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a b s t r a c t

Both classical and quantum waves can form vortices: entities with helical phase fronts
and circulating current densities. These features determine the intrinsic orbital angular
momentum carried by localized vortex states. In the past 25 years, optical vortex beams
have become an inherent part of modern optics, with many remarkable achievements and
applications. In the past decade, it has been realized and demonstrated that such vortex
beams or wavepackets can also appear in free electron waves, in particular, in electron
microscopy. Interest in free-electron vortex states quickly spread over different areas of
physics: from basic aspects of quantum mechanics, via applications for fine probing of
matter (including individual atoms), to high-energy particle collision and radiation pro-
cesses. Here we provide a comprehensive review of theoretical and experimental studies
in this emerging field of research. We describe the main properties of electron vortex
states, experimental achievements and possible applications within transmission electron
microscopy, as well as the possible role of vortex electrons in relativistic and high-energy
processes. We aim to provide a balanced description including a pedagogical introduction,
solid theoretical basis, and a wide range of practical details. Special attention is paid
to translating theoretical insights into suggestions for future experiments, in electron
microscopy and beyond, in any situation where free electrons occur.
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‘‘ACIS. Even a vortex is a vortex in something. You can’t have a whirlpool without water; and you can’t have a vortex without
gas, or molecules or atoms or ions or electrons or something, not nothing.
THE HE-ANCIENT. No: the vortex is not the water nor the gas nor the atoms: it is a power over these things.’’

George Bernard Shaw ‘‘Back to Methuselah’’

1. Introduction

1.1. Wave-particle duality

Electrons are elementary quantum particles which exhibit the wave-particle duality inherent to all quantum objects [1].
While their particle properties are known from classical electrodynamics (where electrons are considered as point charged
particles experiencing Lorentz forces and Coulomb interactions), the wave features of electrons are described in quantum
mechanics by the Schrödinger equation [2,3]. Depending on the problem, either the particle or wave picture could be more
suitable. For example, confined electron states in atomic orbitals are clearly wave entities.

The wave-particle duality of free electrons manifests itself naturally in electron microscopy [1,4,5]. Indeed, individual
electrons are usually well separated from each other, and as a single electron hits the detector, it appears as a single bright
spot. At the same time, the signal accumulated from many electrons clearly exhibits interference patterns characteristic of
waves: such as two-slit interference [1,6,7], Fig. 1. Therefore, the description of electron evolution inmicroscopes sometimes
relies on classical equations ofmotion involving the Lorentz force, and other times it requires the use of the Schrödingerwave
equation.

Inmany cases it is sufficient to assume that the electron’swave nature reveals itself in the plane-wave-like phase acquired
upon propagation. To consider localized electrons, one usually employs semiclassical Gaussian-likewavepacketswith spatial
dimensions much larger than the de Broglie wavelength. The centroids of such wavepackets follow classical trajectories
(according to the Ehrenfest theorem [3,8]), while their phase fronts can be locally approximated as a plane wave with the
wave vector corresponding to the mean (expectation) value of the electron momentum.

Fig. 1. Wave-particle duality of electrons. Single electrons, arriving one by one at the detector, build up the interference pattern in a two-slit interference
experiment in a transmission electron microscope [1].

1.2. Structured waves and vortices

Plane waves are very basic entities, while generic wave fields can exhibit features drastically different from planar phase
fronts propagating in the normal direction.Wave fieldswhich are essentially different fromplanewaves (or smoothGaussian
wavepackets) are often called structuredwaves.

Structuredwaves appear naturally in problemswith external potentials, where planewaves are not solutions of thewave
(Schrödinger) equation. Examples include: atomic orbitals,modes of quantumdots or resonators, Landau states in amagnetic
field, surface waves, to name a few. However, even free-space waves are generically structured. Of course, any free-space
wave field is a superposition of multiple plane waves seen in the momentum (Fourier) representation. But interference of
these plane-wave components can lead to rather non-trivial properties of the resulting wave field. This is because most of
the important physical characteristics – intensity, current, momentum, etc. – are described by quadratic forms of the wave
function, so that the superposition principle is applicable to wave fields, but not to their physical properties.

The interference of two plane waves can already be considered as a structured wave field. However, the most interesting
and generic forms appear starting from three-wave interference [9]. Namely, wave fields consisting of three or more
interfering plane waves generically contain phase singularities, i.e., dislocations of phase fronts or vortices [10–12]. Such
singularities appear in the points of destructive interference, r = rs, where the amplitude of the wave function vanishes,
|ψ(rs)| = 0, while its phase Argψ(rs) is indeterminate. A vanishing amplitude of a complex field means two real conditions
(vanishing of its real and imaginary parts), so that phase singularities generically appear as points in 2D plane or lines in
3D space. Most importantly, the phase of the wave function is well-defined around singular points/lines, and generically
it has a nonzero increment for a countour enclosing the singularity:

∮
∇Argψ(r) · dr = 2πℓ. Here ℓ = 0,±1,±2, . . .

is an integer winding number (to provide continuity of the phase modulo 2π ), which is called the ‘‘topological charge’’ of
the vortex. The typical behavior of the wave function near the phase singularity is ψ ∝ |r − rs||ℓ| exp(iℓϕs), where ϕs is
the azimuthal angle around the r = rs point. Such wave forms are called vortices because the probability current density
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Fig. 2. Vortices (phase singularities) in a random 2D interference field [12]. The complex wave function ψ(r), r = (x, y) is obtained as a superposition of
100 plane waves with randomly-oriented wave vectors k = (kx, ky), fixed k, and random phases [12]. (a) The grayscale plot displays the absolute value of
the wave function, |ψ(r)|. Streamlines of the probability current density, j ∝ ∇Argψ , are shown in orange. (b) Color-coded phase of the wave function,
Argψ(r). (c) Combined representation of the complexψ(r), where the brightness is proportional to the amplitude, while the color indicates the phase [13].
Black and white dots in (b) mark vortices with ℓ = 1 and ℓ = −1, respectively. The probability current in (a) forms whirlpools around these points. The
typical distance between vortices in such interference patterns is of the order of the wavelength 2π/k.

j ∝ Im (ψ∗
∇ψ) = |ψ |

2
∇Argψ swirls around phase singularities. For example, Fig. 2 shows multiple vortices in a 2D

interference field obtained as a superposition of randomly-directed plane waves. In the 3D case, vortex lines are dislocation
lines for phase fronts (i.e., surfaces of constant phase) [10–12] (see Fig. 3).

Since vortices are generic wave forms, they appeared in many early studies of various types of waves. In optical fields, an
example of a vortex was described in 1950 for the total internal reflection of a light beam [14], and a famous textbook [15]
reproduces detailed figures from 1952 [16] with multiple optical vortices in a plane wave diffracted by a half-plane. For
quantum matter waves, wave functions with vortices were known from the early days of quantum mechanics. Indeed,
spherical harmonics, atomic orbitals with orbital angular momentum [2,3], and eigenmodes of the Schrödinger equation
in a magnetic field [17] all contain the exp(iℓϕ) vortex factors. Furthermore, the seminal Dirac paper about magnetic
monopoles [18] analyzes the phase singularities in a wave function, and vortex eigenmodes appear in the related Aharonov–
Bohm problem [19].

Despite these multiple predecessors, the first systematic study of phase singularities was performed in 1974 by Nye and
Berry [10] in the context of ultrasonic pulses. Almost simultaneously, Hirschfelder et al. [20,21] analyzed vortices in quantum
wave functions. The seminal work by Nye and Berry gave birth to the field of singular optics, with thousands of studies in
the past decades [11,12,22]. Vortices were shown to be very important in the analysis of structured wave fields. They form a
‘‘singular skeleton’’, on which the phase and intensity structure hangs [12,23]. In particular, random wave fields, which are
ubiquitous in nature, are pierced by numerous vortices [23,24] (see Fig. 2) and even vortex knots (in the 3D case) [25,26].
In this manner, vortices provide unique information about wave fields, both statistical and as ‘‘fingerprints’’ of individual
realizations.

1.3. Angular momentum and vortex beams

The swirling current around phase singularities suggests that vortices should possess angular-momentum properties.
Indeed, assuming cylindrical or spherical coordinates with the azimuthal angle ϕ, vortex wavefunctions ψ ∝ exp(iℓϕ) are
eigenmodes of the z-component of the quantum-mechanical orbital angularmomentum (OAM) operator, L̂z = −ih̄∂/∂ϕ, with
the eigenvalues h̄ℓ [2,3]. In randomwavefields, Fig. 2, the numbers of positive and negative vortices are approximately equal
to each other, and the net OAMapproximately vanishes.Moreover, only vorticeswith topological charges ℓ = ±1 are generic
in random wavefields: a higher-order degeneracy splits into several charge-1 degeneracies under small perturbations.
Therefore, to have a field with noticeable AM properties, one should produce an isolated vortex state, possibly with large |ℓ|.

Although the OAM eigenmodes with vortices have been known formany years in textbooks on quantummechanics [2,3],
only in 1992 Allen et al. [27] realized that such wave modes can be generated as free-space optical beams. Indeed, the free-
space solutions of the wave equation in cylindrical coordinates (r, ϕ, z), which propagate along the z-axis have a typical
form ψ(r) ∝ f (r) exp(ikzz + iℓϕ), where f (r) is the radial distribution (which can also slowly change with z for diffracting
beams), kz is the longitudinal wave number, and ℓ is the azimuthal quantum number. At ℓ = 0, such solutions describe usual
Gaussian-likewave beams, while higher-ordermodeswith ℓ ̸= 0 are the so-called vortex beams, shown in Fig. 3. Such beams
have isolated vortices of topological charge ℓ on their axes, helical phase fronts, and spiraling currents. Most importantly,
being eigenmodes of L̂z , vortex beams carry a well-defined OAM h̄ℓ per particle (photon in the case of optics) along their
axes: ⟨Lz⟩ = h̄ ℓ.

The presence of a vortex and well-defined OAM dramatically modifies both geometrical and dynamical properties of
the wave. Therefore, the description and generation of optical vortex beams in the beginning of the 1990s [27–30] caused
enormous interest and initiated the rapidly-developing field of optical angular momentum. Since then, optical vortex beams
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Fig. 3. Vortex beams are cylindrical solutions of the wave equation. They propagate along the z-axis and carry intrinsic longitudinal orbital angular
momentum (OAM) ⟨Lz⟩ = h̄ ℓ (assuming paraxial approximation) per particle. The 3D schematics show the phase fronts (cyan) and probability-current
streamlines (orange) for beams with different vortex charges ℓ. The 2D plots show the corresponding transverse wave function distributions ψ(x, y) at
z = 0; the phase–amplitude representation is similar to Fig. 2(c). The radial profiles correspond to the Bessel modes analyzed in detail in Sections 2.2 and
2.3 below.

have been intensively studied and have found numerous applications in diverse areas, including: optical manipulations of
small particles or atoms [31–33], quantum information and communications [34–38], quantum entanglement [39,40], radio
communications [41,42], astronomy and astrophysics [43–47], optical solitons [48–50], and Hall effects [51–54]. In the past
two decades, five books [55–59] and many reviews [60–66] about optical vortex beams and OAM were published.

Several important physical points have to be made about the OAM of vortex wave states:

• The z-directed OAM carried by vortex beams is intrinsic [65,67], i.e., independent of the choice of coordinates. This is
in sharp contrast to the extrinsic mechanical OAM of classical point particles, L = r×p (where r and p are the particle
coordinates and momentum, respectively), which depends on the choice of the coordinate origin.

• Moreover, the mean (expectation) value of the OAM in vortex beams is aligned with the mean momentum: ⟨L⟩ =

ℓ ⟨p⟩/⟨p⟩. This is also in contrast to point-particle OAM, which is orthogonal to the momentum at every instant of
time: L ⊥ p.

• The intrinsic OAM and spiraling current density do not contradict the rectilinear propagation of either plane waves
or classical particles in free space. Indeed, the centroid of a vortex state follows a rectilinear trajectory in free-space
(e.g., lies on the axes of vortex beams). Also, vortex beams are superpositions of plane waves [see Figs. 5(a) and 6(a)],
but the probability-current streamlines, i.e., Bohmian trajectories of the particles [8,68,69], can be curvilinear in free
space [70,71] [see Fig. 7].

• A vortex state carrying intrinsic OAM is not a collective effect, but a phenomenon that persists on the single-particle
level [34]. In other words, these are forms of the single-particle wave function.

1.4. From optics to electron waves

Until recently, the majority of studies on phase singularities and free-space vortex beams dealt with optical fields and
other classical waves. At the same time, the universal character of wave equations suggests that fundamental results of
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singular optics and optical angular momentum should be equally applicable to quantum, in particular electron, waves [72].
Moreover, the concept of the OAM in vortex beams essentially relies on the quantum-mechanical operator L̂z . Nonetheless,
until recently there were only a few studies of free-space quantum wave functions with vortices [20,21,73,74].

In 2007 Bliokh et al. [75] suggested that free electrons can be in vortex-beam (or vortex-wavepacket) states carrying
intrinsic OAM. They also discussed basic interactions of such vortex electrons with external fields and possible ways they
could be generated. In 2010, free-electron vortex beamswere indeed produced in transmission electronmicroscopes (TEMs)
by Uchida and Tonomura [76] and Verbeeck et al. [77]. One year later, McMorran et al. [78] demonstrated the generation
of electron vortex beams with OAM up to |ℓ| = 100. This is in enormous contrast with the spin angular momentum
(SAM) of electrons, which is restricted to 1/2 (in units of h̄). These studies initiated a new research area investigating free-
electron vortex states, or, in a wider context, structured quantum waves [79]. Electron vortex beams are currently attracting
considerable interest, with potential applications in various fields, such as electron microscopy, fundamentals of quantum
mechanics, and high-energy physics. The present paper provides a review of this emerging area of research.

Thus, free-space vortex beams carrying OAM, based on the quantum-mechanical picture of angular momentum, were
developed in classical optics, and recently returned to their quantum roots. While similarities between optical and electron
waves are obvious, it is important to mention basic distinctions between optical and electron vortices. Apart from the huge
difference in wavelengths, electrons, unlike photons, are charged particles, and therefore can directly interact with each other
as well as with external electric and magnetic fields. Moreover, the presence of the OAM implies the presence of a vortex-
induced magnetic moment carried by vortex electrons. Furthermore, electrons can interact with electromagnetic waves
(photons), as well as radiate photons via the Vavilov–Cherenkov or other effects. Vortex electrons can also participate in
particle collisions in the context of high-energy physics. All these phenomena enrich the physics of structured electron
waves, as compared to their optical counterparts. At the same time, some features, naturally present in optical waves, are
practically absent in electron optics. First of all, free-electron sources in electron microscopy generate unpolarized particles,
which are described by the scalar wave function. This is in sharp contrast to optics, where the use of spin (polarization)
degrees of freedom is ubiquitous both in regular and singular/OAM optics [80,81,66]. In addition, electron beams in TEM
are highly-paraxial, while modern nano-optics often deals with non-paraxial (tightly focused or scattered) fields with
wavelength-scale inhomogeneities [82].

1.5. Applications in electron microscopy

The wave nature of electrons is naturally exploited in transmission electron microscopy and holography [1,4,5,83,84].
Electron microscopes can vastly outperform optical microscopes in terms of spatial resolution because of the extremely
small wavelength (of the order of picometers) obtained in accelerated electron waves. This explains the tremendous success
of TEMs in exploring the atomic structure of matter.

On the one hand, in conventional TEM imaging and holography, a nearly-plane electronwave is produced to interact with
a thin sample. The local interaction of the electron wave with microscopic electromagnetic potentials of the specimen leads
to deformations of planar phase fronts and produces a structured transmitted wave. This wave contains information about
the atomic structure and electromagnetic properties of the sample. Naturally, the transmitted waves contain a multitude of
vortices, and the well-developed methods of singular optics [11,12] could provide a new insight and a toolbox for electron
microscopy [74,85,86].

On the other hand, recent progress in the deliberate creation of electron vortex beams [76–78] allows one to employ
incident structured electrons and make use of the new OAM degrees of freedom.

Actually, free-space vortex electron states by themselves offer unique opportunities of studying fundamental quantum-
mechanical phenomena. In particular, interactions with external magnetic fields and structures bring about a number of
fundamental effects involving vortices [87–90]. Recent TEM experiments for the first time demonstrated free-electron
Landau states (previously hidden in condensed-matter systems) and their fine internal dynamics [91], as well as the
interaction of electron waves with approximatemagnetic monopoles [92] (previously only considered theoretically).

Most importantly, incident vortex electrons interacting with a specimen in a TEM can unveil new information about
the sample or increase the resolution of the microscope [93]. In particular, recent experiments with electron vortex beams
demonstrated their role in chiral energy-loss spectroscopy and magnetic dichroism [77,94–100]. This is in sharp contrast to
optics, where probing magnetic dichroism and chirality involve only polarization (spin) degrees of freedom of light and
are mostly insensitive to vortices [101–104]. Moreover, focusing free-electron vortices makes them comparable in size and
parameters with orbitals in atoms [100]. This opens a way for magnetic mapping with atomic resolution [105–107].

1.6. High-energy perspective: scattering and radiation

Vortex electrons can also contribute to the study of fundamental interaction phenomena besides electron microscopy.
Two directions which can be pursued with current technology are: (i) the interaction of vortex electrons with intense laser
fields [108,109] and (ii) radiation processes with vortex electrons (e.g., the Vavilov–Cherenkov and transition radiations),
which were predicted to depart from their usual expressions [110–113]. For instance, vortex electrons (carrying large OAM
and magnetic moment) can reveal the magnetic-moment contribution to the transition radiation, which has never been
observed before.
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Even more exciting is the possibility of bringing vortex states in quantum-particle collisions [114,115]. In all collider-like
settings realized thus far, the colliding particles (electrons, positrons, or hadrons) behave as semiclassical Gaussian-like
wavepackets, and their scattering processes can be safely calculated in terms of plane waves. Collisions of vortex particles
involve a completely new degree of freedom: the intrinsic OAM. Therefore, in addition to the kinematical distributions and
polarization dependences, one can study dependences of the scattering cross-sections on the OAM of the incoming particles.
This possibility is particularly tantalizing in hadronic physics, in the context of the proton spin puzzle [116]. Experimental
data show that a significant part of the proton spin comes from the orbital angular momentum of the quarks and gluons, but
its exact contribution, as well as the whole issue of the SAM–OAM separation, remains under hot debate [117–119]. Vortex
electrons can serve as a new OAM-sensitive probe in this problem.

Recent theoretical investigations brought several examples of quantities which have been inaccessible so far, but which
could be revealed in vortex–particle collisions [120–124]. In particular, by scattering vortex electrons on a counterprop-
agating particle and observing the interference fringes in their joint angular distribution, one can directly probe its OAM
state [121]. This phenomenon can be employed to probe the proton spin structure. On the experimental side, major
challenges still need to be overcome, such as the acceleration of vortex electrons to higher energies and focusing them
as tightly as possible onto the protons. The generation and acceleration of vortex protons is another future milestone to be
achieved experimentally.

1.7. About this review

The present paper aims to provide the first comprehensive review of the theory and applications of free-electron vortex
states carrying OAM. The paper is organized as follows. This Introduction provides a pedagogical and historical overview of
wave vortices and vortex OAM in classical and quantum waves. The mostly-theoretical Section 2 describes basic physical
properties of free-electron vortex states: their wave functions, currents, AM properties, magnetic moment, evolution in
external electric and magnetic fields, etc. Section 3 reviews the most important TEM experiments and proposals involving
electron vortices: production methods, OAM measurements, elastic and inelastic interaction with matter, and transfer of
mechanical angular momentum. Several applications and future prospects are also discussed. Readers interested in the
mostly-experimental TEMpart can skip Section 2 and read Section 3 right after the Introduction. Section 4 describes themain
problems involving vortex electrons in high-energy physics: relativistic effects and collisions of vortex particles. Section 5
explains peculiarities of the radiation processes (Vavilov–Cherenkov and transition radiation) with vortex electrons. Finally,
a brief outlook of future perspectives concludes the review.

For the reader’s convenience, in the Appendix (Tables 2 and 3) we summarize the main abbreviations, conventions,
and notations used in this paper. Also, the following conventions are used in figures throughout the review. Intensity
(i.e., probability-density) distributions are mostly shown using 2D grayscale (or monochrome) plots, in arbitrary units, with
brighter areas corresponding to higher intensities [as, e.g., in Figs. 1 and 2(a)]. The phase distributions are shown using
rainbow colors, as in Fig. 2(b). Similarly, rainbow-coloredwave vectors [e.g., Fig. 5(a)] indicatemutual phases of planewaves
in the Fourier spectrum of the field. We also use combined intensity-phase (brightness-color) representations of complex
wave functions [13], as in Figs. 2(c) and 3. Note also that in most theoretical figures the propagation z-axis is horizontal for
the sake of convenience, while it is vertical in schemes related to electron-microscopy experiments, corresponding to the
actual TEM setup.

2. Basic properties of electron vortex states

2.1. Plane waves, wave packets, beams

As other quantumparticles, electrons share bothwave and particle properties.We start with the simplest non-relativistic
description of a scalar electron (i.e., without spin) in free space (i.e., without external fields), which is based on the
Schrödinger wave equation [2,3]:

ih̄
∂ψ

∂t
+

h̄2

2me
∇

2ψ = 0. (2.1)

Here ψ(r, t) is the wave function, and me is the electron mass. Most of the analysis below can be applied to any quantum
particle described by the Schrödinger equation.

The wave properties of the electron reveal themselves in the plane wave solution of the Schrödinger equation:

ψ = a exp
[
ih̄−1(p · r − E t)

]
, (2.2)

where a is a constant amplitude, p is the wave momentum, and E is the electron energy, which satisfy E = p2/2me. Plane
waves (2.2) have well-defined momentum, but they are delocalized in space, Fig. 4. Therefore, plane-wave solutions (2.2)
cannot be normalized and cannot correspond to physical particles.

To describe localized electron states, one has to consider continuous superpositions of multiple plane waves (2.2) with
different momenta p, which produce an uncertainty in the momentum, δp, and the corresponding finite uncertainty in the
electron coordinate [2,3]. To model localized electrons, usually Gaussian distributions in both momentum and coordinate
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Fig. 4. Schematic pictures of a plane wave, a wavepacket, and a wave beam in both real- andmomentum-space representations. The real-space probability
density distributions are schematically shown in yellow, while the phase fronts are shown in cyan, and azimuthal symmetry about the propagation z-axis
is implied. Assuming the paraxial approximation pz ≃ p, p⊥ ≪ p, the characteristic dimensions of the real- and momentum-space distributions satisfy the
uncertainty relations l ∼ h̄/δp and w ∼ h̄/δp⊥ (see explanations in the text).

spaces are implied, which satisfy the Heisenberg uncertainty. Let the electron move along the z-axis with the mean
momentum ⟨p⟩ = p0 = p0z̄ (hereafter, the overbar stands for the unit vector in the corresponding direction), and its
mean coordinate at t = 0 is ⟨r(0)⟩ = r0 = 0. Assuming the azimuthal symmetry of the electron’s state about the z-axis, we
can write the Gaussian amplitude envelope of the wave function, a(r, t), as

a(r, 0) ∝ exp
(

−
r2
⊥

w2 −
z2

l2

)
. (2.3)

Here r⊥ = (x, y) are the transverse coordinates, while w and l are the width and length of the distribution, Fig. 4. If the
electron is well-localized inmomentum space, i.e., has small momentum uncertainty |δp| ≪ p0, then the spatial dimensions
of its probability density distribution are large as compared with the de Broglie wavelength: w, l ≫ h̄/p0. Under these
conditions, the phase of the electron wave function approximately follows the plane-wave form (2.2) with p = p0 and the
distribution (2.3) propagates as a wavepacket with velocity v = p0/me, i.e., one can substitute z → (z − vt) in Eq. (2.3) at
t ̸= 0.

The above consideration is valid only in the leading-order approximation in |δp|/p0 and neglects the diffraction and
dispersion effects. These include a slow spread of both the transverse and longitudinal dimensions of the wavepacket,
i.e., variations of w and l during the electron motion, as well as deformations of the phase front as compared to the plane
wave [3,8].

Note that a small uncertainty in the transverse momentum components, δp⊥, represent variations in the direction of the
momentum, while the longitudinal uncertainty δp∥ ≃ δp z̄ represents variations in the absolute value of the momentum,
which is related to the energy uncertainty: δE ≃ p δp/me. Correspondingly, the w and l dimensions of the wavepackets are
linked to these uncertainties in the direction of propagation and energy: w ∼ h̄/|δp⊥| and l ∼ h̄/δp (see Fig. 4). The latter
relation can be written in terms of the temporal duration τ of the wavepacket, τ = l/v, and energy uncertainty: τ ∼ h̄/δE.

In many problems, only the transverse localization of the electron is important. Then, one can consider states delocalized
in the longitudinal dimension, l = ∞, and hencemonoenergetic: δp = δE = 0. Such states are calledwave beams, Fig. 4 [125].
It should be noticed, however, that physical beams of electrons (e.g., in electron microscopes) consist of many wavepackets
propagating one after another and having some finite energy uncertainty δE.1 Still, dealing with monoenergetic beam
solutions significantly simplifies the analysis of the problem and allows one to describe most of the phenomena related
to the transverse structure of the electron wave function. Therefore, in most cases below, we will consider monoenergetic
electron beams in the paraxial approximation (i.e., |δp⊥| ≪ p0), analyzing the effects related to the energy uncertainty
separately.

1 This is a very accurate description for electrons in a TEM, except possibly for the source crossover region where electron–electron interaction can
become non-negligible, especially at very high (pulsed) beam currents.
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We also note that the localization or delocalization of electron states is directly related to the continuous or discrete
spectrum of the corresponding quantum parameters (in the case of a complete orthogonal set of modes). The plane
waves (2.2) are delocalized in all three dimensions, and therefore are only described by three components of p with
continuous spectra. Wavepackets are localized in three dimensions and, correspondingly, can be characterized by three
discrete quantum numbers. Gaussian wavepackets (2.3) correspond to the lowest-level state; higher-order states can be
described, e.g., by Hermite–Gaussian modes [125]. In turn, wave beams (or spherical modes [2,3]) are localized with respect
to two dimensions and are described by two discrete quantum numbers related to the transverse modal structure of the
beam [57,125].

2.2. Vortex beams: Solutions of the Schrödinger equation in cylindrical coordinates

The solutions of the Schrödinger equation (2.1) can be decomposed via a complete set of orthogonal free-space modes.
There are different sets of such modes, and the convenience of using one or another set is determined by symmetries and
other conditions in each particular problem. Furthermore, solving the Schrödinger equation in different representations
and coordinates naturally leads to different modes. For example, plane waves (2.2) represent a complete set of orthogonal
modes convenient in the momentum representation. These modes are delocalized and non-normalizable. In the coordinate
representation, using Cartesian coordinates, one can obtain Hermite–Gaussian modes with respect to the three dimensions.
However, these modes are not isotropic and are essentially attached to the directions of the Cartesian axes. Using spherical
coordinates brings about spherical modes, widely used in atomic physics [3]. These modes are suitable for localized electrons
in atoms rather than for electrons freely moving in the longitudinal z-direction in electron microscopes. Combining the
z-direction of the electron motion with the isotropy of the free-space problem with respect to the transverse
(x, y)-coordinates naturally results in the choice of cylindrical coordinates (r, ϕ, z) [75]. The cylindrical solutions that we
describe below allow a convenient analytical description and offer a good approximation to the electron states produced in
electron microscopes.

2.2.1. Bessel beams
We seek monoenergetic beam eigenmodes of the Schrödinger equation (2.1), which correspond to the electron propa-

gating along the z-axis. After substitution ψ(r, t) → ψ(r)exp
(
−ih̄−1E t

)
, Eq. (2.1) in cylindrical coordinates takes the form:

−
h̄2

2me

[
1
r
∂

∂r

(
r
∂

∂r

)
+

1
r2
∂2

∂ϕ2 +
∂2

∂z2

]
ψ = E ψ. (2.4)

The axially-symmetric solutions of Eq. (2.4) are [87]:

ψB
ℓ ∝ J|ℓ|(κr) exp[i(ℓϕ + kzz)] , (2.5)

where Jℓ is the Bessel function of the first kind, ℓ = 0,±1,±2, . . . is an integer number (azimuthal quantum number),
kz = pz/h̄ is the longitudinal wave number, and κ = p⊥/h̄ is the transverse (radial) wave number. Solutions (2.5) satisfy
Eq. (2.4) provided that the following dispersion relation is fulfilled:

E =
h̄2

2me
k2 =

h̄2

2me

(
k2z + κ2) , (2.6)

where k = p/h̄.
The cylindrically-symmetric modes (2.5) and (2.6) are called Bessel beams [87,126–129]. They have a cylindrical proba-

bility density distribution, independent of z, i.e., without diffraction. Most importantly, the azimuthal quantum number ℓ
(also called the topological charge or vortex charge) determines the vortex phase structure in Bessel beams and their orbital
angular momentum (OAM) properties [55,60,75], which are discussed in Section 2.3 below. The zero-order (ℓ = 0) beam has
no vortex andmaximal probability density on the axis, i.e., at r = 0. The higher-order (ℓ ̸= 0)modes are characterized by the
quantum vortex exp(iℓϕ), spiral phase structure, azimuthal probability current, and the probability density vanishing on the
axis: ψB

ℓ

⏐⏐
r=0 = 0. Fig. 5 shows the transverse probability density and current distributions in Bessel beams (2.5) and (2.6).

The Bessel beams represent the simplest theoretical example of vortex beams. Despite the probability density of Bessel
modes decaying as |ψB

ℓ | ∼ 1/r when r → ∞, these solutions are not properly localized in the transverse dimensions. Indeed,
the integral

∫
∞

0

⏐⏐ψB
ℓ

⏐⏐2r dr diverges, and the function cannot be normalized with respect to the transverse dimensions.2 The
delocalized nature of Bessel beams is reflected in the absence of diffraction and a single transverse quantum number ℓ
(instead of two transverse quantum indices in the properly-localized modes).

2 This means infinite number of particles or energy per unit z-length in the Bessel beams. Therefore, the exact solutions (2.5) cannot be generated
in practice, but a good approximation to this solution can be produced in experiments for finite radial apertures r < rmax and propagation distances
|z| < zmax [127–129].
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Fig. 5. Bessel-beam solutions (2.5) and (2.6) of the Schrödinger equation. (a) The momentum spectrum consists of conically-distributed wave vectors with
fixed p⊥ = h̄κ and pz = h̄kz , i.e., forms a circle. The mean electron momentum is ⟨p⟩ = h̄ kz z̄. The mutual phases (color-coded) of the plane waves in the
spectrum increase by 2πℓ around the circle. This forms a vortex of topological charge ℓ (ℓ = 2 here) and determines the intrinsic orbital angular momentum
(OAM) of the electron: ⟨L⟩ = h̄ ℓ z̄, Eq. (2.17). (b) Transverse probability density ρ (grayscale plots) and current j (circular arrows) distributions in the Bessel
beams with different values of ℓ, Eq. (2.13). Here, the radii and thicknesses of the current circles correspond to the positions and values of the maxima
(normalized in each panel independently) of the quantity r jϕ that determines the contribution to the OAM, Eq. (2.16).

In terms of the plane-wave spectrum, the Bessel beam (2.5) and (2.6) represents a superposition of plane waves with
conically-distributed momenta: p∥ = p0 = pz z̄ and |p⊥| ≡ p⊥ = h̄κ , which can be characterized by the polar angle θ0,
sin θ0 = κ/k, Fig. 5(a). This corresponds to the Fourier spectrum:

ψ̃B
ℓ (k⊥) ∝ δ(k⊥ − κ) exp(iℓφ), ψB

ℓ (r) =

∫
ψ̃B
ℓ (k⊥) eik·rd2k⊥, (2.7)

where k = p/h̄ is a wave vector with transverse components k⊥ and azimuthal angle φ in k-space, and δ is the Dirac
delta-function. The delocalization of the Bessel modes and absence of diffraction is a direct consequence of the fact that the
wave vectors are distributed only azimuthally, while the radial transverse component k⊥ is fixed.

2.2.2. Laguerre–Gaussian beams
To construct vortex beams properly localized (square-integrable) in the transverse dimensions, one can use at least two

alternative ways. First, considering superpositions of multiple Bessel beams with the same fixed energy E but different
wave numbers kz and κ (i.e., introducing some uncertainty δκ in the radial momentum component), results in a general
integral form of such modes [130]. However, to deal with analytical solutions, here we follow the second, simplified way.
Namely, we make use of the paraxial approximation: p⊥ ≪ p and p∥ ≃ p z̄ (kz ≃ k). In the first-order approximation in
p⊥/p = k⊥/k ≪ 1, the Schrödinger equation (2.1) or (2.4) can be simplified using the substitution ∂2/∂z2 ≃ −k2 +2ik ∂/∂z.
In doing so, it takes the form of the so-called paraxial wave equation, widely used in optics [125]:

2ik
∂

∂z
+

[
1
r
∂

∂r

(
r
∂

∂r

)
+

1
r2
∂2

∂ϕ2

]
ψ = 0. (2.8)

Interestingly, this equation has the form of a Schrödinger-like equation with the time-like coordinate z and two space-like
transverse coordinates (r, ϕ).

The solutions of Eq. (2.8) in cylindrical coordinates are the Laguerre–Gaussian (LG) beams [27,55,60,87,125]:

ψ LG
ℓ,n ∝

(
r

w(z)

)|ℓ|

L|ℓ|
n

(
2r2

w2(z)

)
exp

(
−

r2

w2(z)
+ ik

r2

2R(z)

)
ei(ℓϕ+kz)e−i(2n+|ℓ|+1)ζ (z), (2.9)

where L|ℓ|
n are the generalized Laguerre polynomials, n = 0, 1, 2, . . . is the radial quantum number, w(z) = w0

√
1 + z2/z2R

is the beam width, which slowly varies with z due to diffraction, R(z) = z
(
1 + z2R/z

2
)
is the radius of curvature of the

wavefronts, and ζ (z) = arctan(z/zR). Here, the characteristic transverse and longitudinal scales of the beam are the waist
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Fig. 6. Same as in Fig. 5 but for the Laguerre–Gaussian (LG) beams (2.9)–(2.11) and (2.14). The transverse real-space distributions in panels (b) are shown
for the beam-waist plane z = 0. The Bessel and LG beams have similar azimuthal and OAM properties. However, the LG beams are also characterized by
the momentum spectrum with radial distribution of the wave vectors (a). This provides the radial confinement of the electron, which is characterized by
the additional radial quantum number n. In this manner, (n + 1) is the number of radial maxima (rings) in the intensity distributions (b).

w0 (the width in the focal plane z = 0) and the Rayleigh diffraction length zR [125]:

w0 ≫ 2π/k, zR = kw2
0/2 ≫ w0. (2.10)

The last exponential factor in Eq. (2.9) describes the Gouy phase [125,131–133]; it yields an additional phase difference

ΦG = (2n + |ℓ| + 1) π (2.11)

upon the beam propagation through its focal point from z/zR ≪ −1 to z/zR ≫ 1. The Gouy phase is closely related to the
transverse confinement of themodes [133,134]. The dispersion relation for the LG beams is simply E = h̄2k2/2me [cf. Eq (2.6)],
while the small transverse wave-vector components are taken into account in the z-dependent diffraction terms.

The Laguerre–Gaussian beams (2.9)–(2.11) are also vortex beams, characterized by the azimuthal quantum number ℓ
and factor exp(iℓϕ). However, in contrast to Bessel beams (2.5) and (2.6), they are properly localized and normalizable in the
two transverse dimensions. This is because the Fourier spectrum of LG beams is smoothly distributed over different radial
wave-vector components k⊥, Fig. 6(a) [cf. Eq. (2.7) and Fig. 5(a)]. This radial uncertainty of the momentum is related to the
beam waist as δp⊥ ∼ h̄/w0. The quantum number n corresponds to the radial localization of the LG modes and determines
the number of radial maxima in their probability density distributions (see Fig. 6).

Fig. 6(b) shows the transverse spatial distributions of the probability densities and currents in the LG beamswith different
values of quantum numbers (ℓ, n). The zeroth-order mode ψ LG

0,0 is the standard Gaussian beam, which can be regarded as an
infinitely-long Gaussian wavepacket [cf. Eqs. (2.2) and (2.3)] with l → ∞ and δE = δp = 0. Gaussian beams or wavepackets
are often implied in quantum models of free electrons, because they do not contain any intrinsic structures and degrees of
freedom. In contrast to that, higher-order modes with (ℓ, n) ̸= (0, 0) exhibit a variety of structures related to the internal
spatial degrees of freedom of localized electrons. In general, LG beams with different (ℓ, n) or Bessel beams with different
ℓ, constitute a complete set of orthogonal monoenergetic modes for the free-space Schrödinger equation (the LG beams being
restricted by the paraxial approximation). Therefore, any free-electron state can be represented as a superposition of these
modes. Vortex beams are the most convenient modes when one deals with monoenergetic electrons with a well-defined



12 K.Y. Bliokh et al. / Physics Reports 690 (2017) 1–70

propagation direction, and some sort of azimuthal (cylindrical) symmetry in the problem. Importantly, the latter symmetry
naturally involves the angular momentum properties with respect to the propagation direction.

2.3. Probability current and orbital angular momentum

We now describe the main observable characteristics of electron vortex beams. First, the probability density and
probability current density in quantum electron states are determined by [2,3]:

ρ = |ψ |
2, j =

1
me

(
ψ |p̂|ψ

)
=

h̄
me

Im
(
ψ∗

∇ψ
)
. (2.12)

Here, p̂ = −ih̄∇ is the canonical momentum operator, and we use the notation (ψ |. . .|ψ) ≡ Re
(
ψ† . . . ψ

)
for the local

expectation value of an operator.
Substituting the wave function (2.5) into Eq. (2.12), we obtain the probability density and current in the Bessel beams

(see Fig. 5):

ρB
|ℓ|(r) ∝

⏐⏐J|ℓ|(κr)⏐⏐2, jBℓ(r, ϕ) =
h̄
me

(
ℓ

r
ϕ̄ + kz z̄

)
ρB

|ℓ|(r), (2.13)

where ϕ̄ is the unit vector of the azimuthal coordinate. The ℓ-dependent azimuthal component of the probability current
(2.13), together with its longitudinal component, result in a spiraling current, Fig. 3. This is a common feature of all vortex
beams [27,55,60,70,75,87].

For LG beams (2.9), the probability current density also has a radial component related to diffraction. The probability
density and azimuthal ℓ-dependent current component in the LG beams are (see Fig. 6):

ρLG
|ℓ|,n(r, z) ∝

(
r2

w2(z)

)|ℓ|⏐⏐⏐⏐L|ℓ|
n

(
2r2

w2(z)

)⏐⏐⏐⏐2exp(−
2r2

w2(z)

)
, jLGℓ,nϕ(r, z) = ℓ

h̄
mer

ρLG
|ℓ|,n(r, z). (2.14)

The azimuthal probability current in vortex beams is directly related to the z-directed orbital angular momentum of such
states. The electron OAM can be defined either as the expectation value of the OAM operator or via the circulation of the
probability current. Normalizing this per electron, we have:

⟨L⟩ =
⟨ψ |L̂|ψ⟩

⟨ψ |ψ⟩
=

me
∫
r × j d3r∫
ρ d3r

, (2.15)

where L̂ = r × p̂ is the canonical OAM operator [2,3], and the inner product involves the volume integral
∫
. . . d3r. The

definition (2.15) is suitable for wavepackets localized in three dimensions. For 2D-localized beams one should use integrals
over the two transverse dimensions:

∫
. . . d3r →

∫
. . . d2r⊥. This means that for wave beams we deal with linear densities

per unit z-length and normalize quantities per electron per unit z-length [55,60]. In this manner, the longitudinal component
of the OAM in a beam becomes in cylindrical coordinates:

⟨Lz⟩ =
⟨ψ |L̂z |ψ⟩

⟨ψ |ψ⟩
=

me
∫
r jϕd2r⊥∫
ρ d2r⊥

, (2.16)

where L̂z = ih̄∂/∂ϕ.
For any vortex beam with ψℓ ∝ exp(iℓϕ) and jϕ = ℓ (h̄/mer) ρ (including the Bessel and LG beams), Eq. (2.15) results in

[75,87]:

⟨Lz⟩ = h̄ ℓ. (2.17)

Thus, an electron in a vortex-beam state carries a well-defined, longitudinal OAM, which is determined by the azimuthal quantum
number ℓ. Furthermore, vorticesψℓ are eigenmodes of the OAM operator L̂z : L̂zψℓ = ℓψℓ. Notably, the OAM (2.17) is intrinsic,
i.e., independent of the choice of the coordinate origin [65,67]. Although the radius vector r is present in the canonical OAM
operator L̂ and in the local OAM density under the integral in Eq. (2.15), it disappears in the final expectation value ⟨Lz⟩.

Note that the extrinsic OAM can be calculated as [65]:

⟨Lext⟩ = ⟨r⟩ × ⟨p⟩. (2.18)

Here

⟨r⟩ =
⟨ψ |r|ψ⟩

⟨ψ |ψ⟩
=

∫
rρ d3r∫
ρ d3r

(2.19)

is the electron centroid, whereas

⟨p⟩ =
⟨ψ |p̂|ψ⟩

⟨ψ |ψ⟩
=

me
∫
j d3r∫

ρ d3r
(2.20)
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Fig. 7. Geometrical-optics rays, streamlines of the probability current, and centroid trajectory in a Bessel beam with ℓ = 2 (see Figs. 3 and 5). The rays
form a two-parameter family of straight lines which are tangent to a cylindrical surface (here we show rays touching the cylinder at a given z and different
azimuthal angles ϕ) [70]. The directions and color-coded phases of the rays correspond to the wave vectors k in the beam spectrum, Fig. 5(a). In contrast,
the streamlines of the probability-current j, Eqs. (2.12) and (2.13), (Bohmian trajectories) are curvilinear [8,68]. For Bessel beams, these are spirals lying on
the cylindrical surface [70]. The azimuthal component of this current generates the OAM of the beam, Eqs. (2.15)–(2.17). Finally, the centroid ⟨r⟩, Eq. (2.19),
obviously coincides with the beam axis and corresponds to the rectilinear motion of the classical electron.

is the expectation value of the electron momentum. For cylindrical vortex beams, ⟨p⟩ ∥ z̄ and ⟨r⊥⟩ = 0, so that the
longitudinal component of the extrinsic OAM (2.18) vanishes: ⟨Lextz ⟩ = 0.

The longitudinal intrinsic OAMof free electrons is a remarkable and somewhat counterintuitive quantumproperty. Based
on classical-mechanics intuition, one can expect that the angular momentum is produced by a rotational (i.e., curvilinear)
motion. However, free-space electrons, in the absence of any external forces, must propagate along straight rectilinear
trajectories. This apparent contradiction is removed if we carefully distinguish local and integral properties. For classical
point particles, which cannot have any internal structure, there are no intrinsic properties. In contrast, quantum (wave)
beams or wavepackets inevitably have finite sizes and inhomogeneous distributions of local densities. In particular, the
local probability current density with the azimuthal component [see Eqs. (2.13) and (2.14)] implies spiraling streamlines,
i.e., spiral Bohmian trajectories rBohm(t) of electrons [8,68], Fig. 7. At the same time, the quantum–classical correspondence
(Ehrenfest theorem) requires only the trajectory of the electron’s averaged position (centroid) to be rectilinear [3,8]. In
agreement with this, ⟨r⊥⟩ = 0, and the electron centroid coincides with the rectilinear beam axis. In the general case,
the centroid (2.19) always follows a rectilinear trajectory for any localized quantum state of free-space electrons. Thus,
internal spiraling streamlines of the probability current density generate the intrinsic OAM in free-electron vortex states,
while electron’s center of gravity always follows a rectilinear trajectory. Note also that vortex beams are superpositions of
multiple plane waves, and therefore are solutions of free-space wave (Schrödinger) equation. In terms of geometrical optics,
these plane waves determine a family of rectilinear rays which are tangent to the rotationally-symmetric (e.g., cylindrical)
surface, associatedwith themaximumprobability density in the vortex beam [70,78].3 However, the superposition principle
is valid for the wave functions but not for the probability currents, which are quadratic forms. Therefore, streamlines of the
probability current of a superposition of plane waves are curvilinear in the generic case [8,70]. Fig. 7 shows an example of
rays, current streamlines, and centroid trajectory in a vortex Bessel beam.

Notably, non-relativistic scalar electrons in a vortex-beam state somewhat resemble ‘‘massless particles with spin ℓ’’.
Indeed, the spin angular momentum (SAM) of massless relativistic particles is aligned with their momentum, so that
helicity is a well-defined quantum number. Vortex electrons carry similar OAMwith well-defined longitudinal component,
i.e., ‘‘orbital helicity’’. However, in contrast to the real SAM of the electron, which is limited by h̄/2, the intrinsic OAM can
take on arbitrarily large values of h̄ℓ. As such, the OAM of electron vortex states can have important consequences in the
dynamics of electrons and their interactions with external fields, atoms, and other particles.

2.4. Basic ways of generating electron vortex beams

After introducing the vortex-beam solutions of the Schrödinger equation, it is important to discuss the basic methods for
generating such states with accelerated electrons in electron microscopes. Here we only briefly describe the main concepts,
while a more detailed description of experimental techniques is given in Section 3.2. Using analogies and differences of
electron optics as compared to light optics, three ways of generating electron vortex beams were put forward in the original
theoretical work [75].

3 This caustic surface does not exactly correspond to the maximum probability density but rather to the inflection points where the probability density
is close to the maximum.
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Fig. 8. Schematics of basic methods for the generation of electron vortex beams: (a) a spiral phase plate with a 2πℓ phase-shift increment around its center
(here ℓ = 1); (b) a diffraction grating (hologram) with a fork-like edge dislocation of order ℓ0 (here ℓ0 = 1); and (c) a magnetic monopole of dimensionless
charge αm (here αm = 2). See also explanations in the text.

2.4.1. Spiral phase plate
The first method is a straightforward analogy of spiral phase plates used for photons in different frequency ranges

[30,135,136]. When free electrons move through a solid-state plate, they acquire an additional phase ∆Φ as compared
with free-space propagation [1,5]. This phase is proportional to the plate thickness d: ∆Φ = ξd, and is analogous to the
phase delay of an optical wave propagating through a dielectric plate. Therefore, a plate with spiral thickness varying with
the azimuthal angle, d = ζϕ, will create the corresponding spiral phase in the transmitted wave: ∆Φ = ξζϕ. Thus, if the
incident wave were a plane wave, the transmitted wave would carry a vortex exp(iξζϕ) with topological charge ℓ = ξζ , see
Fig. 8(a). This idea was used in the first experiment [76] demonstrating the production of a free-electron vortex in a TEM, by
employing a spiral-thickness-like region in a stack of graphite flakes. Since the phase change at the step was not an integer
times 2π in that experiment, the output electron wave possessed a non-integer vortex [137,138], which can be regarded
as a superposition of several vortex states with different quantum numbers ℓ [139]. Later, experiments with accurate spiral
phase plates producing electron vortex beams with integer OAM were reported [140,141] (see Section 3.2.1 below).

2.4.2. Diffraction grating with a fork dislocation
The secondway of generating electron vortex states also represents a TEM adoption of the analogous optical method. The

vortex structure in awave field represents a screw dislocation of the phase front [10–12]. Considering the diffraction of a basic
Gaussian-like beamona diffraction gratingwith an edge dislocation (‘‘fork’’), the edge dislocation in the grating produces screw
dislocations in the diffracted beams [28,29], see Fig. 8(b). If the dislocation in the grating is of order ℓ0, then the Nth order of
diffraction transforms the incident Gaussian-like beam (ℓ = 0) into a vortex beamwith ℓ = Nℓ0. This method was first used
for the efficient generation of high-quality electron vortex beams with integer ℓ in [77] (for the ℓ0 = 1 grating dislocation).
Soon after, this method was extended up to ℓ0 = 25 in [78]. Notably, this experiment demonstrated electron vortex beams
with topological charges up to ℓ = 100 (in the N = 4 diffraction order). Thus, this technique allows the generation of
quantum electron states with an intrinsic OAM of hundreds and even thousands of h̄ [142], which is impossible with spin
angular momentum. For details and the state-of-the-art holographic techniques for the production of electron vortex beams
see Section 3.2.2.

2.4.3. Magnetic monopole
Finally, the third fundamentalmethod of generating electron vortices has no straightforward optical counterpart. Namely,

it exploits the interaction of electrons with external magnetic fields and vector potentials. Indeed, in contrast to photons,
electrons are charged particles, and this opens a route to interesting interactions of electron vortices with magnetic fields
and structures (various examples of these are described below). Quantum phenomena of electron-field interactions appear
in the electron phase and involve the vector potentialA(r). A famous example is the Aharonov–Bohm effect [1,19], intimately
related to the so-called Dirac phase [18]

ΦD =
e
h̄c

∫
C
A(r) · dr (2.21)
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for an electron moving along a contour C in the presence of the vector potential. Hereafter, e = −|e| is the electron charge
and c is the speed of light.

Importantly, the vector potential of a magnetic flux line (an infinitely thin solenoid) has the form of a vortex: A(r) =

(h̄cαm/er)ϕ̄, whereαm is the dimensionlessmagnetic-flux strength (αm =1 corresponding to twomagnetic-flux quanta) [19].
This hints that the Dirac phase (2.21) from a magnetic flux line can produce a vortex phase exp(iℓϕ) with the quantum
number ℓ = αm. To produce such vortex, one has to consider a transition of an electron without vortex (ℓ = 0) in the region
without magnetic flux (αm = 0) to the region with the flux αm ̸= 0. Notably, the end of the flux line represents nothing but a
magnetic monopole of strength αm [18,143]. Thus, scattering of an electron wave by a magnetic monopole generates an electron
vortex of strength ℓ = αm [5,75], Fig. 8(c).4 Recently, this was demonstrated experimentally by using a thin magnetic needle
with a sharp end, approximating a magnetic flux line with a monopole [92,144].

Generation of an electron vortex by a magnetic monopole can be understood in terms of angular-momentum conser-
vation. For simplicity, let us consider a classical point electron moving in a magnetic-monopole field. Although it might
seem that the monopole is a spherically-symmetric object, the usual angular momentum of the electron, L = r × p, is
not conserved. Indeed, the Lorentz force from the monopole is not central and it originates from the non-symmetric vector
potential. However, there exists another integral of motion, the generalized angular momentum [143]:

L′
= L − h̄

αm

2
r̄. (2.22)

Here r̄ is the unit radius vector, and we assume that the monopole is located at the origin. The z-component of L′ must be
conserved in the electron scattering by themonopole.When the electron comes from z → −∞ and the scattered electron is
observed at z → +∞, the radius-vector r̄ changes from−z̄ to+z̄, so that the electron OAMmust change as Loutz = Linz + h̄αm.

For classical electrons, this additional OAM can be explained by the Lorentz force from the monopole. The monopole
magnetic field can be written as B = (h̄cαm/2e) r/|r|3. In the eikonal approximation, a point-like electron approximately
follows a straight-line trajectory passing at the radial distance r0 from the monopole. Then, the Lorentz force from the
monopole deflects the electron, so that it gains a transverse (azimuthal) momentum pϕ = h̄αm/r0. As a result, the electron
acquires the OAM Lz = pϕr0 = h̄αm.

This shift of the electron’s angular momentum in the presence of a magnetic flux appears in both classical-particle and
quantum-wave considerations [87,145], providedwe consider the kinetic rather than canonical OAM (see Section 2.6 below).

2.5. Vortex electrons in electric and magnetic fields. Basic aspects

Electrons are charged particles that interact with electromagnetic fields. The classical equations of motion of a point
electron in an external electric and magnetic fields are [146]:

ṗ = eE +
e
c
ṙ × B, ṙ =

p
me
. (2.23)

Here the overdot stands for the time derivative, r and p are the coordinates and momentum of the electron, while E and B
are the electric and magnetic fields.

Quantum wavepacket or beam states of electrons have finite dimensions and therefore can possess internal properties,
in addition to the electric charge e. Finite-size electron states are characterized by the distributions of the charge density
ρe = eρ and electric current density je = e j. Most importantly, the coiling current density in vortex electron states acts as a
solenoid and generates amagnetic moment. The magnetic moment of a localized electron state can be defined as [146]:

M =
1
2c

∫
r × je d3r∫
ρ d3r

=
e

2mec
⟨L⟩. (2.24)

In particular, the longitudinal z-directed magnetic moment of electron vortex beams (per unit z-length) in free space equals
[75,147]:

Mz =
eh̄

2mec
ℓ ≡ −µBℓ, (2.25)

where µB = |e|h̄/(2mec) is the Bohr magneton.
Thus, vortex electrons carry a longitudinal magnetic moment (2.25) proportional to the quantized OAM and anti-parallel

to it. Note that this magnetic moment corresponds to the gyromagnetic ratio with g-factor g = 1, while g = 2 for the
magnetic moment generated by the spin [3,148]. The presence of the magnetic moment should modify the equations of
motion (2.23).

We first consider the interaction of the magnetic moment or intrinsic OAM with an external electric field E (we set
B = 0 here); this can result in a spin–orbit-type interaction. In fact, since the intrinsic angular momentum has an orbital
origin in our case, this should rather be called orbit–orbit interaction between the intrinsic OAM (vortex) and extrinsic

4 Although in theoretical considerations it is convenient to consider the magnetic flux line (also called Dirac string) aligned with the propagation z-axis,
observable quantities are independent of its orientation and involve only the monopole charge αm .
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Fig. 9. (a) The orbital Hall effect of vortex electron states in an electric field E [75], Eqs. (2.26). Here, ⟨p0⟩ is the initial mean momentum of the electron.
Bended by the electric field, the trajectories of the centroids of the vortex beams or wavepackets experience transverse ℓ-dependent shifts of the order of
the de Broglie wavelength. (b) Cyclotron motion of a vortex electron in a uniform magnetic field B. The mean kinetic momentum ⟨p⟩ precesses about the
magnetic field with the cyclotron angular frequency Ωc , Eq. (2.28). At the same time, the kinetic OAM ⟨L⟩ of a vortex electron state precesses with the
Larmor frequencyΩL = Ωc/2, Eq. (2.29). Therefore, the initially-aligned momentum and OAM change their mutual direction during this evolution [75,89]
(see also Fig. 14).

OAM (trajectory) (see [51–53] for such effects in optical vortex beams). This interaction couples the intrinsic OAM ⟨L⟩ and
extrinsic trajectory parameters ⟨r⟩ and ⟨p⟩ in the equations of motion. To describe such semiclassical evolution, we consider
a localized (but sufficiently large) paraxial electronwavepacket and assume that the intrinsic OAMmaintains its form during
the wavepacket propagation, ⟨L⟩ = h̄ℓ⟨p⟩/p (|⟨p⟩| ≃ p). In this case, the ‘‘orbit-orbit interaction’’ becomes equivalent to that
of massless spinning particles with spin ℓ in an external scalar potential [149]. Using the Berry-connection formalism [150],
the semiclassical equations of motion take the form [75]:

⟨ṗ⟩ = eE, ⟨ṙ⟩ =
⟨p⟩

me
+ h̄ℓ

⟨ṗ⟩ × ⟨p⟩

p3
, (2.26)

⟨L̇⟩ = −
[eE × ⟨p⟩] × ⟨L⟩

p2
. (2.27)

The last term in Eq. (2.26) and Eq. (2.27) describe the mutual influence of the intrinsic OAM and the trajectory. It can
be readily shown that these equations are consistent with the assumed form ⟨L⟩ = h̄ℓ⟨p⟩/p, i.e., the ‘‘orbital helicity’’
⟨L⟩ · ⟨p⟩/p = const is an integral of motion of Eqs. (2.26) and (2.27). Eq. (2.27) is an analogue of the Bargmann–Michel–
Telegdi equation [151–153] for the precession of the intrinsic angular momentum in an external electric field. In turn, the
last term in Eq. (2.26) describes the OAM-dependent (ℓ-dependent) transverse transport of the electron, Fig. 9(a). This is
an analogue of the intrinsic spin Hall effect, known in condensed-matter physics [150,154], high-energy physics [149,155],
and optics (for photons) [66,156]. Here it should rather be called the orbital Hall effect. The typical value of the transverse
ℓ-dependent shift of the electron trajectory is h̄/p, i.e., the de Broglie wavelength of the electron [75]. Therefore, this effect is
extremely small, and practically unobservable for free electrons in electron microscopes. Note, however, that an analogous
orbital Hall effect has been successfully measured for optical vortex beams interacting with dielectric inhomogeneities [53],
because subwavelength accuracy is quite achievable in modern optics. Furthermore, a similar spin Hall effect of electrons in
condensed-matter systems results in the observable accumulation of opposite spin polarizations on the opposite edges of
the sample with an applied electric field [157]. Thus, the orbital Hall effect for vortex electrons, Eq. (2.26), could still play a
role, e.g., in condensed-matter phenomena [158,159].

Let us now consider the interaction of the intrinsic OAM with an external magnetic field B (we set E = 0 for simplicity).
One could expect that the interaction between the magnetic moment of the electron (2.24) and the external magnetic
field is described by a Zeeman-like energy ∆E = −M · B [75]. However, expression (2.17) for the intrinsic OAM and the
corresponding Eq. (2.25) for the magnetic moment are derived using the free-space vortex-beam solutions, i.e., without any
external fields. In the presence of external fields one has to find a solution of the corresponding Schrödinger equation, and
it will contain a self-consistent distribution of charges, currents, and fields, including their interactions [87]. As we show in
the Section 2.6, this drastically modifies the values of the electron OAM andmagnetic moment in the presence of a magnetic
field.

Moreover, in the presence of a magnetic field, the dynamical evolution of the electron is described by the kinetic
momentum ⟨p⟩ and ⟨L⟩. These quantities differ from their canonical counterparts, ⟨p⟩ and OAM ⟨L⟩, by the vector-
potential contribution [87] (such that kinetic and canonical quantities coincide in the absence of the vector potential).
Below we formally introduce kinetic characteristics, and here only make one important point. Namely, an electron in a
magnetic field cannot generally keep its intrinsic OAM parallel to its momentum, i.e., ⟨L⟩ ∥ ⟨p⟩, which was assumed in all
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solutions considered above [75]. Indeed, as follows from Eqs. (2.23), semiclassical electrons approximately follow cyclotron
trajectories, and the mean momentum evolves (at least in the classical limit h̄ → 0) as

⟨ṗ⟩ =
e

mec
⟨p⟩ × B. (2.28)

Thus, the momentum precesses around the magnetic-field direction with the cyclotron frequency Ωc = eB/(mec). At the
same time, the evolution of the intrinsic OAM ⟨L⟩ in the magnetic field is described by the Zeeman energy term and the
corresponding Larmor precession equation (Bargmann–Michel–Telegdi equation with g = 1 factor in a magnetic field) [3]:

⟨L̇⟩ =
e

2mec
⟨L⟩ × B. (2.29)

This means that the electron OAM precesses about the magnetic-field direction with the Larmor frequencyΩL = eB/(2mec).
Since the Larmor and cyclotron frequencies differ by a factor of two,Ωc = 2ΩL, the momentum ⟨p⟩ and OAM ⟨L⟩ cannot be
parallel in such evolution,with the exception of the case ⟨L⟩ ∥ ⟨p⟩ ∥ B, Fig. 9(b). Thismeans that the initial free-space formof
the electron vortex states, ⟨L⟩ = h̄ℓ ⟨p⟩/p, cannot survive in amagnetic field with a non-zero transverse component [75,89].

The two-frequency evolution of Eqs. (2.28) and (2.29) results in very interesting dynamics of vortex electrons in a
magnetic field which is considered in detail below. Note that the evolution of the SAM of the electron does not face such a
problem. Because of the g = 2 factor for spin, the frequency of its precession becomes twice the Larmor frequency, i.e., the
cyclotron one [3,151–153]. Therefore, in contrast to the OAM, the SAM precession is synchronized with the momentum
evolution, and the helicity (projection of the spin onto the momentum direction) is conserved.

2.6. Longitudinal magnetic field. Landau states

We now provide a self-consistent quantum treatment of electron vortex modes in a magnetic field B. The free-space
electron Hamiltonian underlying the Schrödinger equation (2.1) is modified in a magnetic field as:

Ĥ =
p̂2

2me
→

p̂2

2me
=

1
2me

(
p̂ −

e
c
A
)2
, (2.30)

where p̂ = −ih̄∇ is the canonical momentum operator, p̂ = p̂ −
e
cA is the kinetic (or covariant) momentum shifted by the

vector potential A(r) generating magnetic field B = ∇ × A.
The presence of the coordinate-dependent solenoidal vector potential considerably complicates the Schrödinger equa-

tion, and it allows a simple analytical solution only in some cases, such as the following case of a uniform and constant
magnetic field B. Choosing the z-axis to be directed along the field, B = B z̄,5 the problem acquires the cylindrical symmetry
natural for vortex-beam solutions. Moreover, in this geometry, the vector potential can be chosen to have only an azimuthal
component, i.e., to form a vector-potential vortex:

A =
B r
2

ϕ̄. (2.31)

The corresponding stationary Schrödinger equation (2.4) with a uniform magnetic field in cylindrical coordinates becomes:

−
h̄2

2me

[
1
r
∂

∂r

(
r
∂

∂r

)
+

1
r2

(
∂

∂ϕ
+ iσ

2r2

w2
m

)2

+
∂2

∂z2

]
ψ = E ψ. (2.32)

Here wm = 2
√
h̄c/|eB| =

√
2h̄/me|ΩL| is the magnetic length parameter, and σ = sgn(B) = ±1 indicates the direction of

the magnetic field. Note that the Larmor frequencyΩL (rather than the cyclotron frequencyΩc = 2ΩL) is the fundamental
frequency in the quantum-mechanical problem [87,160]. This is related to Larmor’s theorem, the conservation of angular
momentum, and this will be clearly seen below from the quantum picture of the electron evolution.

The solutions of Eq. (2.32) are known as Landau states [2,3,17,161], and they have the form of non-diffracting LG beams
(see Fig. 10) [87,88]:

ψ L
ℓ,n ∝

(
r
wm

)|ℓ|

L|ℓ|
n

(
2r2

w2
m

)
exp

(
−

r2

w2
m

)
exp [i(ℓϕ + kzz)] , (2.33)

where the wave number kz must obey the dispersion relation considered below, Eq. (2.35). The Landau states (2.33) are
identical to the LG beams (2.9) with the beam waist w0 = wm at z = 0.

We also introduce a longitudinal scale zm = v/|ΩL| determined by the Larmor frequency and the electron velocity
v =

√
2E/me. The transverse magnetic length wm and longitudinal Larmor length zm represent counterparts of the beam

5 Note that here we choose B = Bz rather than B = |B|, so that quantities B,ΩL , andΩc can be either positive or negative depending on the direction of
the magnetic field, σ = sgn(B).
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Fig. 10. Same as in Figs. 5(b) and 6(b) but for the Landau states (2.33)–(2.42) with different values of (ℓ, n) in a uniform magnetic field B = B z̄ [here
σ = sgn(B) = +1]. Although the probability density distributions of the Landau modes are entirely similar to those of the LG beams, Fig. 6(b), their current
densities and angular-momentum properties differ significantly. In particular, the kinetic OAM of Landau states, ⟨Lz⟩, cannot be zero or negative even for
ℓ < 0, and its minimum value is h̄. This is because of the always-positive (for σ = +1) vector-potential contribution to the azimuthal probability current,
Eqs. (2.38) and (2.39).

waist and Rayleigh length of the free-space LG beams (2.9) but here they are uniquely determined by the electron energy
and magnetic field strength:

wm =
2
√
h̄c

√
|eB|

, zm =
2c

√
2Eme

|eB|
, i.e., zm =

√
E

h̄ |ΩL|
wm. (2.34)

The fact that eigenmodes (2.33) in the magnetic field are non-diffracting and transversely confined (i.e., possess a discrete
radial quantum number n) reflects the boundedness of classical electron orbits in a magnetic field.6

While the diffracting LG beams (2.9) represent approximate paraxial solutions of the Schrödinger equation, Landau LG
modes (2.33) yield exact solutions of the problem with magnetic field. In doing so, the wave numbers satisfy the following
dispersion relation [87]:

E =
h̄2k2z
2me

− h̄ΩLℓ+ h̄ |ΩL| (2n + |ℓ| + 1) ≡ E∥ + EZ + EG  
E⊥

. (2.35)

Here E∥ = h̄2k2z/2me is the energy of the free longitudinalmotion,while the quantized transverse-motion energy in Eq. (2.35)
can be written as

E⊥ = h̄ |ΩL| (2NL + 1), NL = n +
1
2

|ℓ| [1 + sgn(σℓ)] = 0, 1, 2, . . . . (2.36)

Thus, Eq. (2.36) describes the structure of quantized Landau energy levels [2,3,17,87,88,161]. Eq. (2.35) shows that Landau
energies consist of two terms [87]: E⊥ = EZ + EG. The first one, EZ = −h̄ΩLℓ = −MzB, represents the Zeeman energy of the
free-spacemagnetic moment (2.25) in amagnetic field B. The second term EG = h̄ |ΩL| (2n + |ℓ| + 1) can be associated with
the Gouy phase (2.11) of the diffractive LGmodes. (Recall that the Gouy-phase term is related to the transverse kinetic energy
of spatially-confined modes [132,133], which shifts the propagation constants and eigenfrequencies of the waveguide and
resonator modes [125].) As we show below, the Zeeman and Gouy-phase contributions are separately observable and lead
to a remarkable behavior of the electron probability density distributions in a magnetic field.

Obviously, the transverse probability-density distributions of Landau modes (2.33) are entirely analogous to those of the
LG modes (2.9) [Fig. 10, cf. Eq. (2.14) and Fig. 6]:

ρL
|ℓ|,n(r) ∝

(
r2

w2
m

)|ℓ|⏐⏐⏐⏐L|ℓ|
n

(
2r2

w2
m

)⏐⏐⏐⏐2 exp(−
2r2

w2
m

)
. (2.37)

6 In optics, non-diffracting LG modes entirely analogous to Eq. (2.33) appear in parabolic-index optical fibers [162]. This is related to the fact that the
Schrödinger equation in a uniform magnetic field can be mapped onto a two-dimensional quantum-oscillator problem [3].
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However, their probability-current and AM properties differ significantly from the free-space solutions. This is because the
definitions of the gauge-invariant probability current density and of the kinetic momentum/AM are essentially modified by
the presence of the vector potential. Namely, the probability current density is now determined as the local expectation
value of the kinetic (covariant) momentum operator (2.30) [2,3]:

j =
1
me

(
ψ
⏐⏐p̂⏐⏐ψ) =

h̄
me

Im
(
ψ∗

∇ψ
)
−

e
mec

A ρ. (2.38)

This means that the vector potential A produces an additional probability current in quantum electron states. For Landau
states (2.33) the current (2.38) yields:

jLℓ,n(r, ϕ) =
h̄
me

[
1
r

(
ℓ+ σ

2r2

w2
m

)
ϕ̄ + kz z̄

]
ρL

|ℓ|,n(r). (2.39)

Here, the σ -dependent term is the vector-potential contribution. It is worth noticing that for the counter-circulating vortex
exp(iℓϕ) and vector potential Aϕ , ℓσ < 0, the azimuthal current in (2.39) changes its sign at r = r|ℓ| ≡ |ℓ|wm/

√
2, i.e., around

the first radial maximum of the LG mode. For r < r|ℓ| the current from the vortex exp(iℓϕ) prevails, whereas for r > r|ℓ| the
contribution from the vector potential Aϕ becomes dominant (see Fig. 10).

Taking into account the vortex-like form of the vector potential (2.31) and its appearance in the azimuthal probability
current (2.39), it should also contribute to the OAMof the electron. In fact, one can define twoOAMquantities in the presence
of a magnetic field. The first one is the canonical OAM, which is determined by the canonical OAM operator L̂ = r × p̂. Its
longitudinal component L̂z = −ih̄∂/∂ϕ acts only on the vortex phase factor exp(iℓϕ) in Landau modes (2.33). Hence, similar
to free-space vortex beams, Landau states are eigenmodes of the canonical OAM operator and have the same expectation
value of the canonical OAM as in Eq. (2.17) [87]:

L̂zψ L
ℓ,n = ℓψ L

ℓ,n, ⟨Lz⟩ =

⟨
ψ

⏐⏐⏐L̂z⏐⏐⏐ψ⟩
⟨ψ |ψ⟩

= h̄ ℓ. (2.40)

The second OAM of the electron in a magnetic field is the kinetic OAM determined by the kinetic momentum operator:
L̂ = r × p̂ or the probability current density:

⟨L⟩ =

⟨
ψ
⏐⏐L̂⏐⏐ψ ⟩

⟨ψ |ψ⟩
=

me
∫
r × j d3r∫
ρ d3r

. (2.41)

It is kinetic OAM (2.41) that describes the mechanical action of the electron OAM and observable rotational dynamics in
electron states.

Substituting characteristics of Landau modes, Eqs. (2.33), (2.37), and (2.39), into Eq. (2.41) (with the beam substitution
d3r → d2r⊥) and using Eq. (2.36), we arrive at [87]

⟨Lz⟩ = h̄ [ℓ+ σ (2n + |ℓ| + 1)] = h̄ σ (2NL + 1). (2.42)

Eq. (2.42) reveals nontrivial properties of the electron OAM in a magnetic field, Fig. 10. First, it shows that the sign of the
kinetic OAM is solely determined by the direction of the magnetic field, σ , and is independent of the vortex charge ℓ. This is
because after the integration (2.41) the vector-potential contribution to the azimuthal current always exceeds the one from
the vortex. Note also that for parallel OAM andmagnetic field, σℓ > 0, the canonical OAM h̄ℓ is enhanced (in absolute value)
by the magnetic-field contribution:

⟨
L

↑↑

z

⟩
= h̄ [2ℓ+ σ (2n + 1)]. At the same time, in the opposite case of anti-parallel OAM

and magnetic field, σℓ < 0, the kinetic OAM takes the form
(
L

↑↓

z

)
= h̄σ (2n + 1), i.e., becomes independent of the vortex

charge ℓ. This is caused by the partial cancellation of the counter-circulating azimuthal currents produced by the vortex
exp(iℓϕ) and by the magnetic vector potential Aϕ .7 Second, the value of ⟨Lz⟩ is independent of the magnitude of the magnetic
field, |B|. This is because the radius of the beam changes as wm ∝ 1/

√
|B|, Eq. (2.34), the angular velocityΩL ∝ |B|, whereas

the mechanical OAM behaves as Lz ∝ ΩLw
2
m. Third, in contrast to the classical electron motion in a magnetic field, which

can have zero OAM, Eq. (2.42) shows that there is aminimal kinetic OAM of quantum Landau states: |⟨Lz⟩|min = h̄.
Importantly, modified definitions of the probability current density (2.38) and kinetic OAM (2.41) also affect the value

of the electron magnetic moment in the presence of a magnetic field. Indeed, using the definition (2.24) with the modified
current density (2.38), we obtain [87]:

M =
e
2c

∫
r × j d3r∫
ρ d3r

=
e

2mec
⟨L⟩ . (2.43)

Thus, themagnetic moment of the electron in amagnetic field is determined by the kinetic OAM. Since ⟨L⟩ is always aligned
withB and e < 0, themagneticmoment (2.43) is anti-parallel to themagnetic field. This determines the diamagnetic response
of free scalar electrons in a magnetic field [161,164].

7 The vector-potential contribution to the kinetic OAM is sometimes called ‘‘diamagnetic angular momentum’’ [163].
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Fig. 11. (a) Superpositions of the Landau states (2.33)–(2.35) ψ L
ℓ,n + ψ L

−ℓ,n (with n = 0 and ℓ = 1, 3 here) undergo the Larmor rotation (2.47) during the
propagation in themagnetic field B [87,88]. The transverse probability-density (grayscale) and probability-current (orange arrows) distributions are shown
for different propagation distances z. The net canonical OAM of such superpositions vanishes, ⟨L⟩ = 0, and their centroids (shown by yellow spheres for the
ℓ = 1 superposition) obey rectilinear trajectories parallel to the magnetic field. (b) Experimental demonstration of this Larmor rotation in a TEM [165]. The
holographic aperture (top) produces superpositions of the LG modes with (ℓ, n) = (±3, 0) in the first diffraction orders (bottom). Changing magnification
in the imaging magnetic lens (i.e., the effective magnetic field B) from 41 · 103

× (yellow) to 55 · 103
× (white) produces a rotation of the image by the angle

∆ϕ = 106◦ corresponding to the Larmor rotation (2.47). This is an example of image rotation which is well known in electron microscopy [4].

The magnetic moment of the Landau states, Mz , shares all the unusual properties of the kinetic OAM (2.42) and differs
strongly from the magnetic moment of free-space vortex electrons, Eq. (2.25). Using the magnetic moment (2.43), the
transverse energy of the electron, Eqs. (2.35) and (2.36), can be written as a single Zeeman term:

E⊥ = −MzB. (2.44)

This equation now includes both the ‘‘pure’’ Zeeman term from the coupling of the free-space magnetic moment (2.25) with
the field as well as the Gouy-phase term. Notably, the latter term can be considered as a nonlinear (with respect to the field)
effect of the interaction of the vector-potential current −(e/mec)Aρ (‘‘diamagnetic angular momentum’’) with the magnetic
field B [87].

Most peculiarities of the electron Landau states in a magnetic field are contained in their dispersion relation (2.35)
and (2.36), depending on quantum numbers ℓ and σ , and the corresponding OAM values (2.42). These quantities bring
about rather nontrivial rotational dynamics when various superpositions of Landau modes propagate in a magnetic field
[87–89,91,163,165–168]. Below we show some examples of peculiar rotations of electron vortex states in a magnetic field.

2.7. Unusual dynamics of vortex electrons in magnetic fields

In terms of the cylindrically-symmetric Landau modes, the rotational dynamics of asymmetric electron states in a
magnetic field appear from the interference of different modes (2.33)–(2.35) acquiring different phases during propagation.
Assuming that all the modes have the same fixed energy E and that they are paraxial, i.e., E⊥ ≪ E, wm ≪ zm, one can write
the longitudinal wave number as kz ≃ k +∆kz , where h̄k =

√
2Eme and

∆kz = − [σℓ+ (2n + |ℓ| + 1)] z−1
m . (2.45)

Thus, the Larmor length zm, Eq. (2.34), determines the characteristic longitudinal scale of the beam evolution. During the
propagation along the z-axis, the correction (2.45) to the wave number k yields an additional phase

ΦLZG = ∆kzz. (2.46)

This phase depends on both vortex and magnetic-field properties. We call it the Landau–Zeeman–Gouy phase [87] because
of its intimate relation to the Landau levels, Zeeman coupling [the σℓ-term in (2.45)], and Gouy phase [the (2n + |ℓ| + 1)-
term in (2.45)]. The interplay between the Zeeman and Gouy terms results in rich dynamics of various Landau-mode
superpositions.

We first consider the simplest superposition of two Landau modes (2.33) with equal amplitudes, the same radial index
n, and opposite vortex charges ±ℓ: ψ = ψ L

−ℓ,n + ψ L
ℓ,n. Such superposition carries no net canonical OAM, ⟨Lz⟩ = 0, and its

transverse probability density distribution represents a flower-like pattern with 2|ℓ| petals: |ψ |
2

∝ cos2(ℓϕ) (see Fig. 11).
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Fig. 12. (a) Same as in Fig. 11(a) but for superpositions ψ L
0,n + aψ L

ℓ,n (with a = 2, n = 0, and ℓ = 1, 3 here), which carry nonzero net canonical OAM ⟨L⟩
parallel to themagnetic field B. These superpositions undergo cyclotron (double-Larmor) rotation (2.48) during the propagation [87]. The superposition with
ℓ = 1 has an off-axis centroid, which follows a classical cyclotron trajectory, in agreement with Eqs. (2.50). (b) Analogous superpositions with ℓ = −1,−3
and the net canonical OAM anti-parallel to the magnetic field experience zero rotation, Eq. (2.49) [87]. This is due to the cancellation of the vortex and
vector-potential contributions to the azimuthal probability current (2.38).

The phases (2.46) of the two interfering modesψ L
±ℓ,n differ only in their Zeeman terms:∆ΦLZG = ∓ℓσ z/zm. Combining these

terms with the azimuthal vortex dependences as exp (±iℓϕ) → exp [±iℓ(ϕ − σ z/zm)], one can see that this results in the
rotation of the interference pattern by the angle [87,88] (Fig. 11)

∆ϕ(0)
= σ

z
zm
. (2.47)

Since z/zm = |ΩL|z/v, the rotation (2.47) is characterized by the Larmor frequency ΩL. Such rotation of a superposition of
two opposite-ℓ vortex modes in a magnetic field was recently observed in [165]. In fact, the Larmor rotation of images in
a magnetic field is well known in transmission electron microscopy [4]. The above theory provides a convenient quantum-
mechanical description of this effect. Indeed, any superposition (image) carrying no net angular momentum and consisting
of pairs of opposite-ℓmodes will undergo the same Larmor rotation (2.47).

As another example, we now consider a superposition of two Landau modes (2.33) with the same radial index n, and
vortex charges 0 and ℓ: ψ = ψ L

0,n + aψ L
ℓ,n, where a is some constant amplitude [87]. Such a superposition has a nonzero

net canonical OAM ⟨Lz⟩ ∝ ℓ, and is characterized by a pattern of |ℓ| off-axis vortices (Fig. 12). Landau modes with different
|ℓ| involve the Gouy term in the difference of phases (2.45) and (2.46). Namely, the ψ L

ℓ,n mode acquires an additional phase
∆ΦLZG = − (ℓσ + |ℓ|) z/zm as compared with the ψ L

0,n mode. From here, it follows that the superposition ψ with parallel
OAM and magnetic field, ℓσ > 0, exhibits a rotation of the interference pattern by the angle

∆ϕ↑↑
= 2σ

z
zm
. (2.48)

In contrast to this, the superposition with anti-parallel OAM and magnetic field, ℓσ < 0, shows no rotation at all:

∆ϕ↑↓
= 0. (2.49)

Eq. (2.48) describes the rotation of the image with the double-Larmor (i.e., cyclotron) frequency Ωc = 2ΩL. Note also that
non-rotating superpositions, Eq. (2.49), consist of modes with the kinetic OAM values independent of the vortex charge:⟨
L

↑↓

z

⟩
= h̄σ (2n + 1). For n = 0, these correspond to the lowest Landau energy level. Fig. 12 shows examples of the cyclotron

and zero rotations described by Eqs. (2.48) and (2.49).
Eqs. (2.47)–(2.49) represent an intriguing result. Namely, the rotational dynamics of quantum electron states with OAM

in a magnetic fields is characterized by three frequencies: (i) Larmor, (ii) cyclotron (double-Larmor), and (iii) zero frequency
[87]. This is in sharp contrast to the classical electron evolution (2.28), which is described by a single cyclotron rotation [146].
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Fig. 13. Experimental observation [91] of the three-frequency rotational dynamics of electron vortex states in a magnetic field, Eqs. (2.47)–(2.49)
and (2.51). (a) Schematics of the TEM experimental setup. A holographic fork mask generates a row of vortex beams with different azimuthal indices
ℓ = · · · ,−3,−1, 0, 1, 3, . . .. These beams are focused by a magnetic lens and are studied in the region of maximal quasi-uniformmagnetic field. The focal
plane is shifted few Rayleigh ranges below the observation plane z = 0 to reduce the Gouy-phase rotation. A knife-edge stop is placed at zk < 0, where
it blocks half of each of the beams (to break the azimuthal symmetry of the probability density distributions). The spatial rotational dynamics of the cut
beams propagating to the observation plane was observed by varying the position zk of the knife edge (see details in [91]). (b) A quantitative analysis of the
ℓ-dependent beam rotations. The azimuthal orientations of the cut modes∆ϕ with respect to the extrapolated reference azimuth ϕ0 = ϕ|zk=0 are plotted
versus zk . Three lines correspond to the zero, Larmor and cyclotron rotations, Eq. (2.51).

In spite of such difference, the quantum evolution (2.47)–(2.49) is fully consistent with the classical evolution (2.28). Indeed,
according to the Ehrenfest theorem, the expectation values of the electron coordinates and momentummust obey classical
equations of motion [3,8]. Importantly, one should take the expectation values of the kinetic quantum quantities, which cor-
respond to classical trajectories. Using the kinetic momentum, Eq. (2.30), the equations of motion (2.23) and (2.28) become:

⟨ṗ⟩ =
e

mec
⟨p⟩ × B, ⟨ṙ⟩ =

⟨p⟩

me
. (2.50)

Explicit calculations for the superpositions of Landau states considered above show that for Larmor-rotating and non-
rotating states, Eqs. (2.47) and (2.49), the mean kinetic momentum is always aligned with the magnetic field: ⟨p⟩ ∥ B ∥ z̄,
i.e., ⟨p⊥⟩ = 0. Therefore, the centroid ⟨r⊥⟩ of such states lies on a rectilinear trajectory parallel to the magnetic field. In con-
trast to this, states rotating with the cyclotron angular velocity, Eq. (2.48), can have a non-zero transversemeanmomentum,
⟨p⊥⟩ ̸= 0, and then their centroids ⟨r⊥⟩ trace classical cyclotron orbits along the beam propagation, see Figs. 11 and 12.

The nontrivial rotational dynamics of quantum electron states is closely related to the summation of the vortex and vector-
potential contributions to the probability current (2.38) and (2.39). For parallel OAM andmagnetic field, the two contributions
produce azimuthal currents of the same sign, which result in the double-Larmor (cyclotron) rotation. For anti-parallel OAM
and magnetic field, the two azimuthal contributions cancel each other, which produces a non-rotating state [87].

Furthermore, the above ‘‘three-frequency dynamics’’ immediately follows from the expression (2.39) for the probability
current in Landau states. Indeed, one can define the local value of the electron angular frequency as Ω(r) = vϕ(r)/r =

jφ(r)/(rρ(r)). Calculating the expectation value of this quantity, we obtain [91]:

⟨Ω⟩ =

∫
∞

0 Ω(r)ρ(r) r dr∫
∞

0 ρ(r) r dr
=

{ 0 for ℓσ < 0
ΩL for ℓ = 0
2ΩL for ℓσ > 0.

(2.51)

These expressions can be regarded as internal angular velocities of electrons in pure Landau states. Notably, they correspond
exactly to expressions (2.47)–(2.49) for the rotations of Landau-mode superpositionswith similar canonical-OAMproperties
(i.e., zero, parallel, and anti-parallel OAM with respect to the magnetic field). Recently, all three kinds of rotations (2.51)
in Landau modes were observed experimentally [91]. In that experiment, the cylindrically-symmetric probability density
distribution of Landau modes was broken by a sharp aperture stop, which cut half of the beam, and then the rotational
evolution of such half-beams was traced, Fig. 13. Truncated modes can be considered as superpositions of multiple pure
Landaumodes, and this explains the exact correspondence between the internal dynamics (2.51) and superposition rotations
(2.47)–(2.49).
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Other remarkable aspects of the electron vortex beams dynamics in a magnetic field were considered in recent works
[89,163,166–168]. In particular, the radial dynamics of vortexmode superpositions and the angularmomentumconservation
was analyzed in [166]. Afterwards, Ref. [163] investigated the evolution of vortex beams shifted and tilted with respect to
the z-axis. Of course, such shifted/tilted beams can also be considered as superpositions of multiple pure Landau modes.
However, in this case it is instructive to separate the internal vortex properties and external dynamics of the vortex/beam
centroid. Notably, the shifted/tilted Landau vortex mode preserves its shape with respect to the centroid, while the centroid
follows a classical cyclotron trajectory, Eqs. (2.50). Recently, an insightful analysis of the vortex electron evolution in a
uniform magnetic field was provided in [168], using purely classical electron models involving multiple particles moving
along cyclotron orbits. Remarkably, these simple models describe many peculiarities of the quantum vortex states: the
probability current distributions in the Landau modes, Fig. 10; three-frequency rotations, Eq. (2.51); radial dynamics of the
vortex mode superpositions [166]; and properties of the kinetic OAM of the electron, ⟨L⟩.

The evolution of the vortex center of a shifted/tilted beam allows separating not only canonical (vortex) and vector-
potential contributions to the OAM, but also its intrinsic and extrinsic parts. Using the electron centroid (2.19), the intrinsic
and extrinsic parts of the kinetic OAM are [cf. Eq. (2.18)] [65]:⟨

L
ext⟩

= ⟨r⟩ × ⟨p⟩ ,
⟨
L

int⟩
= ⟨L⟩ −

⟨
L

ext⟩ . (2.52)

Recall that ⟨L⟩ = ⟨r × p⟩, while ⟨p⟩ is the expectation value of the kinetic momentum, defined similarly to Eq. (2.20) but
with the operator p̂. It follows from Eqs. (2.52) that the intrinsic OAM does not change its value under transverse spatial
translations, while the extrinsic OAM is transformed according to the ‘‘parallel-axis theorem’’ of classical mechanics:

r → r + r0⊥ :
⟨
L

int⟩
→
⟨
L

int⟩ , ⟨
L

ext⟩
→
⟨
L

ext⟩
+ r0⊥ × ⟨p⟩ . (2.53)

For example, the superpositionψ L
0,0 + aψ L

1,0 of the Landau modes, shown in Fig. 12(a), has non-zero transverse momentum
⟨p⊥⟩, shifted off-axis centroid ⟨r⊥⟩, and, hence, non-zero longitudinal component of the extrinsic OAM (2.52): ⟨Lext

z ⟩ =

(⟨r⊥⟩ × ⟨p⊥⟩)z . We note that the intrinsic–extrinsic separation (2.52) and properties (2.53) are generic and independent of
the presence of a magnetic field.

So far we considered only vortex beams propagating along the magnetic field or slightly tilted with respect to it. As the
opposite limiting case, one can consider an electron vortex in the orthogonal magnetic field. Such problem was analyzed in
detail [89] for paraxial electron wavepackets with vortices. This yielded a remarkable example of the intrinsic (vortex) and
extrinsic (centroid) evolution associated with the Larmor and cyclotron rotations, see Fig. 14. Let the uniformmagnetic field
be still aligned with the z-axis, B = B z̄, whereas the vortex evolution occurs in the transverse (x, y)-plane. For instance,
let the vortex wavepacket be oriented along the x-axis, with some initial momentum along this axis, ⟨p(t = 0)⟩ ≡ p0 ∥ x̄.
Then, the wavepacket undergoes rotational evolution (in time) in the (x, y)-plane. Namely, in agreement with the Ehrenfest
theorem, the centroid of the wavepacket follows the cyclotron orbit, Eq. (2.50). At the same time, the orientation of the
wavepacket, together with the vortex core and associated intrinsic OAM ⟨Lint

⟩, experiences the Larmor precession (2.29)
with half the cyclotron frequency. In doing so, the π-angle rotation of the wavepacket orientation (during the 2π rotation
of its centroid) brings its probability density distribution back to the original distribution, but now with the intrinsic OAM
pointing in the opposite direction, Fig. 14.

This example also provides a nice illustration of different types of the electron OAM: canonical, kinetic, intrinsic, and
extrinsic. Let the wavepacket centroid lie in the z = 0 plane: ⟨z⟩ = 0. First, since the vector potential does not have a
z-component, Az = 0, the in-plane OAM has a purely canonical origin (the ‘‘diamagnetic angular momentum’’ has only the
z-component): ⟨L⊥⟩ = ⟨L⊥⟩ (here we keep the ⊥ subscript to denote the (x, y)-plane). Second, the cyclotron motion of
the centroid implies that ⟨pz⟩ = ⟨pz⟩ = 0. It follows from here that the in-plane OAM also has a purely intrinsic origin:
⟨L⊥⟩ = ⟨Lint

⟩ and ⟨Lext
⊥

⟩ = 0, Eqs. (2.52). At the same time, the cyclotron motion of the electron centroid produces the
z-directed extrinsic OAM: ⟨Lext

⟩ = ⟨r⊥⟩ × ⟨p⊥⟩ = σ r0p0 z̄, where r0 = |⟨r⊥⟩| is the radius of the cyclotron orbit, p0 = |⟨p⊥⟩|

is the absolute value of the kinetic momentum of the electron, and σ = sgn(B) is the direction of the magnetic field, Fig. 14.
This extrinsic OAM has both canonical and ‘‘diamagnetic’’ (vector-potential) contributions because ⟨p⊥⟩ ̸= ⟨p⊥⟩.

Up to now, we considered the evolution of electron vortex states in a uniform magnetic field. Inhomogeneous fields can
result in a number of interesting phenomena. In particular, one can expect that Stern–Gerlach-like effects would produce
spatial separation of the electron OAM states. However, the problem of a vortex-electron propagation in a gradientmagnetic
field has not been properly investigated yet. On the one hand, the evolution of a point particle carrying magnetic moment in
an inhomogeneousmagnetic fieldwas studied in detail [169,170]. However,we have seen that the kinetic OAMandmagnetic
moment of a vortex electron are strongly affected by the presence of a magnetic field, Eqs. (2.41)–(2.43). Therefore, the
magneticmoment cannot be considered as an independent parameter (such as spin) in this case. On the other hand, there are
investigations of the spin-related Stern–Gerlach effect and its observability for quantum electron states [171–173]. Recently,
a longitudinal Stern–Gerlach-like effect was also described for the focusing of vortex electrons by magnetic lenses with
radially-inhomogeneousmagnetic fields [174].Moreover, a series ofworks [90,175–177] showed that the interaction of both
spin and orbital degrees of freedom of electrons with inhomogeneous magnetic fields can spatially separate different spin
and OAM components, offering effective spin-filtering applications. Still, the OAM-related Stern–Gerlach effect for electrons
in a gradient magnetic field is awaiting accurate analysis.
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Fig. 14. Temporal evolution of an electron wavepacket with a vortex (ℓ = 1 here) in an orthogonal magnetic field B [89]. The centroid of the wavepacket
follows the classical cyclotron orbit in agreement with Eqs. (2.50). Accordingly, the mean momentum ⟨p⟩ also undergoes the cyclotron precession with
period Tc = 2π/|Ωc |. At the same time, the intrinsic OAM ⟨Lint

⟩ due to the vortex experiences the Larmor (half-cyclotron) precession (2.29), cf. Fig. 9(b).
Because of this, the vortex orientation rotates by an angle π during the 2π cyclotron rotation of the electron, and the initially parallel ⟨p⟩ and ⟨Lint

⟩ become
anti-parallel after one period Tc . The cyclotron motion of the electron centroid also produces an extrinsic OAM ⟨Lext

⟩, Eq. (2.52) parallel to the magnetic
field (see explanations in the text).

2.8. Spin–orbit interaction phenomena

Until nowwe considered electrons described by a scalarwave functionψ . However, real electrons are fermions, i.e., vector
particleswith intrinsic spin degrees of freedom. Since spin produces intrinsic angularmomentum, it is interesting to consider
its interplay with the OAM due to vortices. Here we only briefly describe spin properties of electrons, because most of
electron-microscopy systems use unpolarized electron beams, i.e., essentially the scalar electrons considered above.

Spin is a fundamental relativistic property, and its self-consistent description requires the use of the Dirac equation rather
than the Schrödinger equation (2.1) [148,178]. Proper consideration of vortex solutions of the Dirac equationwill be given in
Section 4, and here we only list themain results following from the proper relativistic description of spin degrees of freedom
of the electron [147]. First, the Dirac electron wave function Ψ has four components (it is a bi-spinor), and the spin operator
is a 4 × 4 matrix, which acts on the components of this wave function [148,178]:

Ŝ =
h̄
2

(
σ̂ 0
0 σ̂

)
. (2.54)

Here σ̂ is the vector of 2 × 2 Pauli matrices. In the non-relativistic limit,8 pc ≪ E ≃ mec2, only the upper two components
of the wave function, Ψ +, play a role (the other two components describe positron states). In this case, the spin is described
by Pauli matrices:

ŝ =
h̄
2
σ̂. (2.55)

The canonical spin operators (2.54) and (2.55) seem to be completely independent of the spatial (orbital) degrees of
freedom.However, the vector and spatial degrees of freedomare essentially coupled in theDirac equation (where differential

8 Unlike previous sections using nonrelativistic kinetic energy, in this section, we imply relativistic energy E, including the rest-mass contribution.
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Fig. 15. Transverse spin-dependent probability-density and probability-current distributions in Bessel-beam states of relativistic Dirac electrons [147]
[cf., scalar non-relativistic Bessel beams in Fig. 5(b)]. These distributions are shown for ℓ = 1 (a) and ℓ = 3 (b), for the opposite spin states: s = ±1/2
(marked by the ‘‘+’’ and ‘‘−’’ signs), see Eqs. (2.57)–(2.59). The parameters are: p = h̄k = 2.4mec and κ = 0.7 k, i.e., Λ ≃ 0.3. One can see that the
probability-density distributions (2.59) differ for the beams with parallel and anti-parallel SAM and OAM, i.e., ℓσ > 0 and ℓσ < 0. This signals the
spin–orbit interaction (SOI) in free-space relativistic vortex electrons. In particular, states with |ℓ| = 1 and ℓσ < 0 have nonzero probability density in the
vortex center r = 0.

operators are multiplied by matrix operators), and, hence, in its spinor solutions Ψ (r, t). Using a plane-wave solution of the
Dirac equation, Ψp(r, t), with a well-defined momentum p and energy E =

√
p2c2 + m2

ec4, the expectation value of the spin
operator (2.54) becomes [147,148,178,179]:

S =
Ψ

†
p ŜΨp

Ψ
†
pΨp

=
mec2

E
s +

(
1 −

mec2

E

)
p (p · s)

p2
. (2.56)

Here s is the expectation value of the non-relativistic spin (2.55); it can be regarded as spin in the electron rest frame.
Eq. (2.56) clearly indicates a coupling between spin and momentum properties of the Dirac electron, i.e., the spin–orbit
interaction (SOI). While the non-relativistic spin s can have arbitrary direction, independently of the electron momentum,
the relativistic spin has a p-dependent correction. In the ultra-relativistic (or massless) limitmec2/E → 0, the spin becomes
‘‘enslaved’’ by the momentum direction: S ∥ p.

The relativistic SOI manifests itself even in the free-space solutions of the Dirac equation. For example, one can construct
vortex Bessel-beam solutions of the Dirac equation [108,147], i.e., vector analogues of the scalar Eq. (2.5) and Fig. 5 (see
details in Section 4.1). We choose the non-relativistic spin to be parallel or anti-parallel to the propagation z-axis, s = s z̄,
s = ±1/2,whereas the spatial vortex properties are characterized by the vortex charge ℓ aswell as the radial and longitudinal
momentum components p⊥ = h̄κ = p sin θ0 and pz = h̄kz = p cos θ0. Calculating the expectation values of the spin and
orbital AM (defined with the suitable spatial integration for wavepackets or beams), we obtain [147]:

⟨L⟩ = h̄(ℓ+Λs) z̄, ⟨S⟩ = h̄(s −Λs) z̄, (2.57)

where

Λ =

(
1 −

mec2

E

)
sin2θ0 (2.58)

is the dimensionless parameter, which determines the strength of the SOI effects.
Eqs. (2.57) demonstrate that the SAM and OAM of relativistic vortex solutions are inevitably coupled with each other,

and part of the non-relativistic SAM is converted to the OAM. This phenomenon is called spin-to-orbital AM conversion, and
it is well known in non-paraxial (e.g., focused or scattered) optical fields [66,180–184].9 This effect manifests itself in the
spin-dependent spatial distributions of the probability density and current in the beams. In particular, the probability density
distribution in the Dirac Bessel beams becomes (cf. Eq. (2.13)) [147]:

ρB
ℓ,s(r) ∝

(
1 −

Λ

2

) ⏐⏐J|ℓ|(κr)⏐⏐2 +
Λ

2

⏐⏐J|ℓ+2s|(κr)
⏐⏐2. (2.59)

Thus, the probability density distributions differ for the beams with the same ℓ and opposite s, as shown in Fig. 15. Namely,
the beams with ℓσ > 0 (parallel SAM and OAM) have larger radii as compared to the analogous beams with ℓσ < 0 (anti-
parallel SAM and OAM) [147,183]. The most interesting consequence of this is that for the |ℓ| = 1 vortex and anti-parallel
spin s = −ℓ/2 the probability density becomes non-zero even on the beam axis r = 0, Fig. 15(a) (this effect is known and
observed in optics [184–186]).

Eq. (2.58) shows that this SOI effect has two independent sources of smallness: it becomes small (i) in the non-relativistic
case (E − mec2) ≪ E and (ii) in the paraxial case θ0 ≪ 1. In modern TEMs, electrons are often accelerated to relativistic

9 Since photons are massless particles, relativistic SOI phenomena are inherent in optics [66]. For optical counterparts of Eqs. (2.57)–(2.59) see [183].
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energies, so that the first factor in (2.58) is not necessarily small. However, electron beams are always highly paraxial, and
the strongest focusing currently possible in TEMs is lower than θ0 ∼ 10−1, i.e., Λ ∼ 10−2. Therefore, the relativistic SOI
effects are very difficult to observe in TEM experiments. Even the most noticeable effect of non-zero probability density in
the center of a vortex mode with s = −ℓ/2, Fig. 15(a), in practice becomes non-observable [187] due to decoherence effects
related to the source-size broadening, which blurs the vortex core even in the non-relativistic scalar case [188] (see details
in Section 3.2.6).

Dealing with the Dirac equation also allows rigorous calculations of themagnetic moment of relativistic vortex electrons.
For the Dirac–Bessel electron beams carrying SAM and OAM (2.57), this yields [cf. Eqs. (2.24) and (2.25)] [147]:

M =
e c
2E

[⟨L⟩ + 2 ⟨S⟩] . (2.60)

This reflects the well known fact that the orbital and spin AM contribute to the magnetic moment with the g = 1 and
g = 2 factors, respectively [3]. Note that the magnetic moment (2.60) corresponds to free-space Dirac–Bessel solutions.
In the presence of a magnetic field, one has to solve the relativistic Landau problem and find relativistic counterparts of
Eqs. (2.42) and (2.43) with the kinetic OAM [178,189].

The SOI properties of relativistic vortex electrons, described in [147], were recently discussed again in Refs. [190,191].
First, Ref. [190] put forward ‘‘wavepacket’’ solutions of the Dirac equation, which are however unbounded in the longitudinal
direction and can be presented as a superposition of the previously-described Bessel beams with different energies E but
the same pz . That work also analyzed ‘‘vorticity’’ (i.e., the curl of the Dirac probability current), which however cannot be
considered as a directly-observable and meaningful physical quantity. Second, Ref. [191] considered approximate paraxial
LG solutions of the Dirac equation (not ideal for SOI studies) and suggested alternative spin and orbital AM operators for
the Dirac electron. However, these alternative operators (previously described, e.g., by Foldy and Wouthuysen [192]) have
expectation values different from the canonical ones, Eqs. (2.56)–(2.58), lack SOI phenomena, and cannot be considered as
relativistic spin and orbital AM characteristics [193].10

Importantly, intrinsic relativistic spin–orbit interactions canbe strongly enhanced in artificial structures. In optics, various
anisotropic structures enable efficient manipulations of spin (polarization) degrees of freedom and couple these to the
orbital properties of light [66,81,194,195]. Recently, there was a very interesting proposal to use similar inhomogeneous
magnetic structures (Wien filters ormagnetic lenses) for the spin-to-orbital angularmomentum conversion and spin filtering
of electron beams [90,175–177]. This can create a new platform for exploring electron SOI phenomena (which are so far
mostly restricted to solid-state and condensed-matter electrons).

2.9. Electron–electron interactions

One of the crucial differences between electrons and photons is that electrons are charged particles, and, therefore, can
interactwith each other even in free space. Since such interaction is of electromagnetic nature, the self-consistent description
of the electron dynamics should involve the Maxwell equations for electromagnetic fields. One can describe the collective
behavior of electrons in a beam using a plasmamodel, which typically couples the classical equations of motion of electrons
and Maxwell equations. However, in our case of coherent electron waves, we need to use the Schrödinger wave equation
(2.1) (we again assume non-relativistic scalar electrons) instead of the classical equations of motion.

The most straightforward way to describe the ‘‘electrons + fields’’ system is to consider the electric charge and current
distributions associated with the quantum probability distributions (2.12):

ρe = e|ψ |
2, je =

eh̄
me

Im
(
ψ∗

∇ψ
)
. (2.61)

These electric charge and current densities are sources of electromagnetic fields according to Maxwell equations [146]:

∇ · E = 4πρe, ∇ × E = −
1
c
∂B
∂t
,

∇ · B = 0, ∇ × B = −
1
c
∂E
∂t

+
4π
c

je. (2.62)

In turn, electric and magnetic fields can be expressed via the electromagnetic potentials: B = ∇ × A and E = −∇V −

c−1∂A/∂t , which enter the Schrödinger equation:

ih̄
∂ψ

∂t
−

[
1

2me

(
−ih̄∇ −

e
c
A
)2

+ eV
]
ψ = 0. (2.63)

Eqs. (2.61)–(2.63) represent a complete self-consistent set for the electronwave functionψ and electromagnetic potentialsA
and V . In particular, considering stationary solutions and neglectingmagnetic interactions (which have additional relativistic

10 It is also beholden on us to alert the reader to an error in paper [191]. Calculating the expectation value of the operator (r× α̂)z (where α̂ is the matrix
operator characterizing the Dirac probability current), the author obtains the value ℓ/E (in the units h̄ = c = 1). In fact, this expectation value describes,
up to the e/2 factor, the magnetic moment of the electron,Mz , which has both orbital and spin contributions, Eq. (2.60). Therefore, the correct expectation
value in the paraxial approximation is (ℓ+ 2s)/E.
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smallness), the interaction is described via the scalar potential V , which fulfills the Poisson equation following from
Eqs. (2.61) and (2.62):∇2V = −4πe|ψ |

2. Coupled to the Schrödinger equation (2.63) (with A = 0), it describes the Coulomb
interaction between electrons. As a result, the Schrödinger equation becomes effectively nonlinear. This may potentially lead
to electron vortex solitons and other interesting nonlinear phenomena [50].

Some examples of the electron–electron interactions in vortex beams were considered in [196]. Moreover, the simplest
consequences of Coulomb repulsion (‘‘the space-charge effect’’), such as additional defocusing of electron beams, are
known in electron microscopy [197,198]. However, it should be noticed that the model of coupled Schrödinger–Maxwell
equations (2.61)–(2.63) has a significant drawback. Namely, it describes a non-zero interaction even for a single electron
in a wavepacket or beam state described by the wave function ψ . But an electron cannot interact with itself, and only the
interaction with other electrons makes sense [199]. Thus, a proper description of the electron–electron interactions in a
beam should involve some pair characteristics and quantummulti-bodymethods. In particular, the interactionmust depend
on the average distance between individual electrons in the beam, transverse and longitudinal sizes of individual electron
wavepackets, etc. Such accurate description of interacting electrons and fields remains a challenge. Recently, this problem
was analyzed using a Hartree–Fock approach in [200], where non-diffracting vortex-beam solutionswith balanced electron–
electron interaction were found.

3. Vortex beams in electron microscopy

3.1. Introduction

Electron microscopes are popular instruments, used to characterize materials on the micro, nano and atomic scales. A
typical electron microscope is designed to impinge a beam of accelerated electrons onto a sample to produce an image
resulting from the interaction of the electrons with the material. Many types of interactions can be exploited, and the
electrons can either be made to interact with the surface of materials in scanning electron microscopy (SEM) or to interact
with the internal structure of a layer of the material, thin enough to allow electrons to pass through, in transmission electron
microscopes (TEMs) [4,83,84].

At present, the majority, if not all, of the research on electron vortex beams uses the TEM setup. In hindsight, this is
partially a coincidence of suitable instruments being available, but if one realizes that a modern TEM is constructed to offer
highly-coherent electron beams to obtain information about materials, one can see the close connection with laser optics —
a standard platform to explore optical vortex beams. Indeed, a schematic of a TEM (Fig. 16) shows that it can provide a fixed
optical bench for electron optics, with a large number of adjustable magnetic lenses, the ability to insert custom-designed
apertures, and a choice of what is placed in the sample stage.

Transmission electron microscopes are typically used in one of two main operating modes. The conventional TEM
technique illuminates the sample with a broad, planar wavefront and either the image or far-field diffraction pattern is
recorded, where all parts of the image are recorded simultaneously. Alternatively, the electron beam can be focused onto a
small spot in the sample plane. Varying the position of such an electron ‘‘probe’’ generates the image of the sample formed in
a raster scanning fashion. This technique is known as scanning-TEM (STEM). It enables one to gather additional information
about the sample on a point-wise basis, e.g., by spectroscopic techniques [83].

In TEM and STEM, typical electron acceleration (kinetic) energies are E ∼ 80–300 keV, leading to de Broglie wavelengths
λ = 2π/k ∼ 4–2 pm. However, unlike modern optical microscopes, electron microscopes are not wavelength-limited,
but rather aberration-limited due to the severe spherical aberrations that are intrinsic to cylindrically-symmetric magnetic
lenses [201,202]. These spherical aberrations can be correctedwith non-cylindrically-symmetric lenses, but at the expense of
a vast increase in complexity, cost, and stability requirements. These aberration correctors can be placed in the illumination
and/or imaging system of the microscope. Nevertheless, severe higher-order aberrations remain, and the best resolution
obtained in an electron microscope to date is around 40–50 pm, still much larger than the wavelength [203–205]. Despite
these limitations, electron microscopy offers one of the highest resolution imaging and spectroscopy techniques, with great
flexibility to study various properties of a wide range of materials.

Below we discuss some of the ways in which electron optics of commercially available TEMs can be used to produce,
measure and study electron vortex beams and their interaction with matter. We will review the generation of the electron
vortex beams, the measurements of the OAM carried by such beams, and peculiarities of their interaction with materials.
Wewill also focus on emerging applications and examine the potential of vortex electrons to provide novel characterization
methods in TEM and beyond.

3.2. Generation of electron vortex beams

Since the first experimental demonstration of electron vortex beams in 2010 [76,77], a veritable zoo of methods for the
production of electron beamswith OAMhas been developed. Some of thesemethods have achieved greater popularity, while
others remain more exotic. Here we comprehensively review these methods, compare their efficiencies, OAM-mode purity,
as well as experimental advantages and drawbacks. We will also discuss which methods are most appropriate for certain
categories of experiment or prospective applications.
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Fig. 16. Simplified schematic of a transmission electron microscope (TEM), indicating the essential planes and aperture positions that will be referred
to when describing various experiments. The microscope can broadly be divided into an illumination stage and an imaging stage, each comprising several
lenses and apertures, with a subsequent section containing the detectors and cameras used for the collection of data.

Several important points should be made about electron beams in TEMs. First, electron beams are always highly paraxial.
Even strongly-focused STEMprobes are characterized by convergence angles k⊥/k ≃ θ ∼ 10−3–10−2. Therefore, the paraxial
approximation kz ≃ k is always justified in TEM.

Second, TEM electrons can achieve kinetic energies E comparable with their rest-mass energy mec2. Therefore, weak
relativistic effects can become noticeable. At the same time, the TEM electrons are unpolarized, and no observable spin effects
occur. In practice, the analysis of Section 2, based on the non-relativistic Schrödinger equation and classical equations of
motion, remains valid at TEM energies. The only noticeable effects are corrections to the electron wavelength (momentum)
from the relativistic dispersion E =

√
m2

ec4 + p2c4 −mec2 and the relativistic modification of the electron massme → γme,
where γ = 1/

√
1 − v2/c2 is the Lorentz factor.

Third, due to instrumental factors, the wave beams produced in TEMs are not exactly Bessel or Gaussian beams described
in Section 2.2. Instead, their transverse Fourier spectrum is characterized by a uniform intensity for all wave vectors below
a certain cutoff frequency κmax (corresponding to a circular aperture): ψ̃(k⊥) ∝ Θ(κmax − k⊥), where Θ is the Heaviside
step function. The real-space distribution ψ(r⊥) for this spectrum is the well-known Airy disc [15]. Electron vortex beams
are produced from such incoming beams and, therefore, are characterized by a similarly abrupt Fourier spectrum with an
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additional azimuthal phase11:

ψ̃(k⊥) ∝ Θ(κmax − k⊥) exp(iℓφ). (3.1)

Such circular-aperture beams look similar to the Laguerre–Gaussian beams (Fig. 6) but they also exhibit additional rings
(radial maxima) similar to those seen in Bessel beams (Fig. 5), although with smaller quickly-decaying amplitudes (see the
far-field patterns in Figs. 8 and 18). One can design special holograms to generate beams approximating any desired radial
distribution, e.g., Bessel beams [129], but the natural and most efficient TEM beams have a radial spectrum corresponding
to the uniformly-illuminated circular aperture.

We finally note that, similarly to optical systems, the Fourier transform corresponds to the transition from the near-
field to the far-field zone (e.g., in the diffraction from an aperture). Therefore, both the real-space [ψ(r)] and Fourier [ψ̃(k)]
distributions mentioned above can appear as real-space distributions ψ(r) at different planes of the TEMs.

3.2.1. Phase plates
When electrons travel through a thin material in the TEM, they experience a phase shift depending on the average

electrostatic potential inside the material, which changes the electron momentum as compared to traveling in vacuum [84].
This global phase shift is only a zeroth-order effect, describing the interaction of the electron with the space-averaged
potential V̄ produced by the atoms making up the material. The actual microscopic electrostatic potential V (r) causes
additional scattering effects, leading, e.g., to atomic-resolution images and a variety of dynamical Bragg scattering effects
which are commonly exploited in the TEM to gain information about the sample. In the following, we neglect the
microscopic-field effects, assuming that the TEMhas been setup such that either thehigh-frequency atomic-field information
is discarded (e.g., by using a restrictive objective aperture which acts as a low-pass filter) or averaged out by undersampling
and/or averaging in the detection plane. In this case, the phase shift caused by a homogeneousmaterial can bewritten as [84]:

∆Φ(r⊥) = CE

∫ d(r⊥)

0
V (r) dz ≡ CE V̄ (r⊥) d(r⊥), (3.2)

where d is the thickness of the material (which can vary with the transverse coordinates r⊥), V̄ is the mean inner potential
(MIP) (which is assumed to be r⊥-independent for homogeneousmaterials), and CE = ke (E+E0)/E(E+2E0) is the interaction
constant. Here E0 = mec2 is the electron rest-mass energy, and E is the acceleration energy of the microscope. For example,
CE ≃ 0.0073 V−1 nm−1 for E = 200 keV. Formanymaterials, theMIP V̄ is in the range of 5–30 V [206]. Then, for E = 200 keV,
an amorphous SiO2 layer of d ≃ 85 nm causes a phase shift (3.2)∆Φ = 2π .

Similar phase shifts are produced in optics using transparent materials with refractive index n ̸= 1. This allows one to
shape the phase front of the transmitted wave with plates of space-varying thickness d(r⊥). In particular, photonic vortex
beams were generated in optics, millimeter waves, and X-rays using spiral phase plates with azimuthally-varying thickness
d ∝ ϕ corresponding to the phase shift∆Φ = 2πℓϕ [30,135,136]. The samemethod can be employed for electrons, Fig. 8(a).

Historically, the first deliberately-made electron vortex beam was demonstrated by exploiting the fortuitous helical
stacking of three graphite flakes [76]. Even though this setup is only a rudimentary approximation of a spiraling thickness
profile, it was sufficient to demonstrate the presence of typical vortex characteristics. Progressing from this first demonstra-
tion, several researchers made attempts to perfect the setup in order to obtain high-purity electron vortex states [140,141].
In order to avoid directional scattering due to the Bragg diffraction, amorphous materials are preferred. Also preferable are
low-density materials with weak MIP, because the higher thickness needed to obtain a 2π phase shift requires less precise
thickness control, and the discrete atomic nature or surface roughness of the material are less significant over the higher
volume.

Focused ion beam (FIB) milling was used in [140] to create an accurate spiral phase plate by milling away material from
a commercially available SiN grid. In addition to making high-purity vortex beams, the technique allows the fabrication of
many different types of phase plates. Instead of milling material away, one can also use additive manufacturing offered
by ion- or electron-beam-induced deposition of amorphous materials. In Ref. [141] the focused-electron-beam-induced
deposition (FEBID) of SiO2 on an ultrathin substrate of SiNwas used to create another version of the spiral phase plate, shown
in Fig. 17(a, b). In order to remove a part of the beam that could pass through the hole in the center of the spiral, a small
platinum beam stopper was deposited via FEBID. Since SiO2 is an insulator, the phase plate had to be coatedwith a thin layer
of carbon to prevent unwanted charging effects when used in the microscope. The phase plate was then introduced in the
sample plane of a TEM (operating in Lorentz mode).12 Fig. 17(c) shows a through-focus series of the focused electron beam
(probe) in the far-field plane of the spiral phase plate. The characteristic destructive-interference area at the vortex-beam
core is clearly visible and does not vanish upon focusing.

Even though the above spiral phase plates are highly versatile (the thickness profile can in principle encode for any
desired phase profile), the technique has several significant drawbacks. Namely, charging and contamination need to be
carefully avoided and the phase plate has to be designed for a specific acceleration voltage (CE depends on the acceleration

11 The actual spectrum of electron vortex beams can behave differently and vanish in a small area around the center k⊥ = 0, but it is well approximated
by a uniform amplitude in most of the circle k⊥ < κmax .
12 This technique requires a very high lateral coherence length, see Section 3.2.6.
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Fig. 17. Spiral phase plates for electron optics [see also Fig. 8(a)]. These devices exploit the internal potential of a material, which alters the momentum
of the electron traveling inside the material, thereby imprinting a phase shift (3.2). (a) Experimental TEM image of a spiral phase plate, produced by the
focused-electron-beam-induced deposition (FEBID) of SiO2 [141]. The black central spot is made of platinum and acts as a beam stopper (green arrow). (b)
Atomic force microscopy height profile of the plate revealing its spiral shape. Since the material is uniform, the phase shift is proportional to the thickness.
(c) A through-focus series of the transverse intensity distributions for the electron vortex beam produced by the spiral phase plate (i.e., the far-field pattern
of the plate) [141]. A dark core caused by the destructive interference in the beam center does not vanish upon focusing or defocusing: a typical signature
of a vortex beam.

energy E and electron wave number k). The thickness of the phase plate also has to be carefully calibrated, since the MIP is
not exactly known due to the less-than-perfect quality of the deposited or milled material. In practice, this means that the
fabrication procedure has to go through several iterations before a reliable and predictable deposition procedure is obtained.
Furthermore, the unavoidable electron scattering by microscopic fields inside the phase plate leads to imperfections,
especially when aiming for atomic-size vortex beams.13 A potentially significant advantage of the phase-plate method
is the fact that no magnetic materials are used, and the plate can work well even in the very high magnetic fields inside
electron-optical lenses.

A different type of phase plate based on electrostatic fields can be provided by a self-charging dielectric needle. While
the charging of dielectric material under the electron beam is a nuisance in the majority of cases, it can also be exploited
to produce electron vortex beams [207]. By fabricating a needle out of dielectric material, such as silicon nitride, and then
grounding two contiguous sides with a gold plating, it is possible to fabricate a device that spontaneously shows anisotropic
charging. The sides where the dielectric is exposed tend to charge under the beam, while the grounded ones remain neutral.
The resulting electrostatic phase shows a strong difference between the two sides and varies azimuthally around the needle’s
tip, similarly to what happens for the magnetized needle mimicking a magnetic monopole [92,144]. The experimental
realization of this idea has produced vortex beams of surprisingly high quality, although it was difficult to accurately control
or model the exact charging behavior [207].

3.2.2. Holographic gratings: binary and phase
The complexity of precise height control to create a spiral phase plate, as well as the limitation of using only one

acceleration voltage, can be lifted by employing holographic gratings, as in Fig. 8(b). Such gratings with dislocations,
generating different vortex beams in different diffraction orders, were first introduced in optics [28,29].

To describe their holographic reconstructive action, let us start from the desired target wave (a vortex beam with
topological charge ℓ0 in our case), which can be written as:

ψtarget(r, ϕ, z) = a(r, z) exp(iℓ0ϕ + ikz), (3.3)

where a(r, z) is the amplitude (assumed to be real-valued, for simplicity), and k is the wave number of the paraxial beam.
Consider the interference of this target wave with a reference wave, which can be chosen as, e.g., a plane-like wave slightly
tilted in the x-direction:

ψref(r, ϕ, z) = a(r, z) exp(ikxx + ikz), (3.4)

13 This is, however, not a physical limitation but a technological one, as the effect could be counteracted with a set of limiting apertures to erase the
high-frequency information, and demagnifying lenses to reduce the size of this purified vortex.
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where kx ≪ k, and for the sake of simplicity we assume the same amplitude a(r, z) as in the target wave. The interference
of the two waves (3.3) and (3.4) leads to the following intensity pattern in the reference plane z = 0:

ρint(r, ϕ) = |ψtarget(r, ϕ, 0) + ψref(r, ϕ, 0)|2 = a2(r, 0) [1 + cos(ℓ0ϕ − kxr cosϕ)] . (3.5)

This equation describes a fork-like interference patternwith an edge dislocation of the order ℓ0 and grating period xg = 2π/kx,
as shown in Fig. 18(a).

Now consider an aperture with a transmission function T (r, ϕ) mimicking the interference pattern (3.5) (in amplitude,
phase, or both). Illuminating it with the untilted reference plane wave ψ ∝ exp(ikz) allows the reconstruction of the tilted
target vortex wave. Indeed, assuming an amplitude-modulating aperture with T (r, ϕ) ∝ ρint(r, ϕ), the transmitted wave
becomes:

ψreconstruct(r, ϕ, z) = T (r, ϕ) exp(ikz) ∝ a2(r, 0) exp(ikz) [exp(iℓ0ϕ − ikxx) + 2 + exp(−iℓ0ϕ + ikxx)] . (3.6)

Thus, the electron wave after interaction with such an aperture is a superposition of: (i) the target wave, but now with the
tilt, (ii) the untilted reference wave, and (iii) the complex conjugate of the target wave, tilted in the opposite direction, see
Fig. 8(b). Moving away from the z = 0 plane containing the aperture separates the three terms due to their tilts. The beams
are typically observed in the far field (z = ∞) of the aperture plane (essentially, the Fourier transform of the aperture-plane
waves), where the three components are well separated as long as their Fourier components contain spatial frequencies
below kx/2:

ψ̃reconstruct(k⊥) ∝ ã(k⊥, 0) ∗ [ψ̃target(k⊥ + kxx̄) + 2ã(k⊥, 0) + ψ̃∗

target(k⊥ − kxx̄)], (3.7)

where ψ̃(k⊥) and ã(k⊥, 0) are the Fourier transform of ψ(r⊥, 0) and a(r⊥, 0), while ‘‘∗’’ denotes the convolution of
functions.

A problemwith the above reconstruction method is that currently it is nearly impossible to make a smooth sinusoidally-
modulating hologram for electrons. A common approximation is to binarize the sinusoidal pattern (3.5) to either block
(T = 0) or transmit (T = 1) the electrons. Mathematically, such binarized transmission function can be written as:

T (r, ϕ) =
1
2
Θ(rmax − r) {1 + sgn [cos(ℓ0ϕ − kxr cosϕ)]} , (3.8)

wherewe assumed that a(r, 0) = Θ(rmax−r), corresponding to the circular aperture and Eq. (3.1), and the resulting binarized
hologram is shown in Fig. 18(a). This binarization leads to higher-order diffraction harmonics with increasing vortex charge
ℓ = Nℓ0 and tilt Nkx, where N = ±1,±3,±5, . . . [208,209], see Fig. 18(b). The intensity of the Nth-order diffraction spot
scales as 1/N2. In some experiments using this technique, faint even-order harmonics are also present due to imperfections
in the binary aperture [78,96]. Note also that the above considerations on the intensity of the diffracted spots are true as
long as the bars and slits in the grating have the same widths. The general case is similar to the well known problem of
multiple-slit diffraction, and the relative intensities of different diffraction orders are determined by the ratio between the
width of bars and slits [15].

To achieve high values of the OAM (h̄ℓ per one electron) carried by electron vortex beams, one should (i) use the
grating with high-order dislocation |ℓ0| ≫ 1 and (ii) consider higher diffraction orders with |N| > 1. This provided
the first demonstration of high-OAM electron vortex beams up to ℓ = 100 [78], while current similar methods reached
ℓ = 1000 [142,210,211]. Such high-order vortex electrons carry huge magnetic moments, Eqs. (2.24) and (2.25), exceeding
the usual spin magnetic moment (Bohr magneton) by several orders of magnitude, which can be important in experiments
involving magnetic interactions.

A typical binary, amplitude modulating, holographic grating is shown in Fig. 19(a). The aperture has a typical diameter
ranging between 10µm (for optical-bench-like experiments) to 30 µm (used to generate STEM probes), and is made out of
a 0.5–1 µm thick sputtered gold film deposited on a commercial 200 nm thick Si3N4 support film. The period of the bars,
limited by the resolution reachable by the focused ion beam milling (typically of the order of the gold-film thickness), is
about xg = 500 nm. Note that this period and the wavelength λ = 2 pm correspond to a very small diffraction angle
θd = kx/k = 0.1 mrad. However, the lenses between the condenser plane (where the apertures are typically placed14) and
the sample allow one to vary the magnification and separation of the generated beams in the sample plane. Typically, in
the STEM mode, the convergence angle of the probe is calibrated for a given radius of the aperture rmax as θmax = rmax/L,
where L is the equivalent camera length of the lens system in a given configuration. Using a forked grating aperture of the
same diameter produces probes which are separated by the distance Lθd. Then, taking typical parameters rmax = 15 µm
and θmax = 20 mrad, yields L = 0.75 mm and probes separated by Lθd = 75 nm. This is a factor of rmax/xg larger than
the diffraction limit of the probes. A larger separation can be achieved by altering the condenser lenses to obtain a higher
effective L but this at the same time sacrifices the size of the diffraction-limited probe by lowering the convergence angle.
In general, holographic apertures allow one to produce electron vortex beams, focused on the sample, ranging in size from
atomic scale to hundreds of nanometers.

14 The aperture can also be placed in other aperture planes like, e.g., the sample plane or the selected-area plane, as long as the lateral coherence length
of the incoming electron beam extends over the whole diameter of the aperture in that plane.
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Fig. 18. Schematics of the holographic reconstruction concept, Eqs. (3.3)–(3.8), and generation of electron vortex beams using binarized fork holograms.
(a) The interference of the target wave (vortex beamwith ℓ0 = 1 here) with a referencewave (tilted planewave) yields a characteristic interference pattern
with an edge dislocation (fork) of order ℓ0 . For practical reasons, this pattern is usually binarized, Eq. (3.8). (b) The resulting pattern is then milled in a thin
film that is placed as a holographic aperture in a TEM. When illuminated with a coherent electron beam, this aperture produces an array of vortex beams
of order ℓ = Nℓ0 in different diffraction orders N = 0,±1,±3, . . .. For non-binarized holograms only the first orders N = 0,±1 are present, Fig. 8(b).

An example of a resulting far-field pattern for the hologram with ℓ0 = 1 is presented in Fig. 19(a). The central beam
is surrounded by two vortex beams with ℓ = ±1 and the 3rd-order harmonics with ℓ = ±3 being considerably fainter.
Fig. 19(b) shows a similar hologram but with an ℓ0 = 9 dislocation [212]. It generates ℓ = ±9 vortex beams in the
first diffraction orders. Importantly, in addition to pure vortex beams, the holographic-reconstruction method allows the
generation of any structured modes. For example, Fig. 19(b) shows a holographic aperture and the corresponding far-field
intensity distributions, which correspond to the superposition of ℓ = 3 and ℓ = −3 vortex modes. Such superpositions
were used in studies of the rotational dynamics of electron modes in a magnetic field [87,88,165], Fig. 11.

Alongside with these impressive demonstrations, the holographic-reconstruction method has some shortcomings. First,
the binary mask blocks a significant fraction of the intensity (in our case 50%), with the remaining part being subdivided
between different diffraction orders. As a result, the first-order beam contains at most 10% of the impinging intensity.
Second, multiple diffraction orders produce undesired beams which are focused on the sample at the same time. This leads
to a complicated mixing of the OAM-dependent signals which cannot be easily untangled. However, this can be avoided
by blocking the undesired beams with additional apertures [214,215] or employing alternative mechanisms which are
discussed below.

Instead of the planewave (3.4), one can use a sphericalwave as a referencewave [213,216]. In this case, the corresponding
hologram takes the form of a (spiral) zone plate, and the different diffracted orders are separated along the z-axis, i.e., can be
brought into focus one at a time by varying the defocus∆z, Fig. 19(d). This approach has been applied for the production of
vortex beams for STEM imaging, where only one vortex beam is in focus on the sample while the other beams generate an
out-of-focus background [213]. An obvious drawback of this technique is that all out-of-focus diffraction orders still remain
present at all times. Therefore, an OAM-dependent interaction with the target can only be studied if its spatial scale is small
enough to be neglected for the out-of-focus waves. Such focus-dependent vortex beams can be used for studying crystals,
where the structure of the lattice can be probed with a single diffraction order, if the probe can be made small enough to
resolve atomic distances.

So far, we considered only holograms, which modulate the intensity of the incident wave. Holograms fabricated with
electron-transparent materials, such as carbon or silicon nitride, modulate the phase of the electron beam, similar to phase
plates in Section 3.2.1. This approach has an advantage that the whole incoming beam is transmitted through the aperture,
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Fig. 19. Examples of vortex beams and other structured modes generated using holographic reconstructions. The SEM micrographs of the holograms are
shown alongside the beams they produce in TEM. The 2µm white scalebars and 10 nm yellow scalebars are shown in the hologram and far-field beam
images, respectively. (a) A fork hologram with ℓ0 = 1. The ℓ = 0 beam is visible in the center, with the first sidebands with ℓ = ±1, and the higher-order
beams with ℓ = ±3 at the borders of the image [212]. (b) A similar fork hologram with ℓ0 = 9, which generates ℓ = ±9 vortex modes in the first
diffraction orders [212]. (c) Hologram creating flower-shaped superpositions of ℓ = 3 and ℓ = −3 vortex modes in the first diffractions orders [165].
(d) Spiral hologram corresponding to the interference of the target vortex beam (with ℓ0 = 1) with a spherical reference wave [213]. The generated probes
with ℓ = 1 and ℓ = −1 are separated along the propagation z-axis, i.e., appear at certain planes with defocusing∆z > 0 and∆z < 0.

doubling the intensity with respect to the binary amplitude grating approach. Such holograms also allow one to minimize
or even cancel the intensity in the undesired reference part of the wave, thereby obtaining a higher fraction of the diffracted
intensity in the desired first-order beams [217]. In addition, since thismethod uses thinner films and relies on structureswith
a depth of only several (or tens of) nanometers, the lateral resolution of the milling can be much higher, allowing finer and
more sophisticatedmasks. Lastly, using a phase hologramwith a blazed profile, one can enhance the fraction of the intensity
directed in a single first-order diffracted beam (e.g., N = 1) while suppressing the opposite (N = −1) beam [129,217]. The
experimentally-demonstrated efficiency of such blazed phase holograms is up to 40% of the incoming beam ending up in
the desired vortex state.

Phase holograms also have practical limitations. Carbon has a tendency to migrate under the beam, compromising the
quality of the hologram and altering the phase shift, while the Si3N4 films tend to charge due to the emission of secondary
electrons. A gold or chromium coating with a thickness of few nanometers can be used to reduce the charging, at the cost
of a lower diffraction efficiency. Furthermore, since the phase shift depends on the electron’s energy, the performance of
a phase-modulated mask depends on the acceleration voltage used, which is not the case for binary amplitude holograms
(with the exception that the positions of different diffraction orders depend on the electron wavelength).

As an alternative approach to holographic reconstruction – holograms producing on-axis structured electron beams –
have also been demonstrated [140,218]. Such holograms are calculated from the target wave through an iterative Fourier-
transform algorithm and are imprinted on a transparent film to obtain a pure phasemask.While this approach allows one to
sculpt the intensity distribution of the beamwith a high flexibility, its efficiency is low. Due to the impossibility of producing
subwavelength structures for fast electrons at TEM energies, most of the wave intensity still forms an on-axis central spot,
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which is about 400 times more intense than the generated target wave. Speckling and multiple diffraction orders also occur
in the pattern.

3.2.3. Mode conversion using astigmatism
An alternative method to produce electron vortex beams relies on earlier experiments in optics using the linear relation

between the so-called Hermite–Gaussian (HG, which in the low-order HG01 mode resembles p-orbitals) and Laguerre–
Gaussian (LG) beams [27,219]. Indeed a proper linear combination of two HG beams can create an LG beam and vice versa.
Starting from a single-mode laser that produces a HG beam, it is possible to create a vortex LGmode using a mode converter
based on two cylindrical lenses [219].

A similar approach can be applied to electrons [220]. It starts with a phase plate which changes the phase of the electron
wave by π in a half-plane [e.g., ∆Φ = πΘ(x)], generating a HG-like mode in the electron microscope. Then, exploiting
the tunability of astigmatism through quadrupolar lenses available in any TEM, one can introduce cylindrical distortions to
electron optics to make it analogous to the optical setup with cylindrical lenses. The conversion of electron vortex beams
into HG-like beams and vice versa was demonstrated in [220].

The advantage of this method is that almost all the electrons of the beam end up in the desired mode, and the sign of the
OAM can be easily reversed using only tunable lenses, which are part of any standard electron microscope. The drawback
of the technique is that it still uses a half-plane phase plate which suffers from charging and contamination and needs to be
carefully tuned in thickness for each acceleration voltage.

Recently an alternative setup producing HG-like beams was demonstrated using the Aharonov–Bohm effect around
a magnetized needle (an analogue of the magnetic-flux line) that divides an aperture into two half-planes [221]. When
carefully tuning the magnetic flux in the needle to an odd number of flux quanta, a phase difference between the two half
planes becomes exactly π , independently of the acceleration voltage. This setup has an additional benefit: charging and
contamination are strongly reduced, while only a small part of the beam is absorbed when hitting the needle. Combining
this superior setup to generate HG beams in combination with two astigmatic lenses could be an attractive way to produce
vortex electrons of high purity and intensity.

3.2.4. Detuning the aberration corrector
In visible-light optics, spatial light modulators allow flexible manipulations of both the phase and amplitude of the wave.

Unsurprisingly, this tool has become indispensable for many tasks involving structured waves, such as optical vortex beams
[33,59,222,223]. An electron analogue of spatial light modulators would be an ideal tool to deal with structured electron
waves, but, unfortunately, it does not exist yet [224].

In recent years, hardware aberration correctors have been developed [225–227], to counteract spherical aberrationswhich
are intrinsic to cylindrically-symmetric magnetic lenses [202]. Aberration correctors consist of a sequence of adjustable
multipolar lenses connected by transfer doublets. By modifying the relative strength of these magnetic multipoles, the
electron wavepacket can be deformed, adjusting the lower-order Seidel aberrations of the lens system. The aberration
corrector is typically adjusted such that the electron beam impinging on the sample approximates either a planar wavefront
(for the TEMwork), or a spherical wave focusing to a small probe (for the STEM imaging). Negative spherical aberration can
also be used, to enhance contrast when imaging some challenging specimens [228].

Recently, it was shown that a more radical adjustment of the aberrations can be used to directly create electron vortex
beams [229]. The vortex electron phase should exhibit the linear azimuthal dependence Φ(r, ϕ) ≃ ℓϕ. However, the
control software of the aberration corrector is designed to measure the wavefront of the beam in terms of the Seidel
aberrations [230], none of which depends linearly on ϕ. Nonetheless, the Φ ≃ ℓϕ dependence can be neatly expanded
into a sawtooth Fourier series, with a period of 2π . Such an expansion reveals that the aberrations of the image shift, along
with the n-fold orders of astigmatism, can be manipulated into a spiral phase structure, but only for a limited radial range.

The radial range of the beam can be easily limited by inserting an annular aperture into the column. In doing so, the
angular size of the aperture should be tuned to the desired mode purity (a broader annulus provides a less ideal vortex
phase structure, but higher intensity) and to the obtainable aberrations in the microscope (the required astigmatism values
vary with the aperture size). In the FEI Titan3 microscope used in [229], an annular aperture provided an angular selection
from 5.7 to 8.3 mrad, such that the required aberrations, up to three-fold astigmatism, stayed within obtainable limits. This
resulted in a vortex beam with over 60% mode weighting in the ℓ = 1 state, and almost 50% of the initial beam intensity
transmitted.

The advantage of this method is its flexibility: the opposite-order vortex beam can be obtained by switching between
aberration settings, as long as hysteresis and drift in the corrector are not too significant. The drawbacks are: the annular
aperture severely limiting the total beam current, the non-atomic size of the vortex probe, and the less-than-perfect mode
purity.

3.2.5. Monopole-like field at the tip of a magnetic needle
Close relations between magnetic monopoles and phase singularities in electron waves were first emphasized in the

pioneering paper by Dirac [18]. Later, this led to the suggestion that an electron plane wave interacting with a magnetic
monopole can be converted into a vortex state [5,75,231]. At first glance, this might seem to be a fantasy, given that no
magnetic monopole has ever been observed in nature. However, recently it was shown that an approximate monopole,
manufactured ad-hoc, works very well in practice [92,144,232].
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Fig. 20. Generation of electron vortex beams using the magnetic monopole-like field of a magnetized-needle tip [144], see also Fig. 8(c). (a) SEM view of
a thin magnetic rod placed over a round aperture. (b) Color-coded phase shift around the tip of the needle measured and reconstructed through electron
holography. (c) A through-focus series of the far-field images of the aperture illuminated with a plane electron wave. The dark spot in the center indicates
the vortex character of the transmitted beam, and the radial ‘‘shadow’’ from the magnetic needle is also seen.

The experiments [92,144,232] employed a ferromagnetic needle, magnetized along the needle’s length in a single-domain
magnetic state, and with a thickness chosen so that the magnetic flux through the section equals an integer number αm of
doublemagnetic-flux quanta. Then, themagnetic field around a tip of the needle approximates themonopole field, while the
magnetic flux passing through the needle plays the role of the so-called Dirac string (ideally, an infinitely-thinmagnetic-flux
line) [18]. Placing such an approximate monopole in the center of the electron beam produces a transmitted vortex beam
with topological charge ℓ = αm, see Section 2.4.3 and Fig. 8(c). Making use of an extra round aperture ensures that incoming
electrons interact with the region close to the chosen tip of the needle, leaving the other tip of the needle (the opposite −αm
monopole) outside the electron beam, Fig. 20(a).

This provides a highly efficient method for the production of electron vortex beams, with several important advantages.
First, the phase profile is independent of the acceleration voltage. Second, the transmittance is near 100% as the only part
that absorbs electrons is the needle, whose ‘‘shadow’’ is small compared to the area of the aperture. Third, the purity of
the generated vortices can be very high, as long as the length of the needle is much larger than the aperture diameter. This
ensures that the magnetic field around the tip approximates well that of the monopole. Finally, the magnetization of the
needle can in principle be reversed, allowing the dynamical control of the sign of the topological charge ℓ.

The results of the most recent magnetic-monopole experiment [144] are presented in Fig. 20. A 60 nm thick pure nickel
(Ni) filmwas deposited on a silicon-nitride (Si3N4) film and covered by a 1µm sputtered gold layer. A focused ion beamwas
used to cut a very elongated bar out of this ferromagnetic film. Then, this needle was extracted from its original film and
deposited on another gold-plated Si3N4 grid,with one of its ends positioned over the center of a precut 20µmround aperture,
Fig. 20(a). The needlewas fabricatedwith a very high aspect ratio (300 nmwide by 50µm long) in order to increase the shape
anisotropy, which forces the needle to be in a single-domain magnetic state, with the magnetization along the needle axis.
The cross-section of the needle, in combination with the saturation field of the material, was chosen to create a magnetic
flux equal to two flux quanta, which corresponds to ℓ = αm = 1 and a 2π phase shift between electrons passing on the two
opposite sides of the needle.

In practice, finding the exact width needed for the needle cross-section requires iterativelymeasuring the phase in a TEM
with electron holography [see Fig. 20(b)] and going back to the FIB. This difficulty is likely caused by the FIB, where a fraction
of the Ga ions used for the milling ends up implanted in the Ni film altering its magnetic properties and the thickness of
the films used, which limits the milling resolution. The lithographic production of highly controlled Ni needles seems very
attractive for future exploration.

Once this artificial ‘‘magnetic monopole’’ was fabricated, it was placed in the sample plane of the TEM (operating in
Lorentz mode to avoid the presence of the strong magnetic field in the lenses), and a series of through-focus images was
recorded in the far-field plane (i.e., in the diffraction mode). The results are shown in Fig. 20(c). One can easily recognize
the typical doughnut-like profile of the transmitted vortex beam with a dark central region of the destructive interference.
The electron hologram acquired at the tip of the magnetic needle, Fig. 20(b), also provides the measured phase shift. In this
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particular case, an interpolation of the phase over the whole aperture showed the expectation value of the OAM per electron
to be ⟨Lz⟩ ≃ 1.2h̄. Placing this aperture in the condenser aperture plane allows the production of high-quality atomic-size
focused vortex beams for STEM experiments [144].

3.2.6. Practical considerations and comparison of different methods
The application of the methods described above imposes several practical constraints to be kept in mind. Electron guns

emit electrons from a small but finite area of a sharp tip. Electrons emanating from different positions are typicallymutually-
incoherent and the emitting tip behaves as an extended incoherent source [15,233]. Suppose that each individual electron can
be considered as a perfectly coherent wavepacket. If the goal is to create the smallest possible electron vortex beam, one
uses the setup employed to generate the STEM electron probe, where the sample plane is conjugate to the source plane.
This means that the ideal vortex probe formed by a single emitted electron will be superimposed incoherently with a large
number of such vortices, each slightly displaced with respect to the other. This causes a blurring of the vortex intensity
profile, leading to the appearance of a finite intensity in the dark r = 0 core of the vortex [188].

This effect can be reduced by demagnifying the source with the condenser lenses either by changing the experimental
‘‘spot size’’ (lens settings) and/or by varying the strength of the ‘‘gun lens’’, depending on the exact technical characteristics
of the microscope. In any case, this demagnification will always require a trade off in intensity unless a brighter electron
source can be chosen. For this reason, the field emission guns are currently preferred, but work is underway to develop
superior options [234]. Current probe-corrected microscopes tend to have a source-size broadening of the order of the
smallest probe achievable on that instrument. Indeed, as far as the probe size is concerned, the source-size broadening does
not considerably deteriorate the spatial resolution (for STEM imaging), as long as it remains smaller than the diffraction
limit imposed by the aberrations. However, for vortex beams, the same effect destroys the vortex by blurring the dark core,
and the source-size broadening becomes a limiting factor. For larger-diameter electron vortices, the source-size broadening
becomes insignificant and near-perfect coherence can be achieved.

If the aperture is placed in either the sample plane or the selected-area plane, the situation is different and the most
important factor becomes how paraxial the incoming beam can be made. Indeed the spatial coherence in the aperture plane
needs to extend over the size of the aperture, which is inversely proportional to the angular spread of the beam. In the
sample plane, this requires extremely small angular spread or very small aperture sizes. Typically, the low-magnification
modes in TEMs can reach spatial coherence covering a 50 µm aperture. This allows one to test the apertures in the sample
plane, which provides higher flexibility and speed in terms of transferring the aperture in and out of the vacuum.

Next, the material of the apertures is important for the electron energy loss spectroscopy (EELS). Indeed, fast electrons
excite transitions in the infrared to ultraviolet range in the material, experiencing the corresponding energy loss. These
losses can be significant for trajectories of electrons close to the edge of the aperture (interacting with the metallic film)
or traveling through the light phase-plate material. This generates a background spectrum exclusively due to the aperture
(not the sample), with spectral features depending on the material chosen and mixing with the actual EELS spectrum of
the sample. This effect can be particularly noticeable for the MIP-based phase plates and fork binary holograms, while the
magnetic-needle setup is preferred in this respect as only a small amount of material is present in the aperture.

Charging is another factorwhich complicates the design of phase apertures. Secondary-electron emission typically causes
the aperture to charge positively, if there is no way for an electric current to flow from the aperture to ground, replenishing
the lost electrons. Metallic materials are preferred but are often crystalline, which leads to unwanted Bragg diffraction, and
are generally heavier, which leads to higher scattering. Amorphous insulating materials can be used, but coating with a thin
layer of metal can solve or reduce this issue. Different work functions can also make a difference in the secondary-electron
emission and, hence, should also be considered.

To compare different methods of the generation of electron vortex beams, we summarize their main features in Table 1.
Undoubtedly, other methods for electron vortex production can be envisioned, and this list is likely to expand in the future.

3.3. Measurements of the orbital angular momentum of electron beams

3.3.1. General problem
In many cases, in addition to the production of electron vortex beams, one also needs to measure the OAM ⟨Lz⟩ carried by

the beam. It is important to remember that the result of such measurements depends, in the generic case, on the position of
the z-axis with respect to the electron beam. So far, we mostly assumed cylindrical symmetry of the electron vortex beams,
but real-life conditions often deviate from this symmetry, e.g., due to the occurrence of optical aberrations or scattering
by non-cylindrically-symmetric objects. In this case, the direct proportionality between the topological charge ℓ and OAM
breaks down [237],meaning thatmeasuring the topological charge is not generically equivalent tomeasuring theOAM [238].

At the quantum-mechanical level, the z-component of the OAM of a paraxial wave can be calculated by integrating the
OAM density, proportional to r jϕ , Eqs. (2.15) and (2.16). Therefore, an ideal method should be able to measure this quantity
independently of the radial component of the current, jr , and independently of the shape of the wave. As we will see, all
the methods developed so far fall short of this requirement. Note that wave propagation, whether free or operated by
lenses, is intimately linked to the Fourier transform and, as such, allows the efficient mapping of the transverse momentum
components p⊥ into coordinates r⊥. This simple relation lies as the heart of diffractive techniques, that reveal the linear
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Table 1
Summary of different methods for the generation of electron vortex beams. Presented are: theoretically expected and experimentally achieved efficiencies
(defined as the fraction of the impinging intensity to end up in the desired vortex state), the main advantages and drawbacks, and relevant bibliographic
references.

Method Efficiency theory/exp. Advantages Disadvantages Papers
Holograms
(Binary)

∼10% / ∼10% Versatile, straightforward,
high quality EVBs

Inefficient, multiple
diffracted beams

[77,78,100,213,214,217,235,236]

Holograms
(Phase)

100% / ∼40% Efficient, versatile,
high quality EVBs

Charging, multiple
diffracted beams, apertures
are specific to a given value
of kinetic energy

[129,140,217,235]

MIP phase
plate

100% / ∼55% Efficient, single output
beam

Charging, difficult fabrication,
aperture is specific to
a given kinetic energy

[140,141]

Magnetic phase
plate

>95% / ∼92% Efficient, single output
beam, independent of
kinetic energy

Difficult fabrication, cannot
be used inside a strong
magnetic field such as the
objective back focal plane

[92,144,232]

Aberration
tuning

∼50% / ∼32% Single output beam,
more efficient than
binary holograms

Limited by aberration
correction technology

[224,229]

Astigmatic
mode
conversion

100% / N/A Efficient, single output
beam, tunable in real time

Charging, apertures are
specific to a given value of
kinetic energy

[220,221]

momentumspectrumof the outgoingwave in the diffraction pattern, as used, e.g., in TEMstudies of reciprocal crystal lattices.
If a similar process could be devised for the longitudinal OAM, it would facilitate studies of a variety of phenomena.

An efficient far-field sorting of different OAM states was suggested in optics [239], employing a transverse-coordinate
transformation r⊥ → r′

⊥
that converts every r = const circle into a straight line (e.g., y′

= const). This transforms the
azimuthal phase increment 2πℓ into a linear phase ramp, causing a shift, in the far-field intensity, proportional to ℓ. Only
recently first demonstrations have started to emerge for electrons [240].

Several other approaches to OAMmeasurements have been developed in optics, with sensitivity up to the single-photon
level [34,241]. However, these methods cannot be directly adopted by electron microscopy due to the limited flexibility of
electron-optical elements. Therefore, the techniques that have so far been demonstrated with electrons offer a much lower
level of generality and/or detection efficiency than those available for photons [240,242,243].

3.3.2. Diffraction from holograms and apertures
The first measurement of the topological charge has been demonstrated by projecting a vortex beam on a fork-grating

hologram [242,244], Fig. 21(a, b). The far-field pattern generated by the hologram in this condition is similar to the one
obtained for an impinging plane wave (Fig. 18) and is formed by a one-dimensional array of vortex beams. The relative
intensities of the diffracted beams are, to a good approximation, unaltered [209,244], while their topological charges ℓ′ are
now given by ℓ′

= Nℓ0 + ℓ where ℓ0 is the dislocation order of the fork and ℓ is the topological charge of the impinging
beam. In particular, a diffracted beam that satisfiesNℓ0 = −ℓwill be a non-vortex ℓ′

= 0modewith themaximum intensity
in the center. This allows the determination of the topological charge of the impinging beam via the dislocation charge of
the fork hologram, ℓ0, and the diffraction order N of the beam without the typical doughnut-like intensity distribution, as
shown in Fig. 21(b). A sufficiently small pinhole centered on a diffracted spot can readily discriminate between the vortex
and non-vortex modes and detect the ℓ′

= 0 component with the maximal intensity in the center. This method has been
suggested as a possible basis for automated measurements of the topological charge of the impinging beam using a set
of appropriately-placed pinholes. Such measurements, however, would be highly inefficient as most of the beam intensity
would be discarded due to the limited transparency of the mask, the division of the intensity into several diffraction orders,
and the subsequent limited transmittance of the pinhole [242].

The topological charge of a vortex beam can also be revealed by diffraction from geometric apertures. The common feature
of these methods is that the diffraction pattern given by the geometrical aperture is altered by the unique phase profile of
the vortex beam in away that reveals the topological charge. For example, a triangular aperture generates a triangular lattice
of spots, with the side of the triangle having |ℓ| + 1 spots and the orientation of the triangle depending on sgn(ℓ) via the
Gouy phase [242], see Fig. 21(c). While such geometric apertures have not been widely used tomeasure the OAM of electron
vortex beams, the diffraction patterns reveal a variety of remarkable physical phenomena [245].

A particular case of geometric aperture is a knife-edge aperture that blocks half (or a finite segment) of the vortex beam at
its waist, Fig. 21(d). This produces a C-shaped beam, which rotates, upon propagation to the far field, as an effect of the Gouy
phase, in the direction determined by sgn(ℓ) [165,246,247]. Importantly, this effect can be regarded as a direct manifestation
of the azimuthal probability current jϕ in vortex beams. Indeed, the spiraling current density in a cylindrically-symmetric
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Fig. 21. Diffraction-basedmethods formeasurements of the topological charges of electron vortex beams [242,243]. (a) Schematic diagramof themain idea.
The vortex beam impinges on a specially-shaped aperture (or a phase plate) producing the far-field diffraction pattern which reveals the value of ℓ. In (b–f)
the patterns produced by different elements are shown, with the yellow and blue far-field images corresponding to the ℓ > 0 and ℓ < 0 beams. The fork
hologram (b) reveals the topological charge of the beam by observing which diffraction order does not have a doughnut profile. The triangular aperture (c)
yields a triangular lattice of spots where the number of spots along one side is |ℓ|+1. The knife-edge aperture (d) causes a transverse deformation and shift
of the beam intensity that depends on the sign and value of the OAM. The astigmatic phase plate (e) also causes a multi-lobed pattern where the number
of lobes is proportional to |ℓ|+1. The multi-pinhole interferometer (f) produces patterns which are related to the topological charge of the original wave
function. Furthermore, the autocorrelation function of these patterns allows one to obtain an approximate OAM spectrum of the incoming wave [243].

vortex beam produces zero transverse momentum: ⟨p⊥⟩ = 0, Eq. (2.20). Blocking part of the beam breaks this symmetry,
and the resulting C-shaped beam acquires non-zero transverse momentum ⟨p⊥⟩ ̸= 0, which leads, upon propagation, to
the transverse shift of the diffracted-beam centroid ⟨r⊥⟩ [183], see Fig. 21(d). Variations of this method have been employed
to confirm the vortex character of doughnut-shaped beams [92] and to investigate rotational vortex-beam dynamics in a
magnetic field [91] (Fig. 13).

A more complete method for the analysis of the OAM spectrum is offered by a multi-pinhole interferometer (MPI) [243].
This is an interferometer comprising a set of small holes; for the OAM measurement the most interesting configuration is
n pinholes evenly distributed around a circle, Fig. 21(f). When a wave is projected on such an interferometer, the far-field
intensity distribution is determined by relative phases between the pinholes, which allows one to retrieve the value of ℓ.
The MPI, however, is more than just another type of geometrical aperture, as it can be used to obtain a quantitative OAM
decomposition of the beam, even for mixed OAM states. Namely, recording the diffraction pattern allows one to determine
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the autocorrelation function of the interferometer by employing the Wiener–Khinchin theorem:

A (ψ) = F
−1
(
|ψ̃ |

2
)
, (3.9)

whereA denotes the autocorrelation, and F−1 indicates the inverse Fourier transform. This means that the autocorrelation
function of the MPI-transmitted wave ψ can be obtained by the inverse Fourier transformation of the far-field diffraction
patterns |ψ̃ |

2
shown in Fig. 21(f). Since A(ψ) exhibits peaks at positions corresponding to the distances between similar

objects, it will show peaks at displacements from the center equivalent to the displacement vector between different
pinholes (in addition to the central peak which is always present). Furthermore, each peak will be characterized by the
phase equal to the phase difference between the two contributing pinholes. Once the phase differences are obtained from
the autocorrelation function, it is possible to perform the OAM-harmonic decomposition to obtain the OAM spectrum of the
original beam [243].While such quantitative analysis is amajor step forward, theMPImethod suffers from a few limitations.
First, the pinholes need to be small enough to consider the phase as approximately constant inside each pinhole. Second,
they should be distant enough so that the peaks in the autocorrelation function do not overlap. Third, since we are sampling
the wave at only n positions, the MPI cannot distinguish between the vortex mode of the orders ℓ and ℓ + n, as they yield
identical phase differences in the n pinhole positions.

3.3.3. Astigmatic phase plate
The topological charge can also be measured by directly manipulating the wave phase, as in the conformal-map

method [239]. For electrons, a much simpler approach was demonstrated using mode conversion with an astigmatic
plate [220,242].When a quadratic phase plate is applied to a vortexmode by tuning the quadrupolar electron stigmators, the
doughnut-like intensity profile of the beam is split into a number of linearly-arranged intensity lobes as shown in Fig. 21(e),
where the number of lobes is equal to |ℓ| + 1. Furthermore, the orientation of the pattern with respect to the phase plate (at
the ±π/4 angle), reveals sgn(ℓ) [248,249].

Due to the ubiquitous presence of electron stigmators, this method is particularly convenient to employ within the TEM:
it requires the manual adjustment of only one freely tunable parameter. Therefore, this technique can be an ideal way to
confirm the vortex-beam order during the preparation of amore complex experimental setup (which can be then readjusted
to the astigmatism-free condition).

3.3.4. Nondestructive measurements using induced currents
Recently, amethod has been proposed [250] tomeasure the OAMof a vortex electron, by exploiting itsmagneticmoment,

Eqs. (2.24) and (2.25). Namely, when a vortex electron carryingmagneticmoment passes through a hollowmetallic cylinder,
it induces eddy currents in the cylinder without changing the electron vortex state. Simulations performed for a 20 µm
long and 1 µm wide platinum cylinder, and an electron with a kinetic energy E = 100 keV, showed the eddy currents
to be of the order of several picoamperes: an amount which would be measurable with current technology. The same
simulations have estimated the energy loss of the electron to be extremely small, ∼10−20 eV, supporting the nondestructive
nature of this approach [250]. However, since the current pulse in the cylinder contains the same amount of energy, this
extremely low value alsomeans that it would be extremely difficult, if not impossible, tomeasure it in practical experimental
conditions.

3.3.5. Conformal mapping
The OAM spectrum of an electron beam can, in principle, be directly revealed by employing a transverse-coordinate

transformation r⊥ → r′
⊥
that converts every r = const circle into a straight line (e.g., y′

= const) [239]. This transformation
converts the 2πℓ azimuthal phase into a linear phase ramp, thereby causing a shift in the far-field intensity which is
proportional to ℓ. Mathematically this can be done using a conformal map mimicking the transition from Cartesian to log-
polar coordinates:

x′
= −a arctan

(y
x

)
, y′

= −a ln

(√
x2 + y2

b

)
, (3.10)

where a and b are constant parameters. Such conformal mapping can be realized via ad-hoc phase plates, Two phase plates
are needed to implement this: the first ‘‘sorter’’ plate operates the coordinate transformation, while the second ‘‘corrector’’
plate is needed, in the far field of the first one, to compensate the difference in optical paths caused by this ‘‘unwrapping’’.
While, efficient OAM sorting was demonstrated for optical beams [239,251], the limitations of the phase-plate technology
for electrons hampered the adoption of this method in the TEM. Only recently this method has been realized for the first
time using holographic gratings [240], and used to directly measure the OAM spectrum of flower-shaped superpositions
of vortex beams (see Section 2.7 and Fig. 11), as well as the OAM spectrum of an electron beam after interaction with a
magnetized nanorod. Despite suffering, in the current implementation, from a significant modal cross-talk and from the
limitations of holographic gratings, the high generality and immediate interpretability of this method are apparent. Some of
these limitations could be solved by replacing the hologramswithmore efficient electrostatic optical components, removing
most of thematerial present in the beampath [252]. It has been shown through numerical simulation that the ‘‘sorter’’ phase
plate can indeed be accurately approximatedwith a charged needle, while the ‘‘corrector’’ plate can be realizedwith an array
of electrodes.
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3.4. Spiral phase plate imaging

Beside producing and detecting electron vortices, one might wonder if we can also use spiral phase plates as an imaging
filter by changing the topological charge of the transfer function of the microscope. This can, in principle, be obtained by
mounting a spiral phase plate in the back focal plane of the objective lens of the microscope. In practice, this could be a
true spiral phase plate or an alternative means to add a vortex phase factor to this plane, changing the conventional transfer
function of the microscope as:

exp[ i∆Φ(k⊥) ] → exp[ i∆Φ(k⊥) + iℓφ ] , (3.11)

where ∆Φ(k⊥) is the aberration function describing the phase behavior of the objective lens, ℓ is the topological charge
of the spiral phase plate, and φ is the azimuthal angle in the k⊥-plane. Doing so results in a redistribution of the image
intensities (i.e., probability densities):

ρ0(r⊥) → ρℓ(r⊥). (3.12)

In real experimental conditions, spiral phase plates do not conserve the total current. Indeed, the center of the plate, where
the phase (and the thickness) is indeterminate, is usually blocked by putting a small amount of an opaque material, which
effectively removes the lowest frequency components from the filtered image, see Fig. 17(a).

Applying such a spiral phase filter results in an image where the intensity in each point is directly proportional to the
weight of the ℓth OAM component measured with respect to the same point [253]. Recording a series of such images ρℓ
with ℓ covering a range of values provides a point-by-point OAM spectrum of the conventional image wave ψ0. This can,
in principle, allow the reconstruction of the whole complex wave field ψ0 (otherwise unknown, as we typically record only
ρ0 = |ψ0|

2). However, in practice this would require some form of a programmable phase plate which could easily change
its topological charge to allow a rapid recording of the image series. Such plates currently do not exist in TEM [224].

Lacking such an ℓ-varying phase plate, one could resort to only measuring the image intensities with two opposite
topological charges: e.g., ℓ = ±1. In this case, the difference and sum of the image intensities have been demonstrated
to yield [253]:

ρ1 + ρ−1 ∝ |∇⊥ψ0|
2, ρ1 − ρ−1 ∝ (∇⊥ × j0⊥) · z̄, (3.13)

where j0⊥ is the probability current density for the original wave function ψ0 in the plane of interest (typically the
plane immediately after the sample, containing the so-called exit wave). Remarkably, the second Eq. (3.13) enables one
to reconstruct the curl of the transverse current density, which is typically omitted in conventional transport of intensity
reconstructions [85]. Furthermore, the first Eq. (3.13) includes the gradient of the phase of the wave functionψ0, and, hence,
can improve the contrast in highly transparent weak phase objects (where intensity is practically uniform).

A practical realization of the vortex filtering setup remains difficult due to the unwanted scattering and contamination
issues with phase plates in the objective back focal plane. The most attractive option might seem to be placing a magnetic
needle (with themonopole-like field acting as spiral phase plate) in the back focal plane, but this is hampered by the presence
of a strong magnetic field in that plane which would likely magnetize the needle in the unwanted up/down direction rather
than along the needle. A workable alternative is the use of the reciprocity theorem, turning the electron trajectories upside
down (time reversal) and creating a bright-field STEM setup with an incoming vortex probe. This setup works reasonably
well, relying on different vortex-probe production schemes, but is highly dose-inefficient, as it requires a very limited
acceptance angle, discarding the majority of the electrons.

3.5. Elastic interaction of vortex electrons with matter

When electron vortex beams interact with matter, the cylindrical symmetry is typically broken, and the beam evolves in
a highly nontrivial way through the material. In this process, the electron OAM changes significantly for all but the thinnest
sample and can even change its sign for certain thickness [254–256]. This process can be effectively simulated using standard
multislice numerical calculations solving the non-relativistic Schrödinger equation for a fast electron wavepacket traveling
through the potential produced by the atoms. Extending these simulations to include the incoming vortex states is trivial as
long as the source code of the software is open [257–259].

This thickness dependence seems to undermine all hopes for using vortex electron beams to obtain unique information
through scattering by materials except for very thin samples. However, even though the electron OAM varies upon
propagation through a crystal, the phase singularity in the vortex center is far more stable. Indeed, the net topological
charge is conserved during the wave evolution, and the phase singularity has the tendency to follow a crystallographic
channel of atoms [260]. This leads to the peculiar effect: a focused vortex beam entering the sample along a column of
atoms remains captured in this potential channel much longer than a beam with the same opening angle but without the
vortex phase structure [260]. Thus, electron vortex beams could potentially be used to suppress the unwanted dechanneling
effects that occur as conventional focused beams travel through the sample. Such dechanneling leads to the leaking of the
beam’s intensity to atomic columns neighboring the initial one,which is detrimental for the localization of, e.g., spectroscopic
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Fig. 22. The scattering cross-section for electron Bessel beams with an energy of 300 keV, the vortex charges ℓ = 0 and |ℓ|= 1, and different values of the
transversemomentum κ (expressed via the opening angle θ0: sin θ0 = κ/k), on a screened Coulomb potential corresponding to an iron atom [261,262]. The
scattering amplitude is cylindrically symmetric (up to the vortex phase factor), and the plots show its dependence on the polar scattering angle θ . Positions
of the maxima approximately correspond to the opening angles θ0 of the incident Bessel beams.

signals, such as EELS or energy dispersive X-ray (EDX) spectroscopy. So far, this attractive proposition has not yet been
demonstrated experimentally, likely due to the effect of source-size broadening (see Section 3.2.6).

In order to gain further insights in the elastic scattering of a vortex probe on materials, it is useful to have an analytical
description of the elastic-scattering amplitude. In Refs. [261,263], the Rutherford scattering amplitude of Bessel beams by
a screened Coulomb potential has been analytically derived. This showed that the transverse momentum structure of an
electron beam (with orwithout OAM) can have a significant impact on elastic scattering, even by a simple Coulombpotential.
Fig. 22 shows the scattering amplitudes for beams with ℓ = 0 and |ℓ|= 1, and different values of the transverse momentum
κ . The scattering amplitude of a Bessel beam can be seen as the convolution of a ring of tilted plane waves [see Fig. 5(a)] with
the plane-wave scattering amplitude by the spherically-symmetric potential. This coherent superposition of the plane-wave
Rutherford scattering peaks leads to a ring-like scattering intensity structure (depending on the polar scattering angle θ ) even
for non-vortex beams (ℓ = 0). For |ℓ|= 1, the intensity vanishes in the forward direction θ = 0, and this dip becomes more
visible as the transverse momentum κ increases.

To calculate the elastic scattering in the case of an arbitrary potential, produced by a configuration of atoms in a material,
one can adopt the so-called kinematic approximation. Assuming the scattered part of the wave to be much smaller than
the incoming part, it considers the potential as a small perturbation and takes into account only single-scattering events.
In this approximation, the scattering amplitude for an incoming wave ψ(r) scattered on a potential V (r) to a plane wave
ψ ′(r) = exp(i k′

· r) with the wave vector k′ can be written as [4]:

f (k′) =
⟨
k′
⏐⏐V ⏐⏐ψ ⟩ ∝ ∫

d3r e−i k′
·r V (r)ψ(r). (3.14)

This scattering amplitude can be presented as a convolution of the Fourier transform (FT) of the potential and that of the
incoming wave:

f (k′) = F[V · ψ](−k′) =

[
Ṽ ∗ ψ̃

]
(−k′). (3.15)

For an incoming plane wave,ψ(r) = exp(i k ·r), the FT ψ̃(k) is a delta-function and the diffraction pattern will be determined
solely by the FT of the potential: Ṽ (k). For elastic scattering, the energy of the scattered electron (and, hence, the length of
the wave vector) is conserved, k = k′, and the diffraction pattern is determined in k-space by the intersection of Ṽ (k) and a
sphere with radius k, called the Ewald sphere [83,84]. This means that the momentum transferred in the scattering process,
q = k − k′, must satisfy Ṽ (q) ̸= 0, which is the momentum matching condition. A schematic example for a potential V (r)
periodic along the propagation z-axis is given in Fig. 23(a). The FT of the potential, Ṽ (k), corresponds to discrete planes
perpendicular to the z-axis, so that the resulting diffraction pattern consists of rings which coincide with the zeroth and
higher-order Laue zones in conventional electron diffraction [83,84].

The diffraction pattern can be significantly altered when modifying the probe (incoming wave) ψ(r). For instance,
in convergent-beam electron diffraction (CBED) the scattering amplitude is convolved with the FT of the probe, ψ̃(k) ∝

Θ(κmax − k⊥), Eq. (3.1), i.e., a disc with uniform phase and amplitude [83,84], Fig. 23(b). In turn, the FT of a converging
vortex electron beam is a disc with the azimuth-dependent phase: ψ̃(k⊥) ∝ exp(iℓφ)Θ(κmax − k⊥) [265], see Fig. 23(c).
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Fig. 23. Visual representation of Eq. (3.15) for elastic electron scattering k → k′ , Eqs. (3.14) and (3.15), in a periodic crystal potential V (r). (a) In the
plane-wave regime, the scattering is determined by the intersection of the Fourier transform (FT) of the potential, Ṽ (k) (here shown as discrete planes
for a z-periodic potential), with the Ewald sphere of radius k (shown in gray) [83,84]. The corresponding zero- and first-order Laue zones are indicated
by the small blue circle near the pole of the sphere and by the red ring, respectively. According to Friedel’s law, Ṽ (q) = Ṽ ∗(−q), and scattering events
with opposite q = k − k′ vectors are equally probable and the diffraction pattern is centrosymmetric. (b, c) For non-plane-wave probes, the diffraction
condition is determined by the convolution of Ṽ (k) with the FT of the incoming wave, ψ̃(k). (b) In convergent beam electron diffraction (CBED) ψ̃(k) is
a disc with a constant phase and Friedel’s law remains valid after the convolution. (c) For a vortex probe, ψ̃(k) is a disc with an azimuthally dependent
phase. Convolving it with Ṽ (k) breaks Friedel’s law and generically results in different probabilities for the q and −q event. In particular, the corresponding
non-centrosymmetric diffraction patterns allow one to probe chirality of crystals [264,265].

To show the effect of the vortex-probe diffraction, now consider a 3D crystal model. The FT of the potential, Ṽ (k), can
now be modeled by a lattice of delta-functions (not explicitly shown in Fig. 23) giving rise to Bragg spots in the plane-
wave diffraction pattern. Since the symmetry of the crystal potential is constrained by Friedel’s law, requiring Ṽ (q) =

Ṽ ∗(−q), the zeroth-order Laue zone must be centrosymmetric [4]. In other words, scatterings with q and −q momentum
transfers always have equal probabilities |f (k′)|2, Fig. 23(a), which yields centrosymmetric diffraction patterns (even for non-
centrosymmetric, e.g., chiral, crystals). In the case of CBED, the Bragg spots become discs because of the convolutionwith the
FT of the probe, ψ̃(k). However, Friedel’s law is still satisfied, [Ṽ ∗ ψ̃](q) = [Ṽ ∗ ψ̃]

∗(−q), and opposite-q scatterings are still
equiprobable, Fig. 23(b), and the resulting diffraction pattern is always centrosymmetric. In contrast to this, the vortex probe
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circumvents Friedel’s law, and non-centrosymmetric crystals produce non-centrosymmetric diffraction patterns [264,266].
This is because for the vortex wave function ψ̃(k), generically [Ṽ ∗ ψ̃](q) ̸= [Ṽ ∗ ψ̃]

∗(−q), and opposite-q scatterings can
have different probabilities, Fig. 23(c). This opens up the vortex-beam probing of complex crystal symmetries, which are
hidden for standard techniques.

3.5.1. Chirality in crystals
An important application of the elastic scattering of vortex beams on crystals is the probing of the chirality of crystalline

materials. Chirality is the property of any 3D object that cannot be superimposed with its mirror image [267]. A chiral
object and its mirror image are said to be the two enantiomers of the same structure. Chirality is ubiquitous in nature,
and it underpins many physical phenomena, such as optical activity. The two enantiomers of the same compound often
have different physical, chemical or biological properties. A chiral crystal is characterized by a space group possessing only
proper symmetry elements [rotations and screw-axes] and no improper symmetry elements [mirror(-glide) planes and
(roto-)inversion centers]. Mirroring the crystal with respect to any plane results in a fundamentally different crystal.

Determining the chirality of a sample in a TEM is challenging because high-resolution imaging techniques record only a
2Dprojection of the atomic arrangement. If the sample ismirroredwith respect to the (x, y) plane, the crystal is replacedwith
its enantiomer, while the projection remains identical. Moreover, as we discussed above, the exact space group (specifically,
chirality) of the crystal cannot be determined using the conventional (plane-wave or CBED) electron diffraction. In recent
works [264,265] electron-vortex probing of crystal chirality was suggested and demonstrated experimentally. A kinematical
treatment of an electron vortex beam of order ℓ focused on aQ -fold screw axis of the chiral crystal, shows that theNth-order
Laue zone is centrosymmetric if and only if [264]

ℓ− χN = nQ . (3.16)

Here, χ = ±1 indicate the opposite chiralities of the crystal, while n is an integer number. In Ref. [264] this method was
demonstrated experimentally by focusing electron vortex beam on the three-fold screw axis of a Mn2Sb2O7 crystal.

3.5.2. Magnetic contrast
Elastic electron scattering on magnetic fields forms another interesting proposal for experiments. We have already seen

that a magnetic monopole converts a plane wave into a vortex beam, and actual magnetic fields around (nano) materials
can be interpreted as emanating from ‘‘local magnetic monopoles’’, inside and on the surface of the material with a density
ρm ∝ ∇ ·m, wherem is the local magnetization of thematerial. Even though the actual magnetic field is strictly divergence-
free, the scattered electron wave nevertheless exhibits a current density which curls near the ‘‘magnetic poles’’, in a way
similar to how an approximate magnetic monopole can be used to generate electron vortex beams.

This effect can be exploited to directly visualize the ‘‘monopole density’’ in a magnetic material in the TEM by obtaining
the curl of the in-plane probability current, ∇⊥ × j⊥, as detailed in Section 3.4 (i.e., using the difference of two TEM
images obtained with opposite-ℓ spiral phase plates). As mentioned above, this setup is currently difficult to obtain, but
the experiment [268] suggests that the reciprocal setup, with an incoming vortex beam directed on the sample and a bright-
field detector accepting electrons scattered along the optical axis, behaves as predicted. This effect is highly attractive as
it localizes the measured signal at the virtual monopoles. This leads to a potentially superior signal-to-noise ratio in the
measurement as the fields can be derived at a later stage by convolution with the field kernel of a single monopole. Still,
further experiments are needed to explore this effect, but this prediction highlights once more why an image filter based on
a tunable spiral phase plate would be highly desirable.

It has also been predicted that the Zeeman energy shift of electron vortex beams in a longitudinal magnetic field (see
Section 2.6) can result in an ℓ-dependent redistribution of the far-field intensity. This can allowone tomap themagnetization
within a sample by recording the amount of±ℓ vortex electrons scatteredwithin a limited angle from the forward direction,
in a form of ‘‘elastic dichroism’’. While the signal at the atomic scale is predicted to result in a difference ∼10−4, for higher
values of ℓ (e.g. ℓ = ±20) and at a resolution of a few nanometers, the difference could reach a measurable magnitude of a
few percents [269,270]. Recent experiments have proven the feasibility of measuring the phase shift induced by the elastic
interaction between a vortex beam and a largemagnetic sample (amicron scalemagnetized rod) by using an interferometric
method [271,272].

3.6. Inelastic interaction of vortex electrons with matter

The fast electrons in a TEM can also interact with the sample inelastically, leaving both the sample and the fast electron
with energies different from the initial ones. This phenomenon is actively exploited in the technique of electron energy loss
spectroscopy (EELS), where the kinetic energy distribution of an ensemble of fast electrons is recorded after passing through
the sample [273]. Such a spectrum contains information about all excitation events in the sample and their respective
probability, revealing information such as: which elements are in the sample, what is their concentration, and how are
they bound to each other. All this information can be combined with the atomic resolution provided by a focused STEM
probe, which explains the widespread use of this technique.
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Fig. 24. (a) Schematic of the electron Bessel-beam scattering by an atom into a plane wave. The incident Bessel beam consists of multiple plane waves
with the k-vectors conically-distributed with the polar (convergence) angle θ0 (shown semitransparent here). These are scattered into a single plane wave
with the wave vector k′ (polar scattering angle θ ). The corresponding momentum-transfer vectors are q = k − k′ . (b, c) Examples of the inelastic electron
scattering accompanied by the angular-momentum exchange with the atom [274,275]. The OAM difference between the incident and scattered electron
waves, ℓ− ℓ′ , corresponds to the change in the magnetic quantum number of the atom,∆m. The examples shown here correspond to the reciprocal cases
of ‘‘vortex → plane wave’’ (b) and ‘‘plane wave → vortex’’ (c) scatterings with θ = θ0 and equal probability amplitudes.

3.6.1. Inelastic scattering by atoms in the Born approximation
A simple model, that can elucidate a number of important features of inelastic vortex-electron scattering, is the Bessel-

beam scattering on a single-electron atom in the Born approximation. For plane waves, this scenario provides a building
block of electron–matter interaction, which is used in EELS. The results presented below can be deduced analytically, as
shown in [274].

We consider the same geometry as for elastic scattering: a centered z-propagating Bessel beam scatters on a single-
electron atom. Using the same mathematical formalism as developed for elastic Bessel-beam scattering [261], one can
determine analytical expressions for all the partial scattering amplitudes for this system. The Bessel beam represents a
coherent superposition of plane waves with conically distributed wave vectors k, see Fig. 5(a). Therefore, its scattering into
a plane wave with the fixed wave vector k′ is determined as an integral of the plane-wave scattering amplitude f (k, k′) over
incoming k vectors or momentum-transfer vectors q = k − k′, Fig. 24(a) (see Section 4.4 below).

The resulting scattering amplitudes for various atomic transitions, e.g. 1s → 2p±, can be written down in an analytic
(although rather cumbersome) form [274,275]. In particular, these vortex-scattering amplitudes describe properties of the
angular-momentum exchangewith the atom, Fig. 24(b, c). Namely, when the scattering of a vortex electronwith topological
charge ℓ is accompanied by the change of the magnetic quantum number of the atom (with respect to the z-axis), ∆m, the
scattered wave will correspond to the vortex state with ℓ′

= ℓ − ∆m. The cases ℓ = ∆m and ℓ′
= −∆m correspond to

the ‘‘vortex → plane wave’’ and ‘‘plane wave → vortex’’ scatterings, as shown in Fig. 24(b, c). Importantly, the scattering
amplitudes for these reciprocal cases are exactly equal to each other, assuming the same parameters in the incoming and
outgoing vortex states. Such ‘‘inelastic OAM reciprocity’’ enables one to chose between the two equivalent probing schemes
involving vortex states of either incident or scattered electrons.

3.6.2. EELS cross-sections and selection rules. Magnetic dichroism
In the dipole approximation, the plane-wave scattering of a fast electron by an isotropic point scatterer can be

characterized by the following scattering amplitude [84,273]:

f (k, k′) ∝ ⟨i| q · r |f ⟩, (3.17)

whereq = k−k′ is themomentum-transfer vector,whereas |i⟩ and |f ⟩ are the initial and final quantumstates of the scatterer.
In the q ≪ k approximation, the selection rules for the angular-momentum (l) and magnetic (m) quantum numbers of the
atom read [273]:

∆l = ±1, ∆m = −1, 0,+1. (3.18)

For the 1s → 2p atomic transition (corresponding to the K absorption edge), three separate transitions to px, py, and pz are
possible, involving a momentum transfer q in the corresponding x, y, and z directions. Using projective measurements, one
can selectively measure excitations to these states attached to Cartesian coordinates. This method involves the so-called
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Fig. 25. (a) Schematic picture of the energy loss magnetic chiral dichroism (EMCD) technique. The crystalline specimen acts as a beam splitter creating a
Bragg-scattered copy of the outgoing wave in the energy-filtered diffraction pattern (b) (the rainbow color scheme is used for the intensity). Here, ‘‘G’’ and
‘‘0’’ denote the reciprocal lattice points. The waves interfere destructively in the center, independently of the excited state (p+ or p−). (c) Inducing a relative
phase shift of∆Φ = π/2 between the two waves yields an asymmetric diffraction pattern that reveals which of the two states was excited. Here it is p+ ,
while the opposite transition to p− would result in amirrored intensity distributionwith intensity shifted to the upper half-plane. The phase shift can be set
by tuning the excitation error, i.e., the orientation of the reflecting lattice planes with respect to the beam. The simulations in (b) and (c) correspond to the
incident electrons with energy 200 keV inducing dipole-allowed transitions, and the scale bar indicates the scattering angle of 10 mrad. (d) Experimental
EMCD L3 pattern of crystalline Fe showing the asymmetry corresponding to (c) [281].

linear dichroism (also known as ‘‘anisotropic scattering cross section’’), which gives access to the population of the different
2p states in anisotropicmaterials. A typical example can be found in the studies of graphite and graphene,where the in-plane
σ ∗ bonds can be selectively probed off-axis, while the excitation to the π∗ states leaves fast electrons close to the z-axis of
the incoming electrons [276,277].

The above linear dichroism works well for anisotropic materials, but fails to identify the angular-momentum properties
of the 2p orbitals. The linear combinations p±

= px ± i py describe the orbital states with opposite OAM. Conventional EELS,
with an incoming plane wave, cannot distinguish between excitations to the p+ and p− states, because both scatterings lead
to the same ring-like probability distribution in the far field.15

The atomic transitions 1s → 2p± are characterized by changes in the angular momentum of the atom by ∆m = ±1. In
this case, the plane-wave scattering amplitude (3.17) takes the form of [274]:

f ±(k, k′) ∝ f (q⊥) exp
(
−i∆mφq

)
, (3.19)

where q⊥ = |q⊥|, and φq is the azimuthal angle of the q vector. Eq. (3.19) is equivalent to the transmission function of a
spiral phase plate, which means that the outgoing electron is in the vortex state with ℓ′

= −∆m, Fig. 24(c). In particular, if the
densities of unoccupied states in the p+ or p− orbitals are different, there should be a preferential scattering channel to the
corresponding ℓ′

= ∓1 vortex states of the scattered electron.16
Because the total scattering probability |f |2 is independent of them-dependent phase term, it does not allow distinguish-

ing between the excitation of the p+ and p− states. Oneway to overcome this limitation is to superimpose the outgoingwave
function in the far field with a reference wave that allows detection of the handedness of the azimuthal phase ramp shown
in Fig. 24(c). This is accomplished by using the crystalline specimen as a beam splitter: in a two-beam geometry it will create
a Bragg scattered coherent copy of the outgoing wave function that interferes with the original one, as shown in Fig. 25(a, b).
Inducing a phase shift ofπ/2 between the twowaves results in an asymmetric diffraction pattern, Fig. 25(c), that reveals a p+

transition. The opposite transition to p− would result in a mirrored intensity distribution with higher intensity in the upper
half plane [277,279,280]. This technique, revealing the difference between the excitation of the p+ and p− states, is called
energy loss magnetic chiral dichroism (EMCD). Fig. 25(d) shows an experimental EMCD pattern of crystalline Fe exhibiting the
asymmetry in the L3 ionization edge [281].

The EMCD allows one to obtain magnetic information similar to that given by the X-ray magnetic chiral dichroism [282],
but using EELS and now at a nanometer-scale resolution [107,283]. The advantage of this technique is the locally and
temporally extremely stable site selectivity by the intrinsic phase locking mechanism in the periodic lattice [284]. The
drawback of this technique is the difficulty in setting up the optimal phase shift by a precisely controlled diffraction condition
of the crystal lattice that acts as a beam splitter. This restricts the use of the EMCD to crystalline materials with precisely
known thickness and where the correct orientation can be predicted with precision.

A less restrictive method to retrieve the desired magnetic information about the sample requires an efficient far-field
OAM sorter for transmitted electrons. Such an ideal sorter is not currently available (as discussed in Section 3.3), although
promising setups have been proposed [252]. The first hints of this effect have been demonstrated on a ferromagnetic iron

15 Onemight think that the two states could be distinguished in energy. But even if the energy splitting is high enough to be resolved in the EELS spectrum,
still one cannot know which energy corresponds to which transition.
16 In practice, the 2p → 3d transitions are often investigated for the L2,3 edges of transition metals. This complicates the above description with the

spin–orbit splitting, but essentially the same imbalance remains (albeit less strong than in the case considered above). For a detailed treatment, see [278].
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sample, using a forked holographic grating as an OAM filter before the electron spectrometer [77]. However, further simu-
lations of this setup have revealed that there is a very complex interplay between chromatic aberrations, the position of the
scattering atom in the sample, elastic scattering, and precise focus, complicating the interpretation of the experiment [285].

Nevertheless, the experiment [77] ignited significant interest in the reciprocal scheme where a focused electron vortex
probe with topological charge ℓ = ±1 impinges on the atom, breaking the symmetry of the excitation to the p± states,
Fig. 24(b). In this case, considering electron scattering in the forward direction (i.e., into a z-directed plane wave), the
approximate EELS selection rules become [274]:

∆l = ±1, ∆m = ℓ. (3.20)

These selection rules signify vortex-dependent magnetic dichroism for electrons. This is in sharp contrast to optics, where
probing magnetic dichroism and chirality involve only polarization (spin) degrees of freedom of light and are mostly
insensitive to vortices [101–104]. Note that the limited validity of the dipole approximation for electron scattering leads
to a limited validity of the above selection rules [286–288].

The selection rules (3.20) should in principle give access to the magnetic state of an atom with a resolution defined by
the probe size, even down to the single atomic column. The setup was shown to be viable on theoretical grounds, with an
increasing level of details included [278,285,289]. At the same time, numerical simulations revealed that elastic electron
scattering on the crystal lattice (Bragg diffraction, channeling effects) is rather detrimental to the vortex character of the
incoming probe (it breaks the cylindrical symmetry, making Lz a bad quantum number). This sets an upper limit for the
thickness of the crystal used. Moreover, the magnitude of the magnetic signal in the EELS spectrum is expected to be at
best ∼10% of the EELS signal in the L2,3 edge of the transition metal. This makes the experiments extremely challenging
in view of the low signal-to-noise ratios often encountered in atomic-resolution EELS. Note also that this method has the
desired sensitivity to the magnetic properties only when the probe is positioned precisely on the atom columns and is of
atomic size. Deviations from these parameters will further reduce the magnetic sensitivity and can even switch the sign of
the effect when the probe is displaced from the atom column or is too large [289].

Despite the tremendous experimental efforts that were put into realizing the OAM-magnetic probing experiment by
several groups [98,289–292], the results are still inconclusive. Nonetheless, the inelastic scattering of shaped beams has
been successfully applied to the study of surface plasmons [221], and this success in a similar case supports the validity of
the description outlined above. However, as compared to the case of surface plasmons, experiments on inelastic scattering
by atoms are heavily limited by two factors. First, the source-size broadening is much more important due to the much
smaller scale of the scattering objects (atomic scale rather than 10s of nm). Second, the scattering cross-sections are several
orders of magnitude smaller, resulting in a weaker signal. Limiting the incoherent source-size broadening without losing
too much intensity is currently the main challenge (see Section 3.2.6). Making significant progress on this issue requires the
development of brighter electron sources [234].

Some groups have proposed and demonstrated other symmetry-breaking mechanisms in the electron probe to reveal
the atomic-scale magnetic signal. In particular, Refs. [291,293] deliberately added four-fold astigmatism through the
probe aberration corrector, while the works [105,107] dealt with off-axis inelastic scattering as a function of the probe
displacement with respect to the atomic column. These experiments showed an atomically-resolved magnetic signal albeit
at very low signal-to-noise ratios.

For the actual application of the above techniques, it is crucial to make a significant improvement of the signal-to-noise
ratio. The most likely approach to this challenge is to deal with the ‘‘plane wave → vortex’’ scattering with the subsequent
effective OAM sorting in the far field, prior to the EELS spectrometer.

3.6.3. Interaction with plasmons. Probing of chirality
Electron vortex beams have also been considered as a possible tool in the spectroscopic investigation of localized surface

plasmon resonances (SPRs). SPRs are collective excitation of electrons (in metals) and electromagnetic fields, which appear
due to the confinement of the conduction electron gas in metals and small nanoparticles [294]. Due to their peculiar
properties, such as strong localized electromagnetic fields and high sensitivity to nanometer-scale environmental changes,
they offer a unique platform for sub-wavelength optics, nano-photonics, and optoelectronic devices [294–296]. EELS plays
an important role in this research because it allows the intensity of the optical electric field produced by SPRs to be
mapped [297]:

Γ (r⊥, ω) ∝

∫
|Ez(r⊥, z, ω)|2dz, (3.21)

where Γ (r⊥, ω) is the probability of the electron beam focused on the position r⊥ to lose an energy h̄ω, whereas Ez is the
z-component of the electric SPR field, and ω is the SPR frequency. While this is a powerful tool to investigate SPRs, the loss
of information caused by recording only the electric-field intensity does not allow one to obtain the charge distribution or
the direction of the electric field (see, e.g., [298]). Furthermore, important phenomena, such as circular dichroism of chiral
plasmonic structures cannot be investigated at the nanoscale using electron plane waves. Electron vortex beams have been
proposed as a potential tool to address these limitations.

In Ref. [299] the OAM exchange in the inelastic interaction between fast electron beams and chiral assemblies of
metal nanoparticles was studied. Calculations of the OAM- and energy-resolved EELS cross-section showed that there is a



K.Y. Bliokh et al. / Physics Reports 690 (2017) 1–70 47

Fig. 26. OAM-resolved inelastic scattering cross-section for an electron beam impinging on a chiral cluster of plasmonic nanoparticles. (a) Schematic
representation of the proposed experiment. An electron beam impinges on a nanoparticle cluster, and then the inelastically-scattered electron wave is
filtered with an OAM analyzer. (b) The energy loss spectra for each OAM component, with differences clearly visible for the ∆ℓ = ±1 or ∆ℓ = ±2
components. Adopted with permission of the authors from [299], copyrighted by the American Physical Society.

significant OAM transfer between the electron beam and the SPRs of the nanoassembly, Fig. 26 [299]. Performing the OAM-
resolved EELS on such structureswould reveal strong (up to∼10%) dichroismbetween transitionswith opposite handedness,
i.e., with opposite amount of the transferred OAM: ∆ℓ = ±1, ∆ℓ = ±2, etc. This effect strongly depends on the axis with
respect to which the OAM is measured. This can be used for the local probing of the chirality of the plasmon resonances on
the nanometer scale, including biomolecules [299]. Preliminary experiments, based on illuminating one such nano-assembly
with ℓ = 0,±1 electron vortex beams, have provided encouraging results [300]. However, while the data shows a strong and
reproducible difference between the EELS signals obtained with different vortex beams, the experiment lacks a quantitative
model for the OAM post-selection mechanism, and the interpretation requires further clarification [300].

We again note that this is in contrast to optical probing of chiral nanoparticles and molecules [267]. Circular dichroism
enables optical probing of chiral objects using only polarization (spin or helicity) degrees of freedom of light [301–304]. At
the same time, optical vortices are insensitive to chiral properties of matter and do not produce dichroism [101–103].

The interplay between the ℓ-fold azimuthal symmetry of electron vortex beams and the discrete rotational symmetry
of SPR modes was theoretically investigated in [305]. The interaction between these two symmetries could allow selective
probing of desired SPR modes. For instance, the ℓ = 1 vortex beam preferentially excites the dipole resonance, while the
ℓ = 2 vortex couples more strongly to the quadrupole one. More generally, it was recently shown that, in the inelastic
interaction between an electron beam and a plasmonic nanostructure, a signature of the scalar electromagnetic potential
of SPR, VSPR, is imprinted in the phase of the scattered electron wave [221]. By accepting only electrons scattered along
the propagation z-axis (i.e., the non-vortex mode with ℓ′

= 0), it becomes possible to detect only resonances whose
potential possesses the same symmetry as the impinging electron beam. This was also tested experimentally using a two-
lobed beam, reminiscent of an HG01 Hermite–Gaussian mode. In agreement with the theory and numerical simulations,
the experiments [221] showed that such a beam can selectively detect the dipole excitation mode while suppressing the
higher-order excitations.

3.6.4. Angular momentum transfer to nanoparticles
The OAM exchange between electron waves and the sample in inelastic scattering can also be revealed by observing the

sample state. Indeed, in the extreme case when the electron is absorbed by the sample, the total angular momentum of the
sample is increased by the OAM carried by the electron. This was used in optics for the detection of mechanical properties of
optical OAM beams, which produced the rotation of absorptive particles [32,65,237,307,308]. Similar angular-momentum
transfer from electron vortex beams to small particles can become noticeable when the current of the electron beam is
high, while the moment of inertia of the particle is low. In the absence of friction, the particle would start to rotate and the
rotational velocity would keep increasing as more andmore electrons are absorbed. In reality, any particle is in contact with
a substrate (typically a support film), and significant friction exists between the support film and the particle, causing at best
a low rotational speed that is dominated by a balance between the friction and the flux of the incoming OAM quanta. Recent
experiments have demonstrated this effect [306,309], as shown in Fig. 27. A quantitative interpretation is complicated due
to many factors: unknown friction between particle and support; strong dependence of the effect on the orientation of
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Fig. 27. Angular-momentum transfer from electron vortex beams to nanoparticles [306]. (a) Schematic of the experiment. Vortex beams with different
topological charges ℓ, generated with a holographic mask, are focused on the sample, so that only one of the beams impinges on the selected gold
nanoparticle. (b) Experimental images displaying clockwise and counter-clockwise rotations of a nanoparticle (indicated by arrows) in the ℓ = −1 and
ℓ = 1 vortex beams.

crystalline particles; simultaneous effects of phonon, plasmon, core-loss and elastic scatterings; and rather unpredictable
effect of carbon contamination and beam damage effects occurring at the high electron currents [306,310]. Therefore, it is
very desirable to preform such experiments on particles in a liquid medium in an environmental sample holder or using
diamagnetically-levitated particles.17 This might offer direct mechanical measurements of the angular momentum carried
by electron vortex states.

4. High-energy processes with vortex electrons

4.1. Vortex solutions of the Dirac equation: Dirac–Bessel beams

High-energy processes, such as collisions of electrons, require that the electrons be treated in a fully relativistic manner.
We start this section with a reminder of this formalism and with a review of the exact vortex solutions of the free Dirac
equation, whichwere constructed in [108,147,311]. These expressions have different forms but are equivalent to each other.
Depending on the specific problem, one of these forms may be more appropriate than the others. Below we will describe
these solutions in detail, with the aim to provide a convenient reference for future calculations of vortex electron scattering
processes. Throughout this section, we will use the relativistic units h̄ = c = 1.

Before going into details, we mention that exact solutions of the Dirac equation in cylindrical coordinates, either free
or in the presence of external fields or potentials, have been known since decades. In particular, the first edition of the
monograph [312] published back in 1982 [313] already contained free solutions of the Dirac equation exhibiting vortex-like
azimuthal dependences. Various formal aspects of such solutions, with different boundary conditions, were studied later by
several authors, see, e.g., [314–318]. However it was only in [147] and later publications that the exact vortex solutions of
the Dirac equation were written in a way convenient both for theoretical exploration of its angular-momentum ‘‘anatomy’’
and for usage in scattering processes. In this section we expose these recent developments.

We start with the scalar Bessel-beam solutions (2.5) in the Fourier-integral form and with the restored exp(−iEt) factor:

ψkzκℓ(r, t) = e−iEt
∫

d2k⊥

(2π )2
ψ̃κℓ(k⊥) eik·r, (4.1)

where the Fourier amplitude corresponds to the conical distribution of wave vectors, Eq. (2.7) and Fig. 5(a):

ψ̃κℓ(k⊥) = (−i)ℓ
δ(k⊥ − κ)

κ
eiℓφ . (4.2)

Here (k⊥, φ, kz) are the cylindrical coordinates in k-space, and the subscripts explicitly indicate all continuous- and discrete-
spectrumparameters of the solutions. Thewave functions (4.1) and (4.2) correspond to a complete orthogonal set of solutions

17 Charging due to secondary-electron generationwill likelymake this difficult even thoughwe have demonstrated diamagnetic sample levitation inside
an SEM chamber.
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of the scalar wave equation with a definite energy E =
√
k2 + m2

e , longitudinal momentum pz = kz , and z-component of
the OAM Lz = ℓ. These solutions are normalized as∫

d3rψ∗

kzκℓ(r, t)ψk′zκ ′ℓ′ (r, t) =
1
κ
δ(κ − κ ′) δ(kz − k′

z) δℓℓ′ , (4.3)

where δab is the Kronecker delta.
A relativistic electron with spin is described by the multi-component (bi-spinor) wave function Ψ (r, t). In this case, the

Bessel states can be introduced as a straightforward generalization of scalar Bessel modes:

Ψkzκℓs(r, t) = e−iEt
∫

d2k⊥

(2π )2
ψ̃κℓ(k⊥) uks eik·r. (4.4)

This equation differs from Eq. (4.1) only by the presence of the bispinor uks which corresponds to the plane-wave solution
withmomentumk and in the spin statewhichwe generically denote by s. Note that Eq. (4.4) includes the assumption that the
Fourier amplitude ψ̃κℓ is the same as in Eq. (4.2) and, in particular, that it does not depend on the spin state of the electron.18

There are two crucial aspects in which Eq. (4.4) differs from the scalar case. First, the quantity ℓ can no longer be
interpreted as the z-component of the electron OAM. In fact, the solution (4.4) is not an eigenstate of the OAM operator
L̂z because even the individual plane-wave components in the superposition do not possess a well-defined OAM [see
Eq. (2.57)]. This is a manifestation of the fact that the OAM and spin operators, L̂z and Ŝz , do not commute with the Dirac
Hamiltonian [148,178], which leads to the intrinsic spin–orbit interaction [147] (see Section 2.8). The solution (4.4) has a
well-defined z-component of the total angular momentum, though, Ĵz = L̂z + Ŝz , and wewill describe below its relation with
the parameter ℓ. Second, we have the freedom to choose the basis for describing the polarization state s. One possibility
exploited in [147] is to define polarization states with respect to the same z-axis. Another possibility is to use the helicity
basis [108,311], which is especially convenient for scattering processes involving high-energy electrons.

Let us first take the former option and consider the plane-wave bispinor uks, whose polarization state is defined with
respect to the fixed z-axis. The bispinor has the following form [148]:

uks =

( √
E+ Ws√

E−(σ̂ · k̄) Ws

)
, (4.5)

where σ̂ is the vector of 2 × 2 Pauli matrices, with ŝ = σ̂/2 being the spin-1/2 operator in the electron rest frame, Eq. (2.55),
E± = E ±me, k̄ = k/k is the unit vector in the k-direction. The basis spinorsWs are eigenvectors of the non-relativistic spin
ŝz with the eigenvalues s = ±1/2:

W+1/2 =

(
1
0

)
, W−1/2 =

(
0
1

)
. (4.6)

It is instructive to express σ̂ · k̄ using spherical coordinates (k, φ, θ ) in k-space:

σ̂ · k̄ = σ̂+ sin θe−iφ
+ σ̂− sin θeiφ + σ̂z cos θ, (4.7)

where σ± = (σx ± iσy)/2.
Substituting Eqs. (4.5)–(4.7) into Eq. (4.4), we obtain [147]:

Ψkzκℓ,+ 1
2
(r, t) =

ei(kz z−Et)

2π

⎡⎢⎢⎣
⎛⎜⎜⎝

√
E+

0
cos θ0

√
E−

0

⎞⎟⎟⎠ eiℓϕ Jℓ(κr) + i

⎛⎜⎝
0
0
0

sin θ0
√
E−

⎞⎟⎠ ei(ℓ+1)ϕ Jℓ+1(κr⊥)

⎤⎥⎥⎦ ,

Ψkzκℓ,− 1
2
(r, t) =

ei(kz z−Et)

2π

⎡⎢⎢⎣
⎛⎜⎜⎝

0√
E+

0
− cos θ0

√
E−

⎞⎟⎟⎠ eiℓϕ Jℓ(κr) − i

⎛⎜⎝
0
0

sin θ0
√
E−

0

⎞⎟⎠ ei(ℓ−1)ϕ Jℓ−1(κr)

⎤⎥⎥⎦ , (4.8)

where r = |r⊥|, as before, and sin θ0 = κ/k fixes the polar angle of the conical Bessel plane-wave spectrum, Fig. 5(a).
The solutions (4.8) represent Bessel beams for Dirac electrons, i.e., the electron counterparts of optical vector Bessel
beams [183,319]. The probability density and current distributions for these Dirac–Bessel beams with different ℓ and s are
shown in Fig. 15. The presence of two terms with distinct ℓ for any spin state s = ±1/2 in Eqs. (4.8) makes it evident that
such solutions are not eigenmodes of the OAM operator L̂z = −i∂/∂ϕ. These are not eigenmodes of the z-component of the
full relativistic (4 × 4) SAM operator (2.54) Ŝ = diag(σ̂, σ̂) either. Instead, vector Bessel beams (4.8) are eigenmodes of the
total angular momentum operator Ĵz = L̂z + Ŝz with the eigenvalues Jz = ℓ + s. As described in Section 2.8, one observes

18 This assumption is not mandatory. One can build vortex electron solutions as superpositions of plane-wave electrons with continuously varying k⊥

accompanied with the varying spin state, i.e., with inhomogeneous polarization [90,175–177]. We will not discuss such solutions, apart from the mere
possibility of introducing a spin- and azimuthal-angle-dependent phase factor, see the discussion after Eq. (4.11).
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the intrinsic spin–orbit interaction (SOI) in the free Bessel electron beam, whose strength is determined by the dimensionless
parameter

√
Λ = sin θ0

√
E−/E, Eq. (2.58). This interaction becomes weak,Λ ≪ 1, both in the non-relativistic limit E− ≪ E

and in the paraxial approximation θ ≪ 1; the vortex quantum number ℓ corresponds to the approximate OAM Lz ≃ ℓ in
either of these limits. For non-paraxial relativistic electron vortex beams, the SOI is significant and leads to spin-dependent
probability densities (see Fig. 15) [147].

We now explore the second option, choosing the helicity basis for the electron spin states, which is more convenient for
high-energy electrons. Consider again the plane-wave spinor (4.5) but now use, instead ofWs, the eigenstates of the helicity
operator χ̂ = ŝ · k̄ = σ̂ · k̄/2:

χ̂ W (χ )
= χ W (χ ), χ = ±1/2. (4.9)

These spinors can be explicitly written as

W (+1/2)(k) =

⎛⎜⎝ cos
θ

2

sin
θ

2
eiφ

⎞⎟⎠ , W (−1/2)(k) =

⎛⎜⎝− sin
θ

2
e−iφ

cos
θ

2

⎞⎟⎠ . (4.10)

Then, we can replace σ̂ · k̄ → 2χ inside the bispinor (4.5) to arrive at

ukχ =

( √
E+ W (χ )

2χ
√
E− W (χ )

)
. (4.11)

The φ-dependence is still present inside the spinorsW (χ ), and it is different for its upper and lower components, displaying
once again that the Dirac electron is not in a fixed-OAM state. Next, we obtain electron Bessel beams with a given helicity
by substituting the bi-spinors (4.11) into Eq. (4.4) with the scalar Fourier components ψ̃κℓ, Eq. (4.2) [108]. Akin to the Bessel
beams with a well-defined non-relativistic spin component sz = s, Eqs. (4.8), these solutions are eigenmodes of the total
angular momentum operator Ĵz with the eigenvalues Jz = ℓ+χ , involving the helicity χ instead of s. Thus, alternatively, one
can use the helicity-dependent Fourier components ψ̃κ(Jz−χ ), where Jz denotes the total angular momentum of the Bessel
electron irrespective of its helicity χ [311]. Note that in the paraxial approximation θ ≪ 1, the SOI effects become negligible
and the s-based and χ-based solutions approximately coincide with each other.

Finally, the link between the fixed-spin basis and helicity basis can be establishedwith the aid ofWigner’sD-function [2]:

W (χ )(k) =

∑
s=±1/2

D1/2
sχ (φ, θ,−φ)Ws, (4.12)

whereW (χ ) andWs are given by Eqs. (4.10) and (4.6), respectively. The explicit formof theWignerD-function for the spin-1/2
field is

D1/2
sχ (φ, θ,−φ) = e−isφ d1/2sχ (θ ) eiχφ, d1/2sχ (θ ) = δsχ cos

θ

2
− 2 s δs,−χ sin

θ

2
. (4.13)

With this notation, the bispinor (4.11) takes yet another form:

ukχ =

∑
s=±1/2

ei(χ−s)φd1/2sχ (θ )Us(E, χ ), Us(E, χ ) =

( √
E+ Ws

2χ
√
E− Ws

)
. (4.14)

Unlike expressions (4.5) and (4.11), the bispinor Us itself is now free from the φ-dependence, which reappears only in
the Wigner D-function. This representation is convenient for calculating high-energy electron scattering processes, as
demonstrated in [311]. Passing to the coordinate representation (4.4), we arrive at:

Ψkzκℓχ (r, t) =
ei(kz z−Et)

2π

∑
s=±1/2

i(χ−s)ei(ℓ+χ−s)ϕ d1/2sχ (θ0) Jℓ+χ−s(κr)Us(E, χ ), (4.15)

which is the helicity-basis counterpart of Eqs. (4.8).

4.2. Vortex electrons in a laser field: Volkov–Bessel solutions

The exact vortex solutions of the Dirac equation can also be found for an electronmoving in the field of an electromagnetic
(EM) wave. These solutions can be named Volkov–Bessel beams as they extend the well-known Volkov solutions [148,320] to
the Bessel vortex electron. These solutions were constructed and investigated first in [108] and later in [109], and they offer
insights into modifications of the vortex electron properties in a strong laser field. In this subsection, we denote the electron
momentum by p, reserving the letter k for the wave vector of the electromagnetic wave.

The Volkov–Bessel solutions are constructed in the sameway as the usual Bessel states. One uses the basis of plane-wave
Volkov solutions with four-momentum pµ to combine them as in Eq. (4.4) with the same Fourier amplitudes ψ̃κℓ(p⊥). The
Dirac equation in the field of an EM wave reads [148]:

[γµ(p̂µ − eAµ) − me]Ψ = 0, (4.16)
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Fig. 28. (a) Schematics of the Volkov–Bessel problem: a Bessel-beam solution for the Dirac electron and the field of an electromagnetic (EM) plane wave.
Here the electron vortex beam and the EM wave counterpropagate with the mean electron momentum ⟨p⟩ and the EM wave vector k. The EM wave
is linearly y-polarized. (b) Temporal variations of the transverse probability-density distribution in a paraxial Volkov–Bessel beam shown in the panel
(a) [109]. Here, the electron parameters are: azimuthal vortex index ℓ = 3, energy E = 300 keV, and opening angle θ0 = 0.02 rad. Instead of a plane EM
wave, here a five-cycle laser pulse was used with the central frequency ωc = 1016 Hz and electric-field amplitude E0 = 108 V/cm. The time range of 6.5 fs
approximately corresponds to the duration of the pulse.

where γµ are the Dirac matrices, p̂µ = (i∂t ,−i∇) is the electron canonical four-momentum operator, and Aµ is the
electromagnetic four-potential. The EM wave is described by the wave four-vector kµ = (ω, k), satisfying kµkµ = 0, and
the four-potential Aµ, in the traditionally-chosen Lorentz gauge, satisfies kµAµ = 0. The EM plane wave depends on the
coordinates via the single phase variable ξ ≡ kµrµ = ω t − k · r. The Dirac equation (4.16) can be recast in the form of a
second-order equation with a simpler spinorial structure:[

p̂µp̂
µ

− m2
e − ieFµνσµν

]
Ψ = 0. (4.17)

Here, p̂µ = p̂µ − eAµ is the kinetic electron four-momentum, Fµν = ∂µAν − ∂νAµ is the EM field tensor, and σµν =

(γ µγ ν − γ νγ µ)/2.
The plane-wave Volkov solution for the electron with four-momentum pµ = (E, p) satisfying pµpµ = m2

e is [148,320]:

Ψp(r) ∝

[
1 +

e
2(pµkµ)

(γµkµ)(γµAµ)
]
up,s exp(iS), (4.18)

where up,s is the plane-wave Dirac bi-spinor (with any spin state ‘‘s’’), and S is the action:

S = −pµrµ −
e

(pµkµ)

∫
dξ (pµAµ) +

e2

2(pµkµ)

∫
dξ (AµAµ). (4.19)

In order to construct the Volkov–Bessel solution, one must specify the relative kinematics of the EMwave and the reference
axis used to define the vortex electron. The simplest convention is to take counter-propagating EMwave and electron vortex
beam, Fig. 28(a). Assuming propagation of the vortex electron along the z-axis, the wave four-vector of the EM wave is
kµ = ω(1, 0, 0, −1). One can consider either a circularly [108] or linearly [109] polarized EM wave. In either case, the
expressions emerging from inserting Eq. (4.18) into the Bessel-beam form (4.4) are simplified, and the integral over the
azimuthal angle φ can be performed exactly.

An elegant way to evaluate this integral is to group the first two terms in Eq. (4.19). Then, the resulting integral becomes
exactly as for the free Bessel electron, with the replacement of the transverse coordinates:

r⊥ → R⊥ = r⊥ +
e

(pµkµ)

∫
dξ A⊥. (4.20)

One then obtains a sum of two Bessel functions [as in Eqs. (4.8) or (4.15)], depending on the chosen spin state, but with the
substitutions κr → κR⊥ in the Bessel functions and ϕ → ϕR in the vortex phase factors (here ϕR is the azimuthal coordinate
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of R⊥). The last factor in Eq. (4.19) represents, for a monochromatic plane wave, an integral over a constant, generating an
extra phase∝ (AµAµ) ξ . Just as for the usual Volkov solution, it amounts to the replacement of the energy and the longitudinal
momentum by the quasi-energy and quasi-momentum.

One can now calculate the dynamical properties (e.g., the expectation values of the spin and OAM) of the Volkov–Bessel
solutions [108]. Since the effective radial coordinate R⊥ explicitly depends on time, one can consider both instantaneous
and effective time-averaged quantities (marked with the overbar here). For the time-averaged quantities, the z-propagating
Volkov plane-wave state with a well-defined helicity χ displays a reduced spin ⟨S̄z⟩:

⟨S̄z⟩ = χ
1 − e2A2

⊥
ω/2E(pµkµ)

1 + e2A2
⊥
ω/2E(pµkµ)

. (4.21)

This effective depolarization is a purely kinematic effect caused by the spin precession in the external EM field, and its
strength is governed by the dimensionless parameter

η2 =
e2A2

⊥

m2
e
. (4.22)

In a strong laser field, η ≳ 1, ⟨S̄z⟩ is substantially reduced and can even change sign with respect to the helicity χ . For the
Volkov–Bessel electron beams, the same effect is responsible for the shift of the time-averaged total angular momentum
⟨J̄z⟩, but the effect is always less than one, even for large |ℓ|. For ultrarelativistic electrons, the exact reversal point is shifted
to higher η. However in such strong fields, one needs to complement the picture with inelastic scattering processes.

An alternative approach to the azimuthal integrals for the Volkov–Bessel solutions was advocated in [109]. Considering
an EM wave linearly polarized along the y-axis, Aµ = (0, 0, A, 0), the exponential of the second term in Eq. (4.19) can be
expanded as

ei f sinφ =

+∞∑
n=−∞

Jn(f ) einφ , f =
eκ

(kµpµ)

∫
dξ A(ξ ) . (4.23)

The Volkov–Bessel solution then takes the form of an infinite sum of the Bessel modes with vortex number (ℓ+n) weighted
with inJn(f ). Although this representation is not very convenient for an infinite EM plane wave, it can be used to investigate
the response of the Bessel electron to a strong few-cycle laser pulse. In this case, only a few terms in the above summation are
important. The numerical analysis of [109] demonstrated transverse y-oscillations of the Bessel-beam probability-density
distribution as the laser pulse passes through the electron. Fig. 28(b) illustrates such temporal variations of the transverse
probability density distribution in a paraxial Volkov–Bessel beam.

4.3. Schemes for vortex beam collisions

Nuclear and particle physics is another area where vortex electrons (and in general, vortex states of particles) can emerge
as a novel tool for the experimental exploration of fundamental interactions. Virtually all situations involving collisions
of particles, be it a fixed-target or a collider-like setting, are well described with plane waves. The fact that real colliding
particles are wavepackets is inessential; exceptions exist [321] but are extremely rare. Vortex states bring in a new degree
of freedom, the OAM,which can be exploited in collisions. The instrumentationwhichwould allow one to prepare, accelerate
to high energies, and collide vortex electrons, protons and other particles, does not exist yet, but first exploratory studies of
accelerating twisted electrons to multi-MeV energies are underway in JLab [322]. Anticipating that dedicated experimental
efforts will eventually make such experiments possible, it is timely to ask what opportunities this new instrument can offer
for nuclear and high-energy physics.

This question leads us to the problem of the theoretical description of the scattering processes of high-energy vortex
particles. Below we will overview the general kinematic novelties which arise in collisions of vortex states, and mention
particular processes investigated so far.

Several schemes for collisions of vortex states are possible, as shown in Fig. 29. First, a vortex state (V) can scatter,
either elastically or inelastically, on a fixed scattering center, and the final state is usually assumed to be a plane wave
(PW), Fig. 29(a). The prototypical problem here is the (screened) Rutherford scattering of vortex electrons on atoms, either
elastic [261,311] or inelastic [96], as well as radiative capture of vortex electrons by atoms [323,324]. In these examples, a
non-relativistic Schrödinger-equation treatment for incoming spinless (scalar) vortexwave is sufficient to grasp the essential
details, but at larger energies, the full relativistic treatment is needed.

Second, one can consider the scattering process in the collider-like kinematics, when two incoming particles scatter into
a certain final state. For such processes, the quantum-field-theoretic treatment is more appropriate. Different vortex vs.
plane waves settings have been considered: V+PW → PW+PW [115,325], V+V → PW+PW [115,120–124,326,327], V+PW
→ V+PW [114,115,328,329], and even V+PW→ V+V [330], Fig. 29(b)–(e). The fully-vortex scattering setting V+V→V+V can
be viewed as a particular case of the general formalism of collision of arbitrarily shaped wavepackets [123]. Each collision
setting has its own challenges and novelties, both in the theoretical description and in the possible experimental realization.
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Fig. 29. Schematic diagrams of scattering processes involving vortex particles. (a) Fixed-target scattering of vortex (V) into a plane wave (PW). (b) Single-
vortex scattering (collision) V+PW → PW+PW. (c) Vortex-vortex scattering into plane waves: V+V → PW+PW. (d, e) Vortex-into-vortex scattering V+PW
→ V+PW and V+PW → V+V.

4.4. Fixed-target scattering

In the fixed-target scattering, V → PW [Fig. 29(a)], the scattering center can absorb any momentum transfer. Since the
initial state is a coherent superposition of many plane waves, individual plane wave scattering amplitudes with different
momentum transfers interfere in the total amplitude (for the general wavepacket scattering on atoms, we refer to the recent
pedagogical exposition [331]). For example, for the Bessel beamwith parameters κ and ℓ, we canwrite theV→ PWscattering
amplitude as

f (κ, ℓ; k′) =

∫
d2k⊥

(2π )2
ψ̃κℓ(k⊥) f (k; k′) , (4.24)

where f (k; k′) denotes the usual plane wave scattering amplitude for the initial and final momenta k and k′. In the specific
case of screened Rutherford scattering, the plane-wave scattering amplitude is azimuthally symmetric, and one observes
that f (κ, ℓ; k′) ∝ exp(iℓφ′), with φ′ being the azimuthal angle of the final momentum k′, as a natural consequence of the
OAM conservation [261]. The polar angle distribution displays characteristic dependences on κ and ℓ [261,311].

In Eq. (4.24), the axis used to define the vortex state passes exactly through the scattering center. The case when the
reference axis is displaced from the scattering center by the impact parameter b⊥ can be treated either by including the
extra factor exp(−i b⊥ · k⊥) in the integral (4.24) [311,323] or by making use of the Bessel addition theorem to rewrite this
state in terms of aligned vortices. The latter method was used in the elastic [261] and inelastic [96] vortex-electron–atom
scattering, as well as in the analysis of atom excitation by off-axis vortex photons [104].

In the case of a single scattering center, an experimental control of this transverse shift, at least within the transverse
wavelength 1/κ , will be a challenge to overcome. Alternatively, one can consider an amorphous macroscopic fixed target,
where a single vortex beam is scattered by many centers with uniformly distributed values of b⊥. This setting is easy to
realize experimentally, but averaging over b⊥ smears out the distributions and erases interesting signals. For example, the
properties of photons emitted in radiative capture of vortex electrons [323] and of electrons elastic scattering [311] by atoms
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are insensitive to the electron vorticity ℓ and depend only on κ . Fortunately, this uniform averaging does not apply to crystals
and in particular to chiral crystals; in fact, elastic scattering of vortex electron beams can be used to investigate chirality in
crystalline materials, see Section 3.5.1.

4.5. Single-vortex scattering

The single-vortex scattering, V+PW → PW+PW [Fig. 29(b)], is essentially identical to plane-wave scattering [115,325].
To describe it, we start with plane-wave two-particle scattering with four-momenta kµ1,2 = (E1,2, k1,2) for the incoming
particles and k′µ

1,2 = (E ′

1,2, k
′

1,2) for the outgoing particles. The plane-wave S-matrix element can be written as

SPW = i (2π )4 δ(4)(kµ1 + kµ2 − k′µ

1 − k′µ

2 )
M
(
kµ1 , k

µ

2 ; k′µ

1 , k
′µ

2

)√
16E1E2E ′

1E
′

2

. (4.25)

The invariant amplitude M is calculated according to the standard Feynman rules. Transition to the vortex state is done by
integrating Eq. (4.25) over the plane-wave components of the initial vortex state [114]. For example, for the pure Bessel
state, similarly to Eqs. (4.1) and (4.2), we have:

SV =

∫
d2k1⊥

(2π )2
ψ̃κℓ(k1⊥) SPW . (4.26)

This simple expression exhibits an important effect. In contrast to the fixed-center scattering, now one integrates not only
the scattering amplitude M but also the kinematical δ-function in Eq. (4.25). The delta-function eliminates this integration
and effectively removes the coherence of plane-wave components inside a vortex state. As the result, the single-vortex
cross-section is represented as the azimuthally averaged plane wave cross-section, dσV =

∫
(dφk1/2π )dσPW (k1), and is

ℓ-independent [115]. The situation can become less trivial if the vortex state has an inhomogeneous polarization state with
a polarization singularity [12], or if a superposition of two ℓ-states is used (see examples in Section 2.7). In the latter case,
this scattering can be used, for example, to produce X-ray beams with accurately structured intensity distributions [325].

4.6. Vortex–vortex scattering into plane waves

The double-vortex scattering V+V → PW+PW [Fig. 29(c)] opens up novel physics opportunities, as it allows one to
measure quantitieswhich are not observable in the usual plane-wave collisions. Consider this processwith two Bessel vortex
states with parameters κ1, ℓ1 and κ2, ℓ2 defined with respect to the same axis. Similarly to Eq. (4.26), we now have:

SVV =

∫
d2k1⊥

(2π )2
d2k2⊥

(2π )2
ψ̃κ1ℓ1 (k1⊥) ψ̃κ2,−ℓ2 (k2⊥) SPW

(
kµ1 , k

µ

2 ; k′µ

1 , k
′µ

2

)
. (4.27)

The standard procedure, based on Fermi’s golden rule, to calculate the cross-section is to square the S-matrix element,
regularize the squares of the delta-functions with a finite volume and finite observation time, normalize appropriately the
initial and final states, divide the probability by the total observation time and the relative flux, and finally integrate the result
over final phase space. For the vortex–vortex scattering, this calculation follows the same route but the expressions differ
significantly from the standard case [114]. The finite-volume normalization rules for the Bessel vortex states are different
[108,115,328]. Separation of the event rate into the flux and cross-section becomes ambiguous, which is a generic feature of
the wavepacket scattering formalism, see the classic description in [321] and the recent development in [123]. One needs to
define in a reasonable way the generalized flux and generalized cross-section. In the works [108,115,328], slightly different
expressions were proposed, but in the paraxial approximation, which is sufficient for all practical purposes, and with a
smoothly behaving invariant amplitudeM, all these expressions coincide. Below, wewill omit the word ‘‘generalized’’ when
describing the cross-sections.

Themost salient feature of the vortex–vortex collision is that the final state kinematics acquires a new degree of freedom
with respect to the plane-wave collision. In the all-plane-wave two-particle scattering, the total momentum is well-defined,
K = k1 + k2 and is conserved during the process. As a result, the final momenta k′

1 and k′

2 are maximally correlated: if k′

1 is
fixed, k′

2 has no freedom left, as it must be equal to k′

2 = K−k′

1. In thewavepacket collision, with a certain distributions over
the initial momenta k1 and k2, this correlation is relaxed. The finalmomenta k′

1 and k′

2 represent now independent, although
partially correlated, degrees of freedom. As a result, the cross-section is now differential in both k′

1 and k′

2, or alternatively,
differential in k′

1 and K. For generic normalized wavepackets, it can be represented as

dσ = dσ0 R(K) d3K , (4.28)

where dσ0 is the usual plane-wave cross-section taken together with its appropriate final phase space, and R(K) is a certain
function usually peaked at the sum of the average momenta of the two initial wavepackets [120,321]. In the plane-wave
limit, R(K) → δ(3)(k1 + k2 − K), and dσ0 is recovered.

For pure Bessel beams, the non-trivial kinematical correlations concern only the transverse momenta: dσ/d2K⊥ ∝ |F⊥|
2,

where

F⊥ =

∫
d2k1⊥

(2π )2
d2k2⊥

(2π )2
ψ̃κ1,ℓ1 (k1⊥) ψ̃κ2,−ℓ2 (k2⊥) δ(2)(k1⊥ + k2⊥ − K⊥)M

(
kµ1 , k

µ

2 ; k′µ

1 , k
′µ

2

)
. (4.29)
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Fig. 30. Two kinematical configurations in the transverse plane contributing to the integral (4.29) for the final state with transverse momentum K⊥ . The
two invariant plane-wave amplitudes Ma and Mb differ from each other and interfere in Eq. (4.30).

In this expression, the value of K is fixed by choice of the two final plane waves. Since this integral contains four delta-
functions and four integrations, it can be evaluated exactly. It is non-zero only when κ1, κ2, and |K⊥| satisfy the triangle
inequalities |κ1 − κ2| ≤ |K⊥| ≤ κ1 + κ2, and in this case it gets contributions from exactly two plane-wave configurations
(a) and (b) shown in Fig. 30.

These two configurations are just reflections of each other with respect to the direction of K⊥. Denoting the plane wave
scattering amplitude evaluated at these two initial kinematics as Ma and Mb, we obtain [120]:

F⊥ ∝ Ma exp(iℓ1δ1 + iℓ2δ2) + Mb exp(−iℓ1δ1 − iℓ2δ2), (4.30)

where δ1 and δ2 are the inner angles (not to be confused with delta-functions) of the (κ1, κ2, |K⊥|) triangle, see Fig. 30. The
net result is that the cross-section contains an additional term proportional to the interference between two different plane
wave amplitudes with equal final but different initial momenta:

dσ ∝ |Ma|
2
+ |Mb|

2
+ 2 Re

[
MaM

∗

b exp(2iℓ1δ1 + 2iℓ2δ2)
]
. (4.31)

A more accurate analysis [120] with normalized wavepackets of Bessel states is necessary to regularize the end-point
singularities, and it shows that this interference term can be extracted via the azimuthal asymmetry of the cross-section.

The expression (4.31) was the starting point in demonstrating [120,121,327] that the scattering of two vortex states
allows one to probe the overall phase ΦM of the scattering amplitude M = |M| exp(iΦM). In the usual plane-wave collision,
the cross-section dσ ∝ |M|

2 is completely insensitive to the phase ΦM and its variation with kinematical parameters. In
vortex–vortex scattering, the two interfering plane-wave amplitudes Ma and Mb correspond to different initial and the
same final momenta, which implies different momentum transfers. The phaseΦM can depend on this momentum transfer.
For example, in the elastic scattering of charged particles the amplitude acquires the well-known Coulomb phase, which, for
large energies and small scattering angles θ , can be written as

ΦM(θ ) = ΦM0 + 2α log(1/θ ), (4.32)

where α is the fine-structure constant, andΦM0 is an angle-independent quantity which, strictly speaking, requires infrared
regularization and can be sensitive to the details of the process. Thus, the interference term in Eq. (4.31) is proportional to
cos[2ℓ1δ1 + 2ℓ2δ2 +ΦM(θa)−ΦM(θb)] and it is sensitive to the dependenceΦM(θ ). This quantity can be extracted from the
azimuthal asymmetry of the differential cross-section [120].

In Refs. [121,122], this idea was investigated in detail with the example of the moderately relativistic elastic electron–
electron scattering using the Dirac electrons described by bispinors (4.11) and their vortex combinations. A typical K⊥-
distribution of the cross-section is shown in Fig. 31. The left and right plots correspond, respectively, to the purely real
Born-level scattering amplitude and to the amplitude with the Coulomb phase ΦM(θ ) taken into account, with the value
of α artificially set to 10 in Eq. (4.32) for the purpose of illustration. One can see the interference fringes arising from the
interference between the two kinematical configurations of Fig. 30. The left plot is symmetric with regard to the horizontal
line (i.e., the direction of k′

1⊥) because the cross-section contains no terms proportional to sin(φk′
1
− φK) (with φk′

1
and φK

being the azimuthal angles of k′

1 and K), while the right plot shows a distorted pattern. This distortion can be quantified in
terms of up-down asymmetry [121,122]. It is this asymmetry that is proportional to the phase difference between the two
contributions and can lead to a direct measurement of ΦM(θ ). For the realistic α ≃ 1/137, the asymmetry was found to be
of the order of 10−4–10−3, which may be experimentally accessible with sufficient statistics.

In the works [123,124], the above suggestion was considered as a particular case of a more general setting. In order
to probe the overall phase of the scattering amplitude, one needs to collide states with manifestly broken azimuthal
symmetry, which necessarily goes beyond the plane-wave approximation. Developing further the Wigner-function-based
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Fig. 31. Differential cross-section, in arbitrary units, as a function of the totalmomentumK = k1+k2 , for fixed k′

1 , for purely real Born-level elastic electron
scattering amplitude (left), and for the momentum-transfer-dependent Coulomb phase (4.32) (right) [122]. The parameters used here are: E1 = 2.1 MeV,
k′

1 = 500 keV with k′

1 = k′

1x̄, Jz1 = 1/2, Jz2 = 13/2, and κ1 and κ2 are Gaussian-distributed around the values of 200 and 100 keV with the widths 10
and 5 keV, respectively. The results are averaged over different helicities of the incoming particles. In the right-hand panel, the fine-structure constant α is
artificially set to 10 to enhance the visibility of the up-down asymmetry.

theoretical formalism for collision of arbitrary wavepackets, Refs. [123,124] showed that thecross-section contains a new
phase-sensitive term proportional to the mean value of the following ‘‘effective impact parameter’’:

beff = b⊥ −
∂Φ1(k1⊥)
∂k1⊥

+
∂Φ2(k2⊥)
∂k2⊥

. (4.33)

Here, b⊥ = r1⊥ − r2⊥ is the usual impact parameter, i.e., the transverse separation of the centers of the two colliding
wavepackets, while Φi(ki⊥) describe their additional phases beyond the center-of-mass motion: ψi(ki) ∝ exp[−i ri · ki +

iΦi(ki⊥)]. This term can be extracted from the data via the asymmetry defined as the relative difference between the
cross-sections with beff and −beff. The average value of this operator can be non-zero either for an off-center collision of
wavepackets (b⊥ ̸= 0) or for the head-on collision of wavepackets with non-trivial phase fronts, such as vortex electron
beams. In fact, with the definition of asymmetry adopted in [123,124], the phase singularity needs to be shifted away from
the collision axis in order to produce a non-zero asymmetry. This development opens up several complementary ways to
probe the phase of the scattering amplitude, which await experimental verification.

When experimentswith vortex protons and other hadrons become possible, the abovemethod can be applied to hadronic
processes. It will then offer additional information on hadronic interactionswhich cannot be accessed in conventional exper-
iments. One example is the small-angle elastic pp scatteringwithmomentum transfer of the order of 0.1–1GeV. At high ener-
gies, it is dominated by the exchange of the Pomeron, an emergent strongly-interacting object whose theoretical description
is still debated [332].With vortex proton scattering, one canmeasure the dependence of the phase of the full amplitude in the
momentum transfer. In this way, one gets a new observable against which the Pomeronmodels can be tested [123,124,327].
So far, the Pomeron phase can be accessed only in the very narrow t-region via the strong-Coulomb interference, and, in
addition, it also relies on the good knowledge of the Coulomb phase. With vortex protons, one should be able to probe
this phase over the entire t region, including the diffraction dip region where a strong variation of the phase is expected in
some models. Another example is the intermediate-energy hadroproduction reactions such as γ p → K+Λ, which involve
hadronic resonances in several competing partial waves [333]. Although the relative phases between these contributions
can be accessed, disentangling them would become easier if the information on the overall phase were available.

4.7. Vortex-into-vortex scattering

The vortex-into-vortex scattering process V+PW → V+PW [Fig. 29(d)] brings new challenges. The calculation of the
strictly forward or backward scattering does not pose any difficulty [114,328], as one can use the same reference axis to
describe the initial and final vortex states. The orbital angular momentum is naturally transferred from the initial to the
final vortex state: ℓ′

= ℓ. For off-forward scattering, the situation is more complicated. While [114] argued that one still has
ℓ′

≃ ℓ, the analysis of [115] showed that the entire ℓ′-region from −∞ to +∞ contributes to the cross-section. In [329],
the origin of the discrepancy was traced back to the usage of non-normalizable pure Bessel beams. If one uses normalizable
vortex wavepackets and, in addition, if one chooses its own reference axis for each vortex state, then the controversy is
resolved. This result stresses the usage of the orbital helicity [75] (i.e., the OAM component along the propagation axis) as
the physically-relevant quantity rather than the OAM defined with respect to a fixed axis.

Additional difficulties arise if one views the processV+PW→V+PWorV+PW→V+V [Fig. 29(d, e)] to producehigh-energy
vortex states [114,328,330]. Formally, the two outgoing waves aremomentum-entangled, and there is no pre-existent way to
label one particle as a vortex state and the other as a planewave [330]. Only after one particle is projected on an approximate
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planewave and ismeasured by the detectorwith amomentumuncertainty less than κ , the other particle emerges in a vortex
state. Whether this projection can be performed on an event-by-event basis with the existing technology remains unclear.

Further on, the simultaneous energy and momentum conservation in the off-forward V+PW → V+PW scattering implies
that the outgoing vortex state is not monochromatic. Indeed, different plane wave components of the final vortex state
correspond to different energies not only of the vortex state itself, but also of the recoil plane wave. Thus, the coherence
among the plane wave components required to form a vortex state is lost, or at best is hidden [115,325].

As far as specific high-energy processes are concerned, the only example considered in detail was the inverse Compton
backscattering [114,325,328]. Here, optical photons scatter almost backward off high-energy electrons and take a sizable
portion of the electron energy. This process is well known and is routinely used, for example, at the SPring-8 and HIgammaS
facilities [334] to produce GeV-range photons for subsequent hadronic photoproduction experiments. This process was
calculated for vortex initial and final photons [114,328], while the electrons, both initial and final, were assumed to be
plane waves. In the strictly forward scattering, the final photon is upconverted into the GeV energy range while retaining
its OAM. For slightly off-forward kinematics and with a due care mentioned above, the final orbital helicity is also close to
the initial one [329]. Another application of this process was considered in [325]. Here, the plane wave photons scatter off
energetic vortex electrons and turn into a flux of energetic photons with structured intensity distribution in the transverse
plane. Preparing the initial vortex electrons in custom-tailored superpositions of different values of OAM, one can accurately
shape the transverse distribution of the final X-ray pulse.

5. Radiation by vortex electrons

Electrons can radiate. They emit electromagnetic (EM) radiation via bremsstrahlung when the electron trajectory is
deflected by external fields or through polarization radiation (an umbrella term including the Vavilov–Cherenkov radiation,
diffraction radiation, transition radiation, etc.), when moving in or near a polarizable medium. One can ask whether the
radiation from vortex electrons differs in any aspect from the plane-wave case, and if so, what additional information it
encodes. For vortex electrons, two types of EM radiation have been investigated theoretically so far: the Vavilov–Cherenkov
radiation [110,111] and transition radiation [112,113,335]. In both cases, the vortex nature of the electron leads to several
distinct features of the radiation it emits. These features, if experimentally detected, should provide additional insight into
the radiation process, and could serve as a complementary and convenient diagnostic tool for measuring the parameters of
vortex electrons.

5.1. Vavilov–Cherenkov radiation

The Vavilov–Cherenkov radiation [336–338] from a vortex electron was investigated in [110,111]. Both works treated
the problem in the full quantum-electrodynamical approach and focused on the spectral, dΓ /dω, and spectral–angular,
d2Γ /dωdΩγ , distributions of the photon emission rate Γ (ω is the photon frequency andΩγ is the solid angle spanned by
the photon wave-vector directions), as well as on the polarization properties.

As a short reminder, within the standard quantum treatment of the Vavilov–Cherenkov radiation from a plane-wave
electron, the emission process is described as a ‘‘decay’’ of the initial electron with the four-momentummomentum pµ into
the final electron p′µ and the in-mediumphotonwithmomentum h̄kµ [339]. Note that in this sectionwe restore the constants
h̄ and c. In what follows, E stands for the initial relativistic energy of the electron, β = v/c = pc/E is its dimensionless
velocity, while h̄ω is the energy of the emitted photon. This radiation has the following spectral–angular distribution [339]:

dΓ
dωdΩγ

=
α

2π

[
β sin2θCh +

(h̄ω)2

2βE2 (n2 − 1)
]
δ
(
cos θkp − cos θCh

)
, (5.1)

where n(ω) is the frequency-dependent refraction index of the medium, θkp is the angle between the emitted photon and
the initial electron, and θCh is the Cherenkov cone opening angle given by

cos θCh =
1
βn

+
h̄ω
2E

n2 − 1
βn

. (5.2)

Clearly, the emission angle satisfies 0 ≤ θCh ≤ 90◦, and the requirement that cos θCh ≤ 1 sets a natural cut-off to the
spectrum, h̄ω ≤ h̄ωcutoff = 2E(βn − 1)/(n2 − 1). Under usual conditions, the cut-off photon energy is in the MeV range,
far beyond the applicability range of the electrodynamics of the medium. However, by delicately adjusting the velocity of
the electron, one could in principle bring this cut-off into the optical/UV region, boosting the importance of the quantum
effects in the Cherenkov radiation problem and exposing the spectral discontinuity right at this cut-off [110]. Note that
these spectral features are valid for a plane-wave electron and do not require it to be in any specially-designed wavepacket.
However, bringing them to the optical/UV region would strongly suppress the intensity of radiation and therefore make the
direct observation of these cut-off effects extremely challenging [111].

Eq. (5.1) iswritten for anunpolarized initial electron and after summationover the final electron andphotonpolarizations.
Actually, the radiated Cherenkov photons are almost 100% linearly polarized, with the polarization lying in the scattering
plane. If the initial electron is polarized, then the Cherenkov light acquires a non-zero degree of circular polarization [111].
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Fig. 32. Schematics of the Vavilov–Cherenkov radiation by a vortex electron [110,111]. Here, θ0 is the opening angle of the vortex electron, θCh is the opening
angle of the Cherenkov cone for the plane-wave case, the gray ring represents the annular region of directions where the photons can be emitted.

If the initial electron is in a vortex state, the angular distribution of the Vavilov–Cherenkov radiation changes [110,111]. A
pure Bessel beam is a superposition of plane-wave electronswith a conical distribution ofmomenta p, which is characterized
by the polar angle θ0 (sin θ0 = h̄κ/p), Fig. 5(a). All these plane-wave components radiate, but if we do not detect the final
electron and only study the photon angular distribution, this radiation adds up incoherently. Indeed, in each plane-wave
radiation subprocess the four-momentum conservation dictates pµ = p′µ

+ h̄kµ. If one measures the intensity of radiation
in a certain direction without detecting the final electron, one fixes kµ and integrates over all p′µ. But then different Fourier
components of the initial vortex electron carry different values of pµ and, due to the fixed kµ, correspond to different final
momenta p′µ. Since the interference requires that all the final-state particles remain exactly in the same state, no interference
is possible in this kinematics. Thus, averaging the plane-wave intensity (5.1) over the appropriate initial electronmomentum
pµ, while keeping kµ fixed, we will obtain the spectral–angular distribution for the vortex electron.

In doing so, the most salient feature is the angular distribution. It has a ring shape shown in Fig. 32 and spans over the
photon’s polar angles θk with respect to the mean electron propagation direction (the z-axis):

|θCh − θ0| ≤ θk ≤ θCh + θ0. (5.3)

For a Bessel electron with a definite value of the z-component of the total angular momentum Jz , the angular distribution
summed over the final helicities is azimuthally symmetric and grows towards the boundaries of the ring. This leads to two
remarkable phenomena which cannot be produced with plane-wave electrons. First, if θCh + θ0 > π/2, then some photons
are emitted in the backward hemisphere with respect to the overall propagation direction of the vortex electrons [110]. In
order to observe this effect, one would need to achieve large opening angles of the vortex state or take a medium with a
very large refractive index. Second, if the two opening angles match, θCh = θ0, the Cherenkov radiation strongly peaks in the
forward direction, as shown in themiddle panel of Fig. 33. For perfect Bessel beamswith a fixed value of themomentumpolar
angle θp = θ0, the intensity of the Vavilov–Cherenkov radiation will grow near the forward direction as 1/θk . For realistic
vortex electrons, θp is not fixed but is distributed over an angular region with width δθ0, Fig. 6(a), this bright emission
will smear over a spot of comparable angular size δθ0. To observe this forward emission, one would need, first, vortex
electrons with a sufficient transverse coherence length and exhibiting several radial intensity rings (originating from the
Bessel distribution with θ0) to guarantee δθ0/θ0 ≪ 1, and, second, sufficient monochromaticity in order not to smear the
very forward Cherenkov ring. For the realistic value of θ0 = 20 mrad, which implies 1 − cos θ0 ≃ 2 · 10−4, one must adjust
the electron velocity to the emission threshold velocity with the accuracy of 10−4.

After integration over all photon emission angles, the spectral distribution dΓ /dω for the vortex electrons and, gener-
ically, for any monochromatic wavepacket, coincides with the plane-wave spectral density. This is a consequence of the
incoherent summation of the radiation from different plane-wave components. Although the initial electron is a coherent
superposition of different plane waves, once we integrate over the final-electron parameters, this coherence is lost. In this
respect, attributing a special role to the coherence as the origin of the spectral–angular features as done in [110] is unjustified.

The polarization properties of the Cherenkov light also change when one switches from the plane-wave to the vortex
electron. The geometry of the problem shows that, for a pure Bessel state, the radiation intensity into any given direction
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Fig. 33. The spectral–angular distribution of the photon emission rate Γ as a function of the emitted-photon spherical angles θk and φk (mapped onto the
(x, y) plane of the far-field detector) for an electron in a superposition of two vortex states with (Jz )1 − (Jz )2 = 3 and equal amplitudes [111]. The radii of
the annular region of the radiation are determined by Eq. (5.3).

inside the ring is an incoherent sum of two plane-wave intensities with different initial electron kinematics. As a result, the
emitted light remains linearly polarized but its degree of polarization changes. In particular, the photons can become linearly
polarized in the direction orthogonal to the scattering plane [111].

Finally, if instead of a single vortex state, the electron is taken in a superposition of two vortex states with total angular
momenta (Jz)1 and (Jz)2, then the electron probability-density distribution becomes azimuthally-inhomogeneous, see
Figs. 11 and 12. The multi-petal structure of the Vavilov–Cherenkov radiation from such structured electrons mimics
the electron density profile in the focal plane, as shown in Fig. 33. Thus, Cherenkov radiation emerges as a convenient
macroscopic diagnostic tool for such electrons.

5.2. Transition radiation

The transition radiation occurs when an electron crosses the boundary separating two media with different permittivity
or permeability [340,341]. The simplest example is the electron impinging from the vacuum onto a conductive plane.
In all cases studied experimentally, this radiation is associated with the particle’s electric charge. However, classical
electrodynamics predicts that magnetic moments and higher-order multipoles can also radiate [340,341]. This contribution
to radiation has never been detected for any kind of polarization radiation due to its weakness.

Vortex electrons with large OAM ℓ can make the observation of this contribution possible. Indeed, as we discussed
in Sections 2.5 and 2.8, paraxial free-space vortex electrons possess longitudinal magnetic moment [75,147] M =

(ec/2E) (⟨L⟩ + 2⟨S⟩), Eqs. (2.24), (2.25), and (2.60). Assuming longitudinal polarization, i.e., spin component s = ±1/2, the
absolute value of the magnetic moment is M = γ−1

|ℓ+ 2s|µB, where µB is the Bohr magneton and γ is the Lorentz factor.
Therefore, large values of ℓ would strongly enhance the magnetic-moment contribution to the transition radiation and, via
interference with the electric-charge contribution, this can lead to an observable signal.

The essence of this idea can be explained in the following way [112,113,335,342]. Within classical electrodynamics, an
electron with velocity v can be viewed as a point source equipped with the electric charge e and magnetic moment M.
Accordingly, it is describedwith the electric andmagnetic current densities je = e v δ(r−vt) and jm = γ−1c ∇×[M δ(r−vt)].
The curl leads to an extra factor iω/c in the Fourier components of the radiation field. As a result, the relative strength of the
magnetic moment transition radiation always bears the following small factor [341]:

ϵ =
Mω
γ e c

. (5.4)

The radiation energy contains this factor squared. For optical/UV photons and for moderately relativistic plane-wave
electrons (ℓ = 0), ϵ = h̄ω/E ∼ 10−5; for slower electrons, the radiation is much weaker. An additional difficulty arises
from the fact that the quantum corrections bear the same suppressing factor h̄ω/E. A calculation which keeps the electron’s
magneticmoment contribution but neglects quantum effects is, strictly speaking, inconsistent, and a full quantum treatment
is needed. Thus, for non-vortex electrons carrying magnetic moment from the spin, the magnetic-moment contribution is:
(i) suppressed by many orders of magnitude with respect to the usual charge radiation, which makes it undetectable, and
(ii) is not cleanly calculable within classical electrodynamics. However, for vortex electrons with large OAM, |ℓ| ≫ 1, the



60 K.Y. Bliokh et al. / Physics Reports 690 (2017) 1–70

Fig. 34. (a) Schematics of the backward transition radiation produced by a vortex electron, carrying electric charge e andmagneticmomentM ∥ p, at oblique
incidence on ametal surface z = 0 [112,113,335]. The direction of the electronmomentum p in the (x, z) plane of incidence is determined by the polar angle
θp , while the emitted out-of-plane photon is characterized by the wave vector k with the angles θ̃k and ϕ̃k , as shown in the scheme. (b) The interference
between the magnetic-moment and charge contributions leads to the left–right (ϕ̃k → −ϕ̃k) asymmetry of the transition radiation intensity [112]. The ϕ̃k-
dependence of the spectral–angular density of the transition radiation energyW. The parameters are: E = 300keV, h̄ω = 5 eV, θp = 70◦ , and the observation
angles are centered around θ̃k = −40◦ . The curves corresponds to ℓ = 0 (solid black curve), 1000 (dashed red curve) and 10 000 (blue dotted curve).

magnetic-moment contribution to the polarization radiation is much larger and can become visible. At the same time, it
justifies the quasi-classical approach to the radiation, as the magnetic-moment contribution now dominates over quantum
effects.

The total radiated energy can be split into electric-charge andmagnetic-moment contributions, aswell as the interference
term: dW = dWe + dWm + dWem. The quantity of interest is the interference term, which is linear in the small parameter ϵ.
There are two subtleties, whichmake the extraction of this interference intricate. First, the curl in themagnetic current leads
to an extra i factor in the EM field radiated by themagneticmoment, and as the result, the interference vanishes in the case of
a transparent medium or an ideal conductor. Fortunately, for a realistic mediumwith complex permittivity, the interference
termbecomes non-zero. Second, sinceM is a pseudovector, the interference term contains the triple scalar product k̄ ·(M×z̄),
where k̄ is the direction of the emitted photon, and z̄ is the normal to the vacuum-metal interface, Fig. 34(a). It vanishes for
the normal incidence, as well as for oblique incidence, after the full solid angle integration. It can be observed only at oblique
incidence and only in the differential distribution. Refs. [112,335] proposed to extract the interference term via the left–right
asymmetry:

ILR =
WL − WR

WL + WR
, WL,R =

∫
dΩγ L,R

d2W
dh̄ωdΩγ

, (5.5)

where dΩγ L and dΩγ R indicate the two hemispheres lying to the left and to the right of the incidence plane, i.e., characterized
by the angles ϕ̃k > 0 and ϕ̃k < 0, as shown in Fig. 34(a).

Numerical calculations [112,335] show that 300 keV vortex electrons with ℓ = 1000 and impacting on an aluminum
plate at large incidence angles produce a left–right asymmetry at the percent level, and should be well observable for a
1 nA electron current. For lower values of ℓ, the asymmetry is proportionally small, but also seems to be within reach. The
experimental detection of this asymmetrywould provide the first ever direct demonstration thatmagneticmoments radiate.

In the works [113,342], an alternative route to detecting the interference term dWem was explored. There, the degree
of circular polarization in the emitted light was the quantity of interest. Transition radiation of a point electric charge is
linearly polarized [340,341]. The interference term induces an elliptical polarization in the out-of-plane photons, quantified
by another pseudoscalar quantity, the photon’s helicity or the Stokes parameter S3 [80]. At generic angles, the value of S3 is
very small, being suppressed by the same factor ϵ. However, near particular directions, where the electric-charge radiation
vanishes, the value of S3 can be very large. Thus, measuring S3 in the direction of the intensity minimumwill also unveil the
transition radiation emitted by the vortex electron’s magnetic moment. The calculations reported in [113,342] show that
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for OAM ℓ = 100, the value of S3 can be as large as 70%. However this large elliptic polarization appears only for directions
range ∼1 arcmin near the minimum-intensity direction. Satisfying such severe angular cuts will definitely pose a challenge
for a dedicated experiment.

6. Concluding remarks

6.1. Summary of this work

Ten years have passed since the prediction [75] of free-electron vortex states carrying intrinsic orbital angularmomentum
(OAM) and their first generation [76–78] in transmission electronmicroscopes (TEMs) few years later. In this paper, we have
reviewed the main theoretical and experimental achievements in investigations of vortex electrons during the first decade
of this rapidly developing field.

First, we have provided a pedagogical introduction and a solid theoretical basis for the researchers starting their work
in this emerging field. In particular, we have introduced the main concepts of phase singularities, angular momentum,
and vortex wave beams/packets as applied to electron waves. We have also considered the main interaction phenomena
involving vortex electrons, including: their nontrivial behavior in external electromagnetic fields, spin–orbit interactions
and other relativistic effects, a variety of elastic and inelastic scattering processes, radiation processes, etc.

Second, we have described the main features and peculiarities of TEM experiments with electron vortex beams. In
particular, we provided a detailed analysis of various methods of their creation, a wealth of practical details, as well as
of various ways of the OAM measurements in electron beams. Importantly, we have described numerous vortex-induced
phenomena, which appear in the interactions of electron vortex beams with various kinds of samples in TEMs. This is
the most promising direction for applications of vortex beams in electron microscopy, especially for the atomic-resolution
mapping of magnetic and chiral properties.

Third, we discussed possible novel phenomena involving vortex electrons outside of the TEM context. The most exciting
opportunities arise for higher energies, where interactionswith strong laser fields, quantumparticle collisions, and radiation
phenomena can reveal new features depending on theOAMdegrees of freedom. The generation of vortex states of high-energy
electrons or other quantum particles is a future milestone to be achieved experimentally.

6.2. Future prospects

Vortex electrons can be considered as only one example in a much wider context of structured states of quantum
particles in free space. Indeed, on the one hand, one can consider various structured modes,such as Hermite–Gaussian-like
beams [220,221] and Airy beams [124,224,236,343]. On the other hand, similar vortex or non-vortex states can be explored
for other quantum particles, including neutrons (already demonstrated experimentally) [344], atoms [345,346] (demon-
strated in confined BEC systems [347]), ions [348], and even macroscopic objects such as fullerene molecules [349,350].
Prospects on why these new states of quantum matter waves would be useful and how this could be implemented
experimentally are currently actively discussed.

In view of the substantial body of work that was already presented here, one couldwonder if there remainsmuchmore to
explore with respect to electron vortices in TEMs. It is our firm belief that these initial experiments only scratch the surface.
For example, it became clear that a vortex detector that would measure and sort the electron OAM modes would be highly
beneficial for electron energy loss spectroscopy (EELS) and magnetic chiral dichroism experiments, but the methods we
presented are still a long way from such a versatile instrument. Also, in terms of signal-to-noise ratio and the source-size
broadening effect, important steps need to be taken in order to bring atomic resolutionmapping of magnetic states closer to
reality. New technology breakthroughs in direct electron detectors and electron gun design are, however, slowly providing
this progress. There is also a clear potential for using elastic scattering effects in obtainingmagnetic and chirality information.
Even though the theory seems well established, there are still many unexplored areas with potential for applications and
further research.

In the domain of high energies, we are at the beginning of a long journey. The theoretical formalism for describing
high-energy collisions with vortex electrons has been developed and applied to a few basic QED scattering processes.
Calculations demonstrate that vortex electrons will give access to quantities which are difficult or impossible to measure
in the usual collision settings. One can now apply this formalism to various inelastic processes such as bremsstrahlung
by vortex electrons, production of hadrons by vortex photons colliding with protons, and eventually the deep inelastic
scattering of ultrarelativistic vortex electrons on hadrons and nuclei, with the aim to access, in a radically different way,
the nucleon dynamics inside nuclei and the spin and orbital angular momentum contributions to the proton’s spin. One can
also investigate what new venues in hadronic and nuclear physics will open up if protons, nuclei, and other particles can
also be experimentally prepared in vortex states.

The experimental facilities in high-energy physics face big challenges to deal with vortex electrons: one needs to create
and manipulate ultra-relativistic vortex electrons, transfer the vortex-electron know-how from electron microscopes to
collider-like setting, and achieve an even stronger focusing. Therefore, dedicated experimental efforts are needed, and they
will become worthy of investment when theorists prove that there will be a clear scientific payoff.
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Table 2
Abbreviations, conventions, and general notations used in this review.

Notation Description

Abbreviations:
OAM Orbital angular momentum
SAM Spin angular momentum
SOI Spin–orbit interaction
LG Laguerre–Gaussian
TEM Transmission electron microscope
STEM Scanning transmission electron microscope
MIP Mean internal potential
EELS Electron energy loss spectroscopy
EMCD Energy loss magnetic chiral dichroism
FT Fourier transform
EM Electromagnetic

Fundamental constants:
h̄ Planck’s constant
c Speed of light
e = −|e| Electron’s charge
me Electron’s mass
α Fine-structure constant

Units:
Gaussian units are used throughout this review. In addition, the h̄ = c = 1 units are used in Section 4.

Conventions:
r, p, L, etc. 3D vectors
r⊥ , p⊥ , etc. 2D vectors in the plane orthogonal to the main direction
p̂, L̂, etc. Quantum-mechanical operators of the corresponding quantities
⟨r⟩, ⟨p⟩, ⟨L⟩, etc. Expectation (mean) values of the corresponding operators/quantities

(normalized per one electron)
x̄, ȳ, z̄, ϕ̄, etc. Unit vectors of the corresponding coordinates
ψ̃(k), Ṽ (k), or F(ψ), F(V ) Fourier transforms of the corresponding functions ψ(r), V (r), etc.
ψ̃(k) ∗ Ṽ (k) Convolution of functions
rµ , kµ , etc. Four-vectors in Minkowski spacetime
(kµrµ) Scalar product of four-vectors

Special functions:
Jℓ Bessel functions of the first kind
Lℓn Laguerre–Gaussian polynomials
Θ Heaviside step function
δ (δab) Dirac delta function (Kronecker delta)

It should be noticed that bringing the spin degrees of freedom into play would considerably enrich physical phenom-
ena involving vortex electron states. This is already well explored in optics [66], and spin-polarized electron sources
are used in high-energy domain [351]. At the same time, electron microscopy only starts developing this direction
[90,175–177,352,353].

In the meantime, the field of optical vortex beams and OAM states of photons, which gave rise to research on vortex
electrons, is still a very active research direction. In general, higher energies require more expensive scientific instruments.
Therefore, optics has the important advantage that optical technology is far more likely to appear in applications. In
comparison, electron beam technologies are more likely to be limited to expensive scientific instruments, which typically
take much longer to develop and affect the world around us.

Thus, electron vortex beams are still in an early stage of development, and many opportunities for future research are
open. We hope that we provided a solid basis for researchers venturing into this exciting direction, and that this review can
help them to see the bigger picture and to avoid pitfalls that might occur along the way.
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Table 3
The main physical quantities and their notations used in this review.

Notation Description
r Radius-vector
(r, ϕ, z) Cylindrical coordinates (note that r = r⊥ ̸= |r|)
p Momentum (canonical)
k Wave vector
(k⊥, φ, kz ) Cylindrical coordinates in the wave-vector space
(θ, φ, k) Spherical coordinates in the wave-vector space
κ Fixed radial component of the wave vector in Bessel beams
θ0 Fixed polar angle in Bessel beams
Ĥ Hamiltonian
ψ Scalar wave function
Ψ Multi-component wave function
Φ Phase of the wave function
E Energy (either kinetic or full-relativistic, depending on the problem)
ρ Probability density or intensity (ρe: electric charge density)
j Probability current density (je: electric current density)
L (Canonical) orbital angular momentum
S Spin angular momentum (s: non-relativistic spin angular momentum)
J Total angular momentum
M Magnetic moment
p Kinetic momentum in the presence of a vector potential
L Kinetic orbital angular momentum in the presence of a vector potential
v Velocity
Ω Angular velocity (angular frequency) of electron’s circular motion

(ΩL: Larmor frequency,Ωc : cyclotron frequency)
ℓ Vortex topological charge (azimuthal quantum number)
ℓ0 Order of the fork-like dislocation in holograms generating vortex beams
w Beam width (w0: beam waist, wm: transverse magnetic length)
zL Longitudinal magnetic (Larmor) length
A Magnetic vector potential
V Scalar electric potential (voltage)
B Magnetic field strength
E Electric field strength
σ Sign (direction) of the magnetic field
αm Dimensionless magnetic flux or magnetic-monopole charge
g g-factor of electron’s angular momentum in a magnetic field
q = k − k′ Momentum-transfer parameter in the k → k′ scattering
l,m Angular-momentum and magnetic quantum numbers for atomic orbitals
γ Lorentz factor
Λ Dimensionless spin–orbit interaction parameter for the Dirac electron
χ Helicity of Dirac electrons
ω and k Frequency and wave vector of electromagnetic waves (photons) in Sections 5 and 4.2

Appendix. Conventions and notations

See Tables 2 and 3.
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