consider the
change of the number operator at site j, n̂j = (I− σ̂z

j )/2, which can be bounded by [29]

|⟨ψ(t)|n̂j|ψ(t)⟩ − ⟨ψ0|n̂j|ψ0⟩| ≤ ||[U †(t)n̂jU(t), σ̂x
i ]|| (S26)

=
1

2
||[U †(t)σ̂z

jU(t), σ̂x
i ]|| ≤ c exp

(
d− v|t|

ξ

)
(S27)

where d = |i − j| is the distance, U(t) ≡ exp(−iHt) is the time evolution operator. Here, c, v
(the so-called Lieb-Robinson velocity), and ξ are positive constants, which depend on the interac-
tions and lattice structure. The Lieb-Robinson bound (S27) shows that the amount of information
outside the light cone is exponentially decaying. For the system with only nearest-neighbor inter-
actions, a tighter bound can be written as [29]

⟨ψ(t)|n̂j|ψ(t)⟩ ≤ Id(4gt) (S28)
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where Id(x) is the modified Bessel function of the first kind, and g = max(Jj,j+1).
In Fig. 3C, the shaded regions denote the forbidden areas inside the “light cone”, and the

boundaries are predicted by Eq. (S28). Because the signal for each qubit is well outside the corre-
sponding forbidden area, the Lieb-Robinson bound for single-photon quantum walks is verified in
our experiments.

The maximal group velocity can be calculated as [18]

vmax
g =

∣∣∣∣
∂ω

∂k

∣∣∣∣= |(ωkn+1 − ωkn)(L+ 1)/π|, (S29)

where the wavevector kn = nπ/(L+1), with L = 11 and n = 1, 2, · · · , L, and ωk is the eigenmode
spectrum of the effective Hamiltonian

Hhc =
10∑

j=1

Jj,j+1(â
†
j âj+1 + h.c.) =

∑

k

ωkâ
†
kâk. (S30)

With the values of Jj,j+1 given in Tab S1, we can obtain the maximum group velocity as
vmax
g = 153.99 site/µs, see Fig. S12, which is larger than the group velocity of the spread of

the concurrence, von Neumann entropy, and density distributions, see Fig. S13.
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VII. COMPARISON WITH PREVIOUS WORK

A. One-photon quantum walks

Quantum walks of a single particle demonstrate the spreading of quantum information governed
by the Lieb-Robinson bounds. In Ref. [26], the propagation of quasiparticle pairs was shown by
the two-point parity correlation functions with a chain of atoms. The number of atoms in each
chain ranged between 10 and 18. The propagation velocity of correlations across the system was
observed to satisfy the “light cones” of the Lieb-Robinson bounds.

Later, the propagation of the quantum nature of correlations such as entanglement was observed
in a chain of 7 atomic ions with long-range interactions [18]. The entanglement was shown to
propagate from the center to the boundaries of the system. Using non-local correlations, similar
work investigating global quenches of trapped-ion chains were done in Ref. [9].

In our experiments, quantum walks of a single particle were implemented in an open chain
of 11 superconducting qubits. High fidelity entanglement propagation was observed. Explic-
itly, we observed not only entanglement propagation from the center to the boundaries, but also
the reflected entanglement. In addition to the main wavefronts of the entanglement, the explicit
sub-wavefronts of entanglement were also observed. The observation of reflected entanglement
highlights the long-coherence time of the superconducting quantum processor. The importance of
observation of sub-wavefronts of entanglement lies in the fact that this phenomenon is due to the
quantum superposition principle. It does not have classical counterparts.
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B. Two-photon quantum walks

Quantum walks of correlated particles implement Hanbury Brown-Twiss interference, and their
dynamical behaviors are sensitive to particle statistics. In Ref. [12], the bunching and antibunching
effects of bosonic 87Rb atoms with tunable dimensionless repulsive interactions were demonstrated
by measuring the density-density correlators in optical lattices, which showed the fermionization
of bosons using quantum walks.

In our experiments, we implemented quantum walks of two strongly interacting microwave
photons in an array of artificial atoms (a chain of 12 superconducting qubits). We explicitly ob-
served fermionization of strongly interacting bosons, which is identical to the dynamical behavior
of noninteracting spinless fermions. Moreover, our one-dimensional systems have strong attractive
interactions instead of repulsive ones, so our results also verify that the fermionization of bosons
depend on the strength of the interaction, but not on its sign.

VIII. EXTENDED DATA

Extended figures for illustrating approximate linear “light cones” of quantum walks of a photon
initially localized at the central qubit (Fig. S13) and comparisons between the experimental results
and theoretical predictions of one- and two-photon quantum walks (Fig. S14–S20).

The extended movie shows the time-evolved normalized density-density correlators Γij/Γmax
ij

from 2.5 ns to 55.5 ns with two photons initially localized in the central-neighbor qubits Q6 and
Q7, respectively (see Movie S1, Fig. S19(A) and Fig. S20(A–F)). The movie exhibits the process
of antibunching and fermionization of two photons in a superconducting processor.
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of the density distribution for the single-photon leftmost-localized quench. Namely, the photon is initially
localized in the leftmost qubit (Q1), and then the system evolves in time.
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FIG. S16: Comparison of (A) experimental results and (B) theoretical predictions of the time evolution of
the density distribution for the single-photon rightmost-localized quench. Namely, the photon is initially
localized in the rightmost qubit (Q11), and then the system evolves in time.
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FIG. S17: Comparison of (A) experimental results and (B) theoretical predictions of the time evolution of
the von Neumann entropy for the single-photon central-localized quench.
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FIG. S18: Comparison of (A) experimental results and (B) theoretical predictions of the time evolution
of the density distribution for the two-photon two-boundary-localized quench. Namely, two photons are
initially localized in the leftmost qubit (Q1) and the rightmost qubit (Q12), respectively, and then the system
evolves in time.
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FIG. S19: Comparison of (A) experimental results, (C) theoretical predictions and (B) theoretical predic-
tions of uncorrelated free photons of the time evolution of the density distribution for the two-photon central-
neighbor-localized quench. Namely, two photons are initially localized in the central-neighbor qubits Q6

and Q7, respectively, and then the system evolves in time. Note that the time evolutions of the density
distributions of the strongly correlated are also similar to those of uncorrelated bosons.
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FIG. S20: Comparison of (A–F) experimental results, (H–M) theoretical predictions and (N–S) theoretical
predictions of uncorrelated free photons of the time evolution of the normalized density-density correlators
Γij/Γmax

ij for the two-photon central-neighbor-localized quench. We clearly observed the anticorrelations
demonstrating fermionization, compared to the free bosons cases, where composite probabilities concen-
trate around the diagonal of the normalized correlator.
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Movie S1: The time evolution of the two-site correlators Γij/Γmax
ij measured during the quantum

walks of two strongly correlated photons at different evolution times. It shows the process of
antibunching and fermionization of two photons in a superconducting processor.
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