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Abstract
Lattice surgery is amethod to performquantum computation fault-tolerantly by using operations on
boundary qubits between different patches of the planar code. This technique allows for universal
planar code computationwithout eliminating the intrinsic two-dimensional nearest-neighbor
properties of the surface code that eases physical hardware implementations. Lattice surgery
approaches to algorithmic compilation and optimization have been demonstrated to bemore
resource efficient for resource-intensive components of a fault-tolerant algorithm, and consequently
may be preferable over braid-based logic. Lattice surgery can be extended to the Raussendorf lattice,
providing ameasurement-based approach to the surface code. In this paper we describe how lattice
surgery can be performed on the Raussendorf lattice and therefore give a viable alternative to
computation using braiding inmeasurement-based implementations of topological codes.

1. Introduction

Fault-tolerantmethods allow for quantum computation on systems that are prone to errors. The surface code is
one of themost attractive choices for fault tolerance due to its nearest-neighbor interactions and its high error-
threshold [1, 2]. For surface code-based architectures, qubits can be implemented using various approaches with
differentmethods of computation [3]. Among these are, for example, defects [2] or twists [4]where
computation is performed using braiding, or planar code patches where computation is performed using lattice
surgery [5].

Formany implementations of physical qubits, the surface code is themethod of choice, but for linear-optics
quantum computation [6–8] or other hardware architectures that utilize probabilistic connections [9] a
measurement-based approach [10] is the better choice. The Raussendorf lattice [11] is ameasurement-based
approach to the surface code and, thus, the twomethods have the same benefits in terms of fault-tolerant
thresholds, ability to perform a universal set of gates, and ability to largely detach the specifics of an algorithmic
implementation from the underlying physical hardware.

While braiding has been themethod of choice for performing fault-tolerant computation, recently lattice
surgery has been investigated by several works [12–17]. It has also been extended to different implementations
than the surface code, such as the color-codes [18]. For the Raussendorf lattice, however, only braiding has been
investigated in depth. This paper closes this gap by describing how lattice surgery can be performed on the
Raussendorf lattice.

First we give brief reviews onmeasurement-based quantum computation and error correction using both
the surface code and theRaussendorf lattice. Furthermore, we show the translation between these two error
correctionmethods. Then, the elementary operations using lattice surgery on theRaussendorf lattice are
described.
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2. Brief review

In thisfirst part wewill briefly describe how computation can be performed using a special graph state
configuration called the Raussendorf lattice.Wewill thenmotivate the link between the Raussendorf lattice and
surface code quantum computation. This will provide the necessary background in order to translate lattice
surgery to the Raussendorf lattice.

2.1. Graph states
Graph states can be treated as resources which are used inmeasurement-based quantum computation [19] in
order to perform information processing. The name of graph states stems from anunderlying undirected
graph G V E,= ( )whose vertices V Ì represent individual qubits. The set of edges E V 2Ì [ ] in this
graph indicates entanglement between its vertices.

Given a graph, one can obtain a physical state by first initializing all qubits (vertices) to +ñ∣ . For each edge a
controlled-phase gate has to be applied on its two vertices:

An alternative way of looking at this graph state is given in terms of stabilizermeasurements. The graph state
is the simultaneous eigenstate with eigenvalue+1 for stabilizers Siwith i VÎ given by

S X Z i Vfor all . 1i i
j i

i
Nbh
= Î

Î

( )
( )

Here, the definition of the neighborhood of a graph is given by i j i j ENbh ,= Î( ) { ∣( ) }.

2.2.Measurement-based quantum computation
The basic idea inmeasurement-based quantum computation is to to perform single-qubitmeasurements on
this graph state. These act as teleportation operations whichmove the quantum state fromone qubit to the next
while by-product operations are applied. Infigure 1 the circuit for such an operation is shown.One should note
that the first two steps, the initialization and the controlled-phase gate, correspond to the graph state generation.
The remaining gates can be combined into ameasurement in an arbitrary basis. The rotation
Z Zexp i 2q p=q ( ) is included to performnon-clifford gates on individual qubits. Finally,measurements
teleport the information fromone qubit to the next. Hadamard andZθ operations can also be combined into a
single rotated-basismeasurement. Hereafter, wewill always treat those operations as a single rotated-basis
measurement.

However, depending on the outcome of thismeasurement erroneous Pauli-operators are applied and need
to be tracked classically. Since thesemeasurements are probabilistic, a classical algorithmneeds to track the
outcomes of previousmeasurements and change the basis of subsequentmeasurements. Furthermore, a by-
productHadamard operation is applied to the state after each teleportation operation. This causes the state to
change fromZ-basis toX-basis after an odd number ofmeasurements and changes back toZ-basis for an even
number ofmeasurements.

Ameasurement in theZ-basis without the application of theHadamard operation removes themeasured
qubit from the lattice and no informationwill be teleported through this qubit. Thus, ameasurement in this
basis can be used to completely isolate different parts of a graph state from each other. Introducing defects to the
lattice withZ-basismeasurements is themain idea to implement logical qubits.

Figure 1.This figure shows the circuit which teleports the initial state yñ∣ to the next qubit inmeasurement-based quantum
computing. The initialization step and controlled-phase gate, corresponds to the creation of a graph state. This is followed by a
measurement operationwhich teleports the information fromone qubit to the next. Any quantum algorithm can be implemented
using a sequence of these teleportation operations.HereZ=Zθ=π,H is aHadamard gate, I is the identity andMZ is ameasurement in
Z-basis.
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2.3. TheRaussendorf lattice and the surface code
TheRaussendorf lattice [20] is a 3D graph state that possesses a specific lattice structure. Figure 2 shows a unit
cell of this lattice.With the stabilizer definition given in equation (1) one can see that the product of all stabilizers
from the qubits colored in red corresponds to a simultaneousX-parity check of all the faces. Thus, we can define
theX-stabilizermeasurements for the Raussendorf lattice. Thismeans that if no error occurred, this stabilizer
measurement should give a parity of+1.

In order to introduceZ-stabilizers of the Raussendorf lattice, we need to consider the dual lattice of the
Raussendorf lattice (as opposed to the primal lattice, that has been considered so far). This is a self-similar lattice

that is shifted by , ,1

2

1

2

1

2( ). It is visualized infigure 3, where the translucent boxes are given by primal unit cells

and the dark box represents the dual unit cell. The faces of the dual cell correspond to the edges of the primal cells
and give rise to chains ofZ-stabilizers.

If an error occurs, two of these stabilizermeasurements will show a parity of−1. From these syndromes one
can deducewhich error occurred and how to correct for it.

2.4. Planar code
The planar code is a 2D error-correcting codewhose syndromes are continuouslymeasured to detect errors. The
only difference to the surface code is how the boundary is treated. A layout of the planar code can be seen in
figure 4. The qubits in thisfigure can be divided into two categories: syndrome qubits which are continuously

Figure 2.Unit cell of the Raussendorf lattice: the spheres represent individual photons and the connections between them show the
entanglement given by the definition of a graph states. The vertices in themiddle of the unit cellʼs faces are colored in red and
contribute to a single parity check. The qubits colored inwhite are in themiddle of dual lattice faces which also correspond to parity
check operations.

Figure 3.The dual unit cell is represented by the dark-gray box in the center. It can be created by stacking 8 primal unit cells
(translucent boxes) together.
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measured and thus help detect errors, and data qubits which store the logical state of the system. Furthermore,
there are two types of syndromemeasurements in different bases.

The equivalence between surface codes and the Raussendorf lattice has already been shown in [21, 22] and
generalized to arbitrary Calderbank–Shor–Steane stabilizer states in [23]. Therefore, wewill onlymotivate why
this equivalence holds and introduce quantities that we rely on by translating lattice surgery to the Raussendorf
lattice.

To show this equivalence, wewill nowdescribe how to obtain the Raussendorf lattice from a planar code.
Figure 4 showsZ-stabilizermeasurements in (a) andX-stabilizermeasurements in (b), whichwere separated
into twodistinct time steps. Alternating between the lattices (a) and (b) and connecting data qubits in
neighboring time-slices, one obtains the Raussendorf lattice. Thus, every even time-slice in the Raussendorf
lattice can be associatedwithZ-stabilizermeasurements and every odd time-slice can be associatedwithX-
stabilizermeasurements.

In the Raussendorf lattice, one can explain this procedure in terms of teleportation. The nodes in each time-
slice getmeasured in theX-basis and the logical state is teleported to the next time-slice. This is the reason for the
terminology of ‘time-slices’. Looking at the circuit diagrams for the planar code stabilizer checks shown in
figure 4, one can already see the similarity between the definition of graph states and these stabilizers. EachZ-
stabilizer adds a red-colored ancillary qubit to the graph using controlled-phase gates and the parity ismeasured
afterwards. The same happens to theX-stabilizers whereHadamard operations on the data qubits are required
for a change in basis. TheseHadamard operations are readily obtained due to the teleportation protocol
described infigure 1. Thus, in each odd time-slice aHadamard operator has been added to the data qubits and
the basis transformation follows naturally from the teleportation rules.

3. Lattice surgery on the Raussendorf lattice

Now that the equivalence between the surface code and the Raussendorf lattice has beenmotivated, we can
translate the lattice surgery protocols. Lattice surgery is composed ofmany planar code patches. Each of these
planar code patches encodes one logical qubit and interactions between these qubits are performed using
boundary operations between neighboring patches. These boundary operations are calledmerge and split
operations and act as parity checks. In addition to these operations, state injection is needed to perform gates
that are not supported by surface codes.With these, universality is achieved. A descriptionwithin the context of
planar codes was given in the original paper for lattice surgery [5]. Or description is different to this paper due to
an additional physical dimension. This causes the planar code patches to become boxes and their edges to
become faces.

The key idea of our approach is to carve out boxes from the fully-connected Raussendorf lattice which is
given by the hardware. These boxes each represent a logical qubit, as did patches in the planar code.Merges

Figure 4.Thesefigures show the two stabilizermeasurements of the surface code. The small circles correspond to ancilla qubits which
measure the error syndromes. In (a) onlyZ-stabilizers are shown, whereas in (b) onlyX-stabilizers are shown.Merging these two
stabilizers gives the complete error detection for the surface code.However, this example, where the different stabilizers are treated
separately, illustrates the connection between the surface code and the Raussendorf lattice. This can be seen by looking at even (a) and
odd (b) time-slices in the Raussendorf lattice. Below the lattice depictions, a single stabilizermeasurement between the ancillary qubit
+ñ∣ (top) and its surrounding data qubits is shown for both cases.
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occurwhenwe stop carving out boxes and splits occurwhenwe introducemore cuts into the lattice to split a box
into separate logical boxes. Below, we describe in detail all necessary operations for universality.

3.1. Boxes inside theRaussendorf lattice
The qubits of the Raussendorf lattice have to bemeasured in theZ-basis if they do not belong to a logical qubit
box. Conversely, nodes that contribute to a logical qubit need to bemeasured in theX-basis. Thus, a single box
inside theRaussendorf lattice can be obtained bymeasuring all qubits surrounding it in theZ-basis. Infigure 5
one such box is shown. All visible qubits aremeasured in theX-basis and the surrounding qubits have to be
measured in theZ-basis. There is a transition that changesX-measurements of the box intoZ-measurements,
which disentangle the box from its surroundings. Depending onwhere this transition is, one can distinguish two
types of faces: rough and smooth faces. A rough face is cutting through primary unit cells, whereas a smooth face
is composed of faces of the unit cells. Fromfigure 5 one can see that a single box consists of two smooth faces
vertically, and two rough faces horizontally. The faces in the time direction need to be determined during
initialization andmeasurement.

Infigure 6we showhow four of these patches can be arranged in the large Raussendorf lattice. The qubits on
the boundary aremeasured inZ-basis, which completely disentangles each patch from the others. Boundary
operations such asmerges will be described later and use these qubits to add interactions between neighboring
qubits.

3.2. Logical Pauli-operators
LogicalX- andZ-operators in the original lattice surgery description can be realized by performing a physicalX
orZ-operation along chains spanning fromopposite edges of the patch/box.While these operations could in
principle also be implemented physically, they do not need to be applied because classical software can permute
these operations and reinterpretmeasurement results.

LogicalX- orZ-operations can be treated the sameway teleportation errors are handled on a physical qubit
level. Due to by-product Pauli operations, figure 1 shows, that with a probability of 50%, teleport operations of
physical qubits have an additional error-operator. The outcome of ourmeasurement indicates whether this
error-operator was applied or not. Thus, we can treat a logicalX-operation by inverting themeasurement results
along a chain on primary faces. TheZ-operation can be performed by inverting themeasurement results along a
chain on a time-slice of dual faces. The logicalX- andZ-operators are shown infigure 7.

3.3. Initialization andmeasurement
In the original description of lattice surgery [5] patches could be initialized into the logical 0ñ∣ state by preparing
all physical qubits in 0ñ∣ . Similarly, the logical +ñ∣ state can be obtained by preparing all physical qubits in +ñ∣ . In
the Raussendorf lattice a patch can be created by changing themeasurements fromZ- toX-basis. Therefore,

Figure 5. 3D representation of a Raussendorf lattice box of the patch illustrated infigure 4. The gray area corresponds to a single unit
cell whichwas illustrated in 2. To separate this box from the surroundings, all qubits around the box need to bemeasured in theZ-
basis.
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thesemeasurements stop removing qubits from the graph and start connecting subsequent qubits to each other.
Due to the definition of graph states, physical qubits are always prepared in a +ñ∣ state. Despite this constraint,
we are still able to initialize the system into the logical 0ñ∣ or +ñ∣ state. The important point here is inwhich time-
slice themeasurements are changed. If the patch is created on the faces of the primal lattice (even time-slices),
onewill end upwith a logical +ñ∣ state, because this would correspond to a +ñ∣ state initialization of each qubit.
If one chooses to switch themeasurement basis on the faces of the dual lattice, each qubit will be teleported to the
next primal nodes with an additionalHadamard operator (see 1) and therefore this will result in an initialization
of the logical 0ñ∣ state.

Figure 6. Four planar code patches are embedded in the Raussendorf lattice withZ-basismeasurements on the boundary between the
patches (dark color).

Figure 7. LogicalX andZ-operators are chains of physicalX orZ-operations. For a logicalZ-operation this chain runs fromone rough
edge to the opposing rough edge (horizontally), whereas forX-operations it runs from smooth edge to smooth edge (vertically).
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Formeasurements on logical qubits, the inverse of the initialization has to be performed. Thus, onewill
switch themeasurement basis fromX-measurements toZ-measurements. Again, the time-slice this happens
determines whether an additionalHadamard gatewas applied andwhether the basis of themeasurement wasX
orZ. For ameasurement in theZ-basis one needs tomeasure an even time-slice, which corresponds to a
measurement along primal faces. Ameasurement in theX-basis has to occur on an odd time-slice, which
corresponds to ameasurement-plane along dual faces. Themeasurement result can be inferred from the total
parity along a chain ofmeasurements spanning fromone edge to the next. Because of the logical operators
shown infigure 7 these chains need to be oriented horizontally (vertically) for a logicalZ-measurement (logical
X-measurement).

3.4.Merges and splits
In the followingwe describe howmerge and split operations from the original proposal [5] can be adapted to the
Rausendorf lattice.

Measurements on boundary qubits between the two boxes need to be switched fromZ toX-measurements
to perform amerge operation. Data qubits on this connecting edge need to be initialized in 0ñ∣ (+ñ∣ ) for amerge
along rough (smooth) boundaries. This requires again to swap themeasurement basis at different times for
smooth and roughmerges. For a smoothmerge, one needs to swap the basis starting at a time-slice that ismade
of primal faces, while for a roughmerge this needs to happen on a time-slice composed of dual faces. A
visualization of this can be seen infigure 8.

Themerge operation acts as a paritymeasurement on the two logical qubits. For a roughmerge this parity
corresponds to simultaneousX-measurement (XX ) and for a smoothmerge it corresponds to aZZ-
measurement on the logical states. To obtain themeasurement outcome of this parity check, the faces along the
boundary between the two patches have to be checked. Because of this paritymeasurement, the output state is
non-deterministic, and the number of logical qubits is decreased by one.

The output state of a roughmerge between logical qubits 0 1y a bñ = ñ + ñ∣ ∣ ∣ and 0 1f a bñ = ¢ ñ + ¢ ñ∣ ∣ ∣ can
be summarized in the following equation [5]:

1

1 ,

r
M

M

y f a f b f
a y b y

ñ ñ = ñ + - ñ

= ¢ ñ + - ¢ ñ

∣ Ⓜ ∣ ∣ ( ) ∣
∣ ( ) ∣

where M 0, 1= { } is themeasurement outcome of the parity check and xf s fñ = ñ∣ ∣ .
A smoothmerge between between logical qubits a byñ = +ñ + -ñ∣ ∣ ∣ and a bfñ = ¢ +ñ + ¢ -ñ∣ ∣ ∣ can be

summarized in the following equation [5]:

a b
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1
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M

M

y f f f
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ñ ñ = ñ + - ñ

= ¢ ñ + - ¢ ñ
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whereM again gives themeasurement result and zf s fñ = ñ∣ ∣ .

3.5. Encoding states
To be able to performuniversal computation, state injection has to be performed. This requires specially
prepared states as a resource. Encoding these logical states is done by using faulty single-qubit operationswhich
require a distillation of the resulting logical state to reduce errors. Only then can these states be used as a resource
for state injection.While distillation and injection itself are done on a purely logical level, amethod for encoding
arbitrary states needs to be devised for the Raussendorf lattice. For injection, it is common to use the following
two states, because they complement the surface code and enable universality:

Y

A

1

2
0 i 1

1

2
0 e 1 . 2i

4

ñ = ñ + ñ

ñ= ñ + ñ
p

∣ (∣ ∣ )

∣ (∣ ∣ ) ( )

The Yñ∣ state willmainly be used forP-gates andHadamard operations while the Añ∣ state is needed for the
implementation of theT-gate. The procedure to encode logical states is based on the original lattice surgery
descriptionwhichwemodified to be implementable in the Raussendorf lattice. It can be summarized in the
following steps:

1. A single physical qubit is prepared as a magic state: 0 1y a bñ = ñ + ñ∣ ∣ ∣ , where yñ∣ is equal to either Añ∣ or
Yñ∣ described in equation (2).

2. UsingCNOTs, a 3-qubit entangled state is created resulting in 000 111 .y a bñ = ñ + ñ∣ ∣ ∣

3. These three qubits are used as data qubits along a logicalZ-operator chain for a distance-3 planar patch.
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4. Then, with all other qubits of this patch initialized to 0ñ∣ , syndromemeasurements are turned on.

The resulting state of this procedure is a logical distance-three planar patch that encodes an erroneousmagic
state. Usingmerges, this patch can be brought to the desired code distance.

To implement this procedure in the Raussendorf lattice, a single-qubit needs to be prepared in amagic state.
This is where ameasurement in an arbitrary basis comes into play (see figure 1). Figure 9 shows themethod of
encoding an arbitrarymagic state in a distance-three box. Themeasurement basis has to be changed fromZ- to
X-basis on primal faces forfive qubits. Here, a vertical line of qubits ismeasured in theX-basis, except for the
center qubit (indicated by the red color infigure 9). This qubit ismeasured in a rotated-basis. In order to inject a
Yñ∣ state (needed for the S-gate) a rotated-basismeasurement with θ=π/2 needs to be chosen. For aT-gate, the
Añ∣ state has to be prepared by a rotatedmeasurement of θ=π/4.

The center qubit and the outer qubits (all colored qubits infigure 9) therefore teleport the state from step 2:
000 exp i 2 111q pñ + ñ∣ ( )∣ to the next time-slice. In the second time-slice themeasurement is performed in the
X-basis for all qubits. This would correspond to an initialization of 0 for the remaining data qubits. Error
correction on this distance-3 code is nowpossible, and usingmerges this state can be brought to arbitrary sizes.

This procedure encoded an arbitrary but faulty state in a logical qubit.Magic state distillation algorithms
[24, 25] can nowbe used to reduce the noise and teleportation protocols can then implement S- andT-gates.
Even, the synthillation protocols given in [26] can be used here.

Figure 8.During amerge operation themeasurement basis along the edge between two LS patches is turned on. In (a) this is shown for
a roughmerge, where each qubit along the boundary needs to be initialized in the 0ñ∣ state. Thus, themeasurement has to be flipped on
an odd time-slice. In (b) this procedure is done for a smoothmerge.Here the qubits on the boundary need to be initialized in the +ñ∣
state and thus themeasurement basis needs to beflipped in an even time-slice.
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3.6.Hadamard
A logicalHadamard operation is also possible.We present amodified version of the initial transversal Hadamard
operation devised for the surface code [2] and lattice surgery [5]. However, in order to recombine themodified
logical state with its surroundings, we need to employ operations that are not native to the Raussendorf lattice
itself. Looking at the lattice generation protocol of [8]we canmodify the lattice by choosing a differentmethod
for the lattice renormalization.

Our proposal for a logicalHadamard operation starts with a physicalHadamard operation applied to each
data qubit. This is achieved by connecting primal nodes with primal nodes as shown infigure 10.Due to the
missing temporal layer of nodes, an additional by-productHadamard is applied. Furthermore, data qubits are
shifted by half a unit cell down and left. This is required in order to be able to recombine the lattice with other
patches later on.

In comparison tofigure 7, their logical operators have now changed themeasurement basis for physical
qubits. Thismeans that the logicalZ-operator is a horizontal chain of physicalX-operations instead of physical
Z-operations. The logicalX-operator is nowdescribed by a chain of verticalZ-operations.

To complete theHadamard translation, this patch has to be rotated. In the original lattice surgery proposal
[5] such a rotation has already been proposed and can simply be translated to the Raussendorf lattice. Infigure 11
this rotation is performed by switching themeasurement basis on dual faces fromZ toX for all qubits depicted in
dark-gray. (This corresponds to a 0ñ∣ -initialization for qubits on the surface code.)

The resulting patch is still a distance-d planar code. After d-rounds of error correction all qubit
measurements that do not form a squarewith the dark-colored ones can be turned toZ-basismeasurements.
This results in a rotated patch, such that a previous horizontal logical operator is now vertical and vice versa.
Additionally, this rotation cancels the shift by half a unit cell that was introduced before, such that the patch is
back in proper alignment with the rest of the Raussendorf lattice.

The logicalZ-operator, that previously was a horizontal chain of physicalZ-operators, has nowbeen
mapped to a chain of verticalX-operations. Thus, the logicalZ andX operators have been swapped and a proper
Hadamard operation has been applied.

3.7.Hadamard and ICM
For some hardwaremodels, connections between primal nodesmight not be allowed. Thus, we present another

approachwhich is based on the decomposition of aHadamard into rotational gates H R R Rz x z2 2 2
= p p p( ) ( ) ( ).

Figure 9.Here, amagic state is encoded into a distance-three planar code, within the Raussendorf lattice. The time-slices aremeasured
from the left to the right. Thefirstmeasurements happen on the column that has the red-colored qubit in themiddle. All qubits are
measured in the standardX-basis, only the qubit colored in red ismeasured in a rotated-basis. This results in a superposition state of
the red and blue qubits, which is due to themeasurements teleported back one layer. All other qubits need to be initialized to the 0ñ∣
state. This is achieved by switching from aZ-basis to aX-basismeasurement on an odd time-slice (dual faces).
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These rotational gates can be implemented using themeasurement procedure shown infigure 12, which treats
the application ofHadamards on a purely logical level.

Unfortunately, this procedure needs state injection and ismore costly due to the distillation protocols that
are required. Once the necessary Yñ∣ states have been encoded and distilled, the teleportation protocols given in
figure 12will implement the rotation operations required by theHadamard operation.

A convenient representation that translates any circuit using teleportation gates into a deterministic circuit is
the ICMmodel [27, 28], which stands for (I)nitialization, (C)NOTand (M)easurements. In this representation,
any operation is decomposed into teleportation operations, and non-deterministic results are handled using

Figure 10.This figure shows howdata qubits from two primal faces can be connected. The nodes from the dual lattice are removed
during the lattice generation or renormalization step. This structure archives two goals. First, it applies aHadamard operation to each
of the data qubits. Second, the data qubits are shifted by 1 2, 1 2- -( ), which allows the recombinationwith the rest of the
Raussendorf lattice, when theHadamard operation isfinished.

Figure 11.This procedure rotates the patch byπ/2. The chains of logical operators are rotated such that they are facing the same
direction as logical operators of other patches.

Figure 12.Teleportation operations needed to implement aHadamard operation. The circuit to the left implements aX-rotation and
the circuit to the right implements aZ-rotation.
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selective target and selective source teleportationmethods [28, 29]. This results in a deterministic circuit, despite
being dependent on the probabilistic outcome of its teleportation operations.

A further extension of this representation is the inverted ICMrepresentation [13]. The difference between
ICMand inverted ICM is that the former has arbitrary basis initialization and restricted-basismeasurements,
whereas the latter has only a restricted initialization (Z orX) and arbitrary basismeasurements. In the inverted
ICMrepresentation, an error-corrected graph state which is specific to the algorithm is created and can be
readily realized bymerges and splits of lattice surgery. Afterwards,measurements perform the computation of
the quantumalgorithm. A complete discussion is available in [13].

4. Conclusion

So far the literature has only described braiding as amethod of computation on the Raussendorf lattice. In this
paperwe showed that a lattice surgery implementation can also performquantum computation in the
Raussendorf lattice andwe described how to implement all fundamental operations. An implementation of
transversal Hadamards proved to be hardwithout changing the lattice structure.We gave two approaches, both
with different drawbacks. In conclusion, lattice surgery can be implemented on the Raussendorf lattice such that
future quantum computation [30] on the Raussendorf lattice can use the beneficial aspects of lattice surgery.
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