
Physics Reports 679 (2017) 1–60

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Quantum feedback: Theory, experiments, and applications
Jing Zhang a,b,∗, Yu-xi Liu c,b, Re-Bing Wu a,b, Kurt Jacobs d,e,f, Franco Nori g,h
a Department of Automation, Tsinghua University, Beijing 100084, PR China
b Center for Quantum Information Science and Technology, Tsinghua National Laboratory for Information Science and Technology
(TNList), Beijing 100084, PR China
c Institute of Microelectronics, Tsinghua University, Beijing 100084, PR China
d U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Adelphi, MD 20783, USA
e Department of Physics, University of Massachusetts at Boston, Boston, MA 02125, USA
f Hearne Institute for Theoretical Physics, Louisiana State University, Baton Rouge, LA 70803, USA
g CEMS, RIKEN, Saitama 351-0198, Japan
h Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040, USA

a r t i c l e i n f o

Article history:
Accepted 9 February 2017
Available online 6 March 2017
Editor: D.K. Campbell

Keywords:
Quantum control
Quantum feedback
Quantum optics
Cavity QED
Circuit QED
Optomechanics
Quantum nanoelectromechanics
Quantum information processing

a b s t r a c t

The control of individual quantum systems is now a reality in a variety of physical settings.
Feedback control is an important class of control methods because of its ability to reduce
the effects of noise. In this review we give an introductory overview of the various ways
in which feedbackmay be implemented in quantum systems, the theoretical methods that
are currently used to treat it, the experiments in which it has been demonstrated to date,
and its applications. In the last few years there has been rapid experimental progress in the
ability to realize quantum measurement and control of mesoscopic systems. We expect
that the next few years will see further rapid advances in the precision and sophistication
of feedback control protocols realized in the laboratory.
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1. Introduction

1.1. History and background

The subject of control is concernedwithmethods tomanipulate the evolution of dynamical systems. As such it is relevant
to many fields both inside [1–6] and outside [7,8] physics. Control has a long history, but it emerged as a modern scientific
discipline only after the pioneering work of Norbert Wiener in the 1940s [9]. Up until the 1960s, control was largely studied
by analyzing dynamical systems in the frequency domain (that is, the Laplace transform or the Fourier transform of the
evolution). This was a reasonable approach because people were mainly interested in steady-state behavior. So long as
the fluctuations about the steady state are sufficiently small, even nonlinear systems can be well-approximated by linear
dynamics, and are thus amenable to frequency-domain methods. For networks of linear systems in which the outputs of
some systems are connected to the inputs of others, frequency-space methods are also extremely useful, because complex
exponentials are the eigenfunctions of all linear systems [10].

Frequency-domain methods were less helpful in understanding how control systems should make use of real-time
information, and for this reason control theorists turned to the time domain. The techniques that were developed include
the Kalman–Bucy filter [11] and the Hamilton–Jacobi–Bellman equation [12]. These are referred to as state-space methods,
and are often referred to as ‘‘modern’’ control theory. Much of modern control theory is concerned with feedback control, in
which a control system, or ‘‘controller’’ obtains a stream of information about the trajectory of the system, or ‘‘plant’’, and
uses this information in real time to control it. The term ‘‘feedback’’ comes from the notion that the controller is ‘‘feeding’’
the information it obtains ‘‘back’’ to the system. Feedback control is also referred to as ‘‘closed-loop’’ control, because the
flow of information to the controller, together with the action taken by the controller to affect the system is thought of as a
loop that starts and ends at the system [13–16].

One usually speaks of a controller as trying to achieve some objective. This objective may be to have the system reach a
given state at a given time, or to have it evolve in a precise way, despite the presence of noise in its inputs or slight errors
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in its construction. Given an objective, the central problem in feedback control is to obtain a rule (or mapping) that the
controller can use to select the action it should take based on the data it has received. Traditionally such a rule was referred
to as a ‘‘feedback algorithm’’, but in quantum control theory the term ‘‘feedback protocol’’ is usually used instead, so as to
avoid confusion with the algorithms of quantum computing [17].

The idea of controlling systems using feedback has been around for a long time; the first device on record employing
feedback appears to have been the water clock of Ktesibios in the first half of the third century B.C. [18–20]. Another
successful example of a feedback mechanism is the Watt governor developed in the 1780s. This centrifugal governor was a
core component of the Watt steam engine which fueled the industrial revolution. Incidentally it was Maxwell who first
performed a mathematical analysis of this control mechanism [21]. By introducing feedback control one can speed up
transient processes, tune the stationary output of a system, and most importantly, reduce the effects of disturbances. The
importance of using feedback in controlling a system is that it is the only way to reduce the effects of noise. Noise introduces
uncertainty into the system dynamics, and the only way to reduce this uncertainty is to transfer it to another system. To
understand this better, consider what happens if we make a measurement on a system. This reduces our uncertainty and
allows us to correct the motion. In doing so, we reduce the spread in the state of the system, and thus the randomness in
the system. But note that the measuring device must record the result of the measurement, and this result is necessarily
as random as the quantity being measured. Thus the measurement and feedback transfers randomness, which is entropy,
from the system to the memory of the measuring device. Now the fundamental forces (as we know them to date), and
thus all fundamental physical processes, are reversible. While such processes can increase the entropy of a macroscopic
system, whose individual states are not accessible, they cannot change the entropy of amicroscopic systemwhose states are
accessible (or reduce the entropy of a macroscopic system) without transferring this entropy to another system. The system
to which entropy is ultimately transferred is usually a thermal bath. A transfer to a thermal bath would be accomplished,
for example, when the memory of the controller is reset to its initial state. In the study of quantum feedback control, it is
natural to refer to any process that transfers entropy from the system to the controller as a feedback process.

Feedback control was introduced into quantum dynamics in the early 1980s [22–27], but it was not until the 1990s that
it began to be studied and applied in earnest. Naturally the prerequisite for describing continuous-timemeasurement-based
feedback in quantum systems was a description of continuous quantum measurement.

In the 80s and early 90s, a number of authors independently derived equations describing the continuous measurement
of quantum systems. Srinivas and Davies [28] appear to have been the first people to write down a formalism giving a
complete description of the continuous measurement of a quantum system. They applied the continuous measurement
theory developed by Davies [29–31] to obtain a trajectory theory for the continuous measurement of a cavity mode by
detecting the photons that leak out of it using a photon counter. This continuous measurement theory for photon counting
was the same as the ‘‘unraveling’’ of the master equation for a damped cavity as constructed later by Carmichael [32,33],
Dalibard, Castin, and Molmer [34], and Hegerfeldt and Wilser [35]. Since photon counting involves discrete, instantaneous
events, the evolution of the density matrix under this kind of continuous measurement is driven by a point process, being a
generalization of a Poisson process.

A couple of years after Srinivas and Davies’s work, Gisin [36] introduced a stochastic equation for a state vector that
reproduced certain properties of measurement, and Diosi [37] introduced a stochastic equation for the quantum state of an
open system, both of whichwere driven instead by Gaussian noise, also referred to asWeiner noise or ‘‘theWiener process’’.
At a similar time, Barchielli and Lupieri [38] obtained an equation describing continuous measurement in the Heisenberg
picture, also using the Wiener process.

The stochastic equations introduced by the above authors, that involved Wiener noise, while connected in various ways
with measurement, did not give the evolution of the state of knowledge of an observer who is making the measurement.
It was Belavkin [39] (building on the work of Stratonovich), Diosi [40,41], and Wiseman and Milburn [42,43] (building on
the ‘‘quantum trajectory’’ work of Carmichael [32,33]) who all independently obtained a stochastic differential equation
of motion for an observer’s state of knowledge for a measurement driven by Wiener noise. While Diosi considered only
measurements of pure states, Belavkin,Wiseman, andMilburn considered alsomixed states, and the resultwas the stochastic
master equation (SME). The SME is the quantum equivalent of the Stratonovich equation that describes the evolution of the
observer’s state-of-knowledge for a Gaussian continuous measurement on a classical system [44]. (The Kalman–Bucy filter
is the special case of the Stratonovich equation for linear systems, in which themeasurement is restricted to linear functions
of the dynamical variables.) While Diosi considered only measurements on pure states, the other authors considered also
mixed states, whichmakes possible the description of inefficientmeasurements, and shows how the quantummeasurement
obtains classical information about the state, thus purifying it in a way that is closely analogous to the action of classical
measurements.

Itwas Belavkinwho first presented amathematical theory of feedback control in quantumsystems [45,46]. Since Belavkin
had derived quantum continuousmeasurements as an extension of the theory of classical continuousmeasurements, where
the latter are used heavily in control theory, it was natural for him to consider the application of continuous measurements
to feedback control of quantum systems, and to consider adapting the techniques from classical control [39,47]. The highly
mathematical nature of Belavkin’s work, however, prevented it from being absorbed by the physics community, where
applications for these ideas rose in the following decade.

Taking a very different approach to quantum feedback, in 1994 Wiseman and Milburn [48] showed that a Markovian
master equation could be derived to describe continuous feedback in quantum systems, if the feedback was given by a
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particularly simple function of the stream of measurement results (this kind of feedback is now referred to as Markovian
feedback). In 1998, Yanagisawa and Kimura [49] and Doherty and Jacobs [50] introduced the notion of performing feedback
using estimates obtained from the SME, in the control literature and physics literature, respectively. Both sets of authors
[49,50] showed that for linear systems this class of feedback protocols was equivalent to modern classical feedback control,
so that standard results for optimal control could be transferred to quantum systems. This methodwas in fact that proposed
by Belavkin in 1983 in analogy to that used in classical control theory [39,47]. In quantum control, using estimates obtained
from the SME is often referred to as Bayesian feedback to distinguish it from Markovian feedback. In the former the
measurement results are processed (‘‘filtered’’) to obtain an estimate of properties of the current state, whereas in the latter
the measurement stream is fed back directly.

It is shown in Ref. [51] that feedback mediated by continuous measurements can in fact be implemented without
measurements. To see how this works, let us consider two parallel mirrors between which a single mode of the
electromagnetic field is trapped (the two mirrors are referred to as an ‘‘optical cavity’’). The light that leaks out through
one of the mirrors can be detected, and the information is used to manipulate the optical mode. Alternatively, the output
light can be directed to amirror of another optical cavity, and thus forms an input for this cavity. If we then connect an output
from the second cavity back to the first we have a loop, and light can be made to travel only one way around the loop by
the use of optical circulators [52]. For describing this situation the quantum input–output theory developed by Collett and
Gardiner is invaluable [53,54]. The process of connecting quantum systems together via free-space one-way traveling-wave
fields was first considered by Gardiner [55] and Carmichael [56], where the former called it a ‘‘cascade connection’’. Ref. [51]
showed that cascade connections can implement the same feedback control processes as Markovian measurement-based
feedback and can perform tasks that the latter cannot [51].

A second notion of feedback control without explicit measurements was introduced by Lloyd in 2000 [57]. He suggested
that a unitary interaction between two quantum systems could be used to implement feedback control [57,58]. This can
be achieved, for example, by choosing the interaction so as to correlate the two systems, i.e., the controlled system and
the controller, whereby the state of the controller is dependent on the state of the system. One then chooses a second
interaction in which the evolution of the system depends on the state of the controller. This particular process is equivalent
to a measurement followed by a unitary feedback operation that depends upon the measurement result, although coherent
feedback processes are not restricted to this form [59,60]. Both kinds of ‘‘measurement-free’’ feedback, that mediated by
cascade connections and that which uses unitary interactions are now referred to as coherent feedback control (CFC), and the
latter is often called ‘‘direct’’ coherent-feedback. All control involving explicit measurements is usually calledmeasurement-
based feedback control, or justmeasurement feedback control (MFC).

In the 2000s James and his collaborators [61] studied ‘‘feedback networks’’ of linear quantum systems connected by
one-way fields, and Gough and James [62] built on input–output theory to construct a compact and convenient formalism
to handle arbitrarily complex networks. More recently a number of authors [63–66] have considered the use of nonlinear
coherent-feedback networks for various control tasks. In 2009, Nurdin, James, and Peterson [67] showed that linear coherent
feedback networks could outperform linear measurement-based feedback, suggesting that measurement-based feedback
was limited by the need to reduce the information about a system to classical numbers. It has also been shown quite recently
that coherent feedback is able to generate quantum nonlinearities [65,66] and outperformmeasurement-based feedback in
cooling linear resonators with linear controllers [68]. The relationship betweenmeasurement-based and coherent feedback
is a topic of current research [59].

There are not only fundamental differences between measurement-based and coherent feedback, but also important
practical differences. Making measurements on quantum systems, often possessing only a few quanta, usually requires a
tremendous amplification of the signal. This is because the measurement results, by definition, are well-defined classical
numbers [69]. To robustly store and manipulate such numbers requires states with energies much greater than a single
quantum. Amplifying signals at the single-quantum scale without swamping them with noise is a great challenge, and is
onemajor practical disadvantage ofmeasurement-based feedback. A seconddisadvantage is the timescale required to obtain
and then process the measurement results (usually on a digital device). On the other hand, measurement-based feedback
has the advantage that the processing of the information is essentially noise-free. By contrast, if a quantum system is used as
a controller it will likely be subject to noise processes from its environment. It may also be less clear how to use the quantum
system to process the information to achieve a control objective.

It is important to note that the method of ‘‘adaptive feedback’’, in which the term ‘‘feedback’’ is used, is not the feedback
control that we are concerned with in this review. Adaptive feedback [8] is a method for obtaining control protocols, not
a class of protocols for controlling a system. In this method, one chooses an arbitrary control protocol, tries it out on the
system, and based on the result make a modification to the protocol and tries it again. In this way one can use one of many
search algorithms to look for a good protocol. People who refer to adaptive feedback as a feedback method distinguish the
feedback control we consider here by calling it ‘‘real-time feedback control’’.

It is also important to note that we do not discuss in detail here all the ways inwhich feedback can be realized. One could,
for example, perform a series of ‘‘single-shot’’ measurements with a discrete set of outcomes, and perform a unitary action
on the system for each outcome. While there are certainly a range of interesting and non-trivial questions regarding such
feedback, such as controlling thermal dynamics [70–74] and quantumerror correction [75–81], themathematicalmachinery
required to analyze it does not require stochastic differential equations. This is also true of coherent feedback implemented
via unitary interactions. This latter topic has only recently begun to be explored in earnest, and there are certainly many
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open questions [82]. However in this review we focus on continuous-time measurement-based feedback control, coherent
feedbackmediated by continuous fields that carry the information between system and controller. Both of these require the
use of stochastic (Ito) calculus, something that is less familiar to many researchers in quantum theory. While measurement-
based feedback requires only the usual Ito stochastic calculus, field-mediated coherent feedback requires a quantum version
of Ito calculus developed by Gardiner and Collett as part of their input–output theory [53,83]. The somewhat more general
quantum stochastic calculus, that encompasses that of Collett and Gardiner, was also developed independently by Hudson
and Parthasarathy in a more rigorous measure-theoretic way [84]. A readily accessible introduction to Ito calculus can be
found in [85], and the quantum version is described in [53,54,86].

To distinguish between experiments that realize quantum feedback control rather than classical control, we apply the
following criteria. Measurement-based feedback is quantum feedback if the dynamics of the system under the feedback
loop cannot be explained merely by using Bayes’ theorem. Another way to say this is that the quantum back-action from
the measurement, which is the dynamical effect of the measurement on the system, plays a significant role in the system
evolution. Coherent feedback is quantum feedback if the joint dynamics of the systemand controller cannot be described by a
classical model. For linear systems, the only distinction between quantum and classical motion is that the joint-uncertainty
of position and momentum is limited by Heisenberg’s uncertainty principle. A measurement introduces noise because a
reduction in the uncertainty of one canonical variable tends to increase the uncertainty of the conjugate variable.

In the remainder of this section we give a brief introduction to classical feedback control. In Section 2 we discuss
quantumcontinuous (weak)measurements and filtering, and their application to quantummeasurement-based feedback. In
particularwediscuss the two ends of the spectrumofmeasurement-based feedback: the simplest inwhich themeasurement
signal is not processed at all before it is fed back to the system (‘‘Markovian’’ feedback), and that in which the measurement
signal is fully processed to obtain the observer’s complete state-of-knowledge of the system as it evolves (‘‘Bayesian’’
feedback). We complete Section 2 by giving an overview of most of the applications of measurement-based feedback that
have been considered in the literature to date. In Section 3 we turn to coherent feedback. We discuss the two primary ways
in which it can be implemented, and the formalism used to describe them. As with measurement-based feedback, we then
review the majority of applications of coherent feedback that have been considered to date. In Section 4 we review two
further topics that involve feedback, but not in the way envisioned in the traditional notion of feedback control. In Section 5
we turn to experiments, and give an overview of all experiments to date that have realized continuous feedback control
in the quantum regime. These experiments cover a range of physical settings from quantum optics to superconducting
circuits. Experiments implementingmeasurement-based feedback in the quantumregimewere initially realized in quantum
optics, where it first became possible to measure individual microscopic degrees of freedom with sufficient fidelity. These
were followed by experiments involving trapped atoms and ions, and very recently it has become possible to realize
measurement-based feedback control in mesoscopic superconducting circuits. Experiments involving continuous coherent
feedback were performed prior to those realizing continuous measurement-based feedback, although at the time these
experiments were not thought of as involving feedback. An example is the cooling of trapped ions using the ‘‘resolved
sideband’’ cooling method [87,88]. In Section 6 we give a perspective on the current state of quantum feedback control
and discuss some open questions.

1.2. A glance at classical feedback control

In the engineering discipline called control theory, a control system is always broken into three parts [89]:
• The system (or ‘‘plant’’): the device we want to control, having inputs and outputs;
• The input(s) to the system (or ‘‘control’’): the entity that we have freedom to choose to affect the system;
• The output(s) of the system (or ‘‘yield’’): this includes the quantitywewant to control, and any quantitieswe canmeasure

to obtain information about the plant.

As explained above, the explicitly causal structure inwhich the control system first obtains information fromameasurement
and uses this to determine the input to the system, is a way of thinking about the interaction between two systems that is
conceptually useful for feedback control. One can think about the interaction in this way even if this structure is not explicit
in the mathematical description of the interaction. An example in which it is not explicit is in the Hamiltonian description
of an interaction.

The usual objective of control is to steer one ormore outputs of the plant towards a prescribed behavior against unknown
disturbances or noises. As shown in Fig. 1, when the disturbance is known (or can be precisely measured), a feedforward
controller can be used to cancel the effects of disturbances at the input side. Otherwise, if the disturbance is unknown (or
cannot be precisely measured), a feedback controller must be introduced to adjust the input according to the outputs of the
prescribed measurements imposed on the controlled system.

1.2.1. Classical model of a control system

We are concerned with dynamical systems that change continuously in time, and are therefore modeled by differential
equations. The standard model of a control system can be written as

ẋ(t) = F [x(t), u(t)] , x(0) = x0, (1.1)
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Fig. 1. Basic components in a control system with feedback (bottom loop, in blue) and feedforward (top branch, in red) controllers.

y(t) = G [x(t), u(t)] , (1.2)

where F and G are arbitrary vector-valued functions, the vector x(t) is the state of the system, u(t) is the control (set of
inputs) that drives the system, and y(t) is the set of outputs, which is allowed to be some algebraic function of both the state
and the input.

In practice, the following linear control system model is favored by control engineers:

ẋ(t) = Ax(t)+ Bu(t), x(0) = x0, (1.3)
y(t) = Cx(t), (1.4)

in which A, B, and C are constant matrices. This model can be solved analytically, which makes it convenient for
design purposes. Many nonlinear systems can be transformed to a linear system under a proper nonlinear coordinate
transformation [14]. Such a procedure is called linearization, which is broadly used in the literature. For those systems that
cannot be precisely linearized, one can still often approximately linearize them in a small neighborhood of the ‘‘working
point’’, using a perturbative technique [89].

The relation between the input and output of a linear control system can be alternatively characterized in the frequency
domain by a transfer function obtained by taking the Laplace transform of Eq. (1.1):

Y (s) = G(s)U(s), G(s) = C(sI − A)−1B, (1.5)

where U(s) and Y (s) are the Laplace transforms of the input u(t) and the output y(t), respectively, and G(s) is the transfer
function of the system. Transfer functionmodels are popular in control engineering because they can be constructed directly
from the input–output data without having to know the internal structure of the system. The corresponding analysis
and design are conceptually simple and can be visualized using Nyquist or Bode plots, which require few computational
resources [7].

1.2.2. System analysis and design

Consider the linear control systemgiven by Eqs. (1.3) and (1.4). To implement feedback control, wemake the control, u(t),
a function of the state x(t), assuming that x(t) can be determined from the measured outputs. To keep the system dynamics
linear, we set u(t) = −Kx(t)+ r(t), where K is a constant matrix and r(t) is the external input signal. The matrix K is called
the feedback gain, and the function r(t) is called the reference signal or command signal, which is sometimes chosen as the
reference signal to be tracked by the system output under control. With this choice for u(t), the dynamics of the resulting
closed-loop system becomes

ẋ(t) = (A − BK)x(t)+ Br(t), y(t) = Cx(t). (1.6)

Correspondingly, the closed-loop transfer function from the reference signal, r(t), to the output we wish to control, y(t),
becomes

GCL(s) = C(sI − A − BK)−1B. (1.7)

The gain matrix and reference signal are together called the control law.
Two common control tasks are:

• Regulation: to find a control law that keeps y(t) close to some predetermined function of time.

• Tracking: to find a control law that keeps y(t) close to a time-varying signal that is not known beforehand.
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A prerequisite for accomplishing these tasks is that the controlled system is stable, and the system’s stability considered
here is usually quantified by using the concept of Lyapunov stability. For linear systems, stability is ensured by choosing the
gain matrix K so that the poles of the transfer function lie in the left half of the complex plane, and sufficiently far from the
imaginary axis. A central result of control theory for linear systems, referred to as the pole assignment theorem, states that
one can choose K to place the poles at arbitrary locations in the complex plane if and only if the system is fully controllable,
meaning that it is possible to choose K and r(t) to steer the system from any state to the origin. Note that controllability is
a property of the control system which only depends on the matrices A and B in Eq. (1.3), and is independent of the control
design, i.e., the matrix K and the external input r(t).

1.2.3. Optimal control

In applications, one is often interested in obtaining a given output while usingminimal resources [13]. We can formulate
this goal as a typical constrained optimization problem. If we define a function that measures how far the output is to the
desired output (the error incurred by the control law), and another function that quantifies the resource cost of the inputs,
we can attempt to minimize the latter under a constraint on the former. The dynamics of the system is essentially another
constraint in this optimization problem. We can alternatively define a single ‘‘cost’’ function that combines the error and
resource cost, and attempt to minimize it. A well-motivated form for the cost function J is

J[u(t)] = Φ[x(T )] +

 T

0
L[x(t), u(t)] dt, (1.8)

where the differential equation given by Eq. (1.1) is the dynamical constraint.
The theory of optimal control is a beautiful part of modern control theory that can be analyzed with variational methods.

In fact, with the above form for J , this theory has the same structure as that of Lagrangian and Hamiltonian mechanics. The
reason for this is that the Lagrange equations give the conditions for theminimization of an action, which has the same form
as J .

Subject to the restriction given by Eq. (1.1), one can introduce a Lagrangian multiplier λ(t), and this turns out to be the
‘‘momentum coordinate’’ conjugate to x(t) in the sense of Hamiltonian mechanics. The (pseudo) Hamiltonian to which this
conjugate coordinate corresponds is

H[x(t), u(t)] = L[x(t), u(t)] + λ(t)TF [x(t), u(t)]. (1.9)

One can prove that the necessary condition for a control u(t) to be optimal is

∂H[x(t), u(t)]
∂u(t)


u(t)=uopt(t)

= 0, (1.10)

and x(t) and λ(t) can be obtained by solving the following conjugate equations

ẋ(t) =
∂H[x(t), u(t)]

∂λ(t)
, (1.11)

λ̇(t) = −
∂H[x(t), u(t)]

∂x(t)
. (1.12)

From the viewpoint of Lagrangian mechanics, the evolution of the system under the control u(t)minimizes the ‘‘action’’ J .
If the set of admissible controls u(t) is not an open set, the condition (1.10)must be replaced by amore general condition,

due to the fact that u(t) can no longer be taken at any point in this set. In this case, the necessary condition under which
u(t) is optimal is that u(t)minimizes H[x(t), u(t)]. We can write this condition as

uopt(t) = arg

min
u(t)

H[x(t), u(t)]

, (1.13)

which is referred to as the ‘‘Maximum Principle’’. An alternative technique called dynamical programming can be used
to locate the global optimal solutions for u(t) by solving the so-called Hamiltonian–Jacobi–Bellman equation [86], but
requiresmuchhigher computation resources than solving Eq. (1.10) or (1.13). All these approachesmerely provide necessary
conditions for optimality.

1.2.4. Fighting disturbances and uncertainties

So far we have not included the effects of uncertainty or noise in the system control model, but we have to do so if the
controller is to combat them. If the system is driven by a noise of which the spectrum is known, we can include this noise in
the model of the system, and explicitly calculate the observer’s estimate of the system state derived from a measurement
process in real-time. Feedback control can then be implemented based on this estimate. Sometimes it is possible tominimize
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the noise in a subset of system variables at the expense of others, which is analogous to the squeezing of an optical beam or
a quantum oscillator.

Alternatively, there may be uncertainties in the parameters that determine the dynamics of the system. If we consider a
linear system whose equation of motion has the form ẋ = Ax+ f (t), there are two distinct ways to show the uncertainty in
the system parameters. First, the driving term f (t)may contain unknown or partially known parameters, such as the phase
or amplitude of a sinusoidal drive. This is very similar to a time-variant noise driving the system, except that in this case a
continuous measurement imposed on the systemwill provide sufficient information to estimate the values of the unknown
parameters, and thus reduce theparametric uncertainty. Second, theremay exist uncertainty in the systemdynamicalmatrix
A, due towhich the oscillation frequencies of the systemare partially unknown. Such parametric uncertainty is often referred
to asmodel uncertainty. Once again a measurement can be used to extract information about A, and then one can implement
a feedback control with a gain matrix K and reference signal r(t) to minimize the effects induced by the model uncertainty.
A control law that maintains a specific performance under (bounded) variations in the system parameters is referred to as
being robust. Such robust control problems have stimulated a rich body of studies in the literature [90].

2. Quantummeasurement-based feedback

As a first example we consider feedback based on the results of a von Neumann measurement. Each outcome of a von
Neumannmeasurement projects a system into one of a set of basis states. For each of these stateswe are then able to perform
a different unitary operation on the system. This form ofmeasurement-based feedback does have important applications, an
example of which is quantum error correction [75–81]. The simplest example of error-correction is the three-qubit ‘‘bit-flip’’
code, in which the state of a single logical qubit is encoded in three physical qubits by using themapping |0⟩ → |0̄⟩ = |000⟩
and |1⟩ → |1̄⟩ = |111⟩. If any one of the physical qubits suffers from an error that flips the states |0⟩ and |1⟩, then this error
can be corrected without otherwise disturbing the joint state of the three qubits. This correction is achieved by making a
measurement that tells us about the total parity of each pair of adjacent qubits. To do thiswemake twomeasurements, one of
which projects the state onto one of the eigenstates ofM0 = σz⊗σz⊗I and the other onto the eigenstates ofM1 = I⊗σz⊗σz .
From the twomeasurement outcomes we can determine which bit has flipped, and thus apply a σx operator to that qubit to
correct the error. For example, if the two measurements return even and odd parity, respectively, then it is the third qubit
that has flipped, and the feedback operation that corrects the error is the unitary operator I ⊗ I ⊗ σx [75,91,92]. Since this
error-correction code can correct a flip error on any single qubit, it is only if an error occurs on two or more of the physical
qubits that the logical qubit will be corrupted. If the errors on each of the physical qubits are independent, and occur with
a probability p ≪ 1, then the probability of an error on two or more qubits is proportional to p2, which is much less than p.

Maxwell’s famous demon is another simple example of quantum feedback, and one that can be usefully analyzed in terms
of von Neumann measurements. The ‘‘demon’’ is a device that makes measurements on a system and uses the information
obtained to extract work [70–74].

2.1. Continuous quantum measurements

2.1.1. Quantum trajectories

A simple, albeit less rigorous way to represent continuous measurements is the ‘‘quantum trajectory’’ approach [33,93,
94], a term coined by Carmichael [33]. In this approach, the evolution of the density matrix conditioned on the stream of
measurement results (the ‘‘measurement record’’). Before the development of the quantum trajectory approach, most of the
initial studies involving quantum systems interacting with a bath considered only the ensemble description, in which one
discards the measurement record, and thus calculates only the evolution of the system averaged over all possible records.
This was all that was required before experimental techniques made it possible to observe single quantum systems in real-
time. However, with the experimental progress, especially in optical systems and ion traps in the 1990s, it became necessary
to describe the evolution of a system for an individual measurement record.

One of the early approaches to obtaining a quantum trajectory for a given measurement record was to express the
quantum master equation as an average over a stochastic evolution for a pure quantum state [34,35]. This is equivalent
to the use of a ‘‘Monte Carlo’’ method to simulate the master equation [95]. Carmichael referred to the process of expressing
a master equation as the average of a stochastic evolution as unraveling it. For a single master equation there is more than
one stochastic equation that will unravel it, and it can be unraveled by stochastic equations driven either by Gaussian
white noise (Wiener noise) [94,96,97] or by a ‘‘point process’’ [28,34,93,98]. A point process consists of intervals of smooth
(deterministic) motion, punctuated by instantaneous events in which the state of the system changes discontinuously. The
Poisson process is an example of a point process. The different stochastic equations correspond to different ways in which
the system can be continuously monitored.
1. Quantum jumps:

Before presenting the general form of quantum-jump continuous measurement, we first consider a simple example
shown in Fig. 2(a). As shown in Fig. 2(a), the light that leaks out of an optical cavity is measured by a photon-counter [99,
100]. Here, the electromagnetic field outside the cavity, into which the cavity light leaks, can be taken to be a white-noise
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Fig. 2. (a) Diagram for the direct detection of an optical cavity: the optical field leaking out of the cavity carries the information of the intracavity field c
and is then detected by a photodetector. (b) Diagram for the homodyne detection of an optical cavity: the output field from the cavity interferes with a
laser (called ‘‘local oscillator’’) with complex amplitude β , and the strength of the laser is much stronger than the cavity output. The combined field is then
detected by a photodetector.

bath. The optical cavity with free Hamiltonian H is coupled to this white-noise bath via its annihilation operator c. The
white-noise bath can be represented by the bath operator b0(t)with δ-type commutation relation

[b0(t), b0(t ′)] = δ(t − t ′). (2.1)

In this case, the total Hamiltonian of the cavity and the bath can be represented by

Htot = H − i
√
γ

cĎb0 − bĎ0c


, (2.2)

where
√
γ is the coupling strength between the cavity and the bath. Let us assume that the bath is initially in the vacuum

state |0⟩⟨0|, and then introduce the Born approximation by which the state of the cavity at time t , i.e., ρ(t), is disentangled
from the bath. Let us redefine the bath operator as a =

√
dt b0 which satisfies a normalized commutation relation and let

dt be the infinitesimal time interval. By expanding our expressions up to the linear terms of dt , the state of the total system
at time t + dt can be calculated by

R(t + dt) = exp (−iHtot dt) |0⟩⟨0| ⊗ ρ(t) exp (iHtot dt)

= exp


aĎc − cĎa

γ dt − iHdt


|0⟩⟨0| ⊗ ρ(t) exp


−

aĎc − cĎa


γ dt + iHdt


=


1 +


aĎc − cĎa


γ dt +


−iH −

γ

2
cĎcaĎa


dt

|0⟩⟨0|

⊗ ρ(t)

1 −


aĎc − cĎa


γ dt +


iH −

γ

2
cĎcaĎa


dt


= |0⟩⟨0| ⊗ ρ(t)+

γ dt


|1⟩⟨0| ⊗ cρ(t)+ |0⟩⟨1| ⊗ ρ(t)cĎ


− i dt |0⟩⟨0| ⊗ [H, ρ(t)]

+ γ dt

|1⟩⟨1| ⊗ cρ(t)cĎ − |0⟩⟨0| ⊗

1
2


cĎcρ(t)+ ρ(t)cĎc


. (2.3)

Here ⊗ is the notation for the tensor product. If we ignore the output bath, the state of the cavity should be that obtained
by taking an average over all possible states of the bath, and thus it should be

ρ(t + dt) = ⟨0|R(t + dt)|0⟩ + ⟨1|R(t + dt)|1⟩ = ρ(t)+ dt

−i[H, ρ(t)] + γ


cρ(t)cĎ −

1
2
cĎcρ(t)−

1
2
ρ(t)cĎc


,

which leads to the following unconditioned master equation

ρ̇ = −i[H, ρ(t)] + γ


cρ(t)cĎ −

1
2
cĎcρ(t)−

1
2
ρ(t)cĎc


. (2.4)

Let us then consider the system evolution conditioned on the state of the output bath. From Eq. (2.3), we can introduce the
following operators

M0(dt) = 1 −


iH +

γ

2
cĎc

dt, M1(dt) =


γ dt c. (2.5)

When the state of the output bath is |0⟩⟨0|, the state of the cavity is

ρ0(t + dt) =
M0(dt)ρc(t)M

Ď
0 (dt)

tr

MĎ

0 (dt)M0(dt)ρc(t)
 =

ρc(t)− i[H, ρc(t)] − γ
 1
2 c

Ďcρc(t)+
1
2ρc(t)c

Ďc

dt

1 − γ tr

cĎcρ(t)


dt

=


ρc(t)− i[H, ρc(t)] −

γ
2
cĎcρc(t)+

γ

2
ρc(t)cĎc


dt
 

1 − γ tr

cĎcρ(t)


dt


= ρc(t)− i[H, ρc(t)] −

γ
2
cĎcρc(t)+

γ

2
ρc(t)cĎc


dt + γ tr


cĎcρ(t)


ρc(t)dt. (2.6)
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Here the subscript ‘‘c’’ denotes the state conditioned on themeasurement output.When the state of the output bath is |1⟩⟨1|,
the state of the cavity is

ρ1(t + dt) =
M1(dt)ρc(t)M

Ď
1 (dt)

tr

MĎ

1 (dt)M1(dt)ρc(t)
 =

cρc(t)cĎ

tr

cĎcρc(t)

 . (2.7)

The final system state at time t + dt , conditioned on the state of the output bath, can be represented by

ρc(t + dt) = [1 − dN(t)]ρ0(t + dt)+ dN(t) ρ1(t + dt)

= ρc(t)+


cρc(t)cĎ

tr

cĎcρc(t)

 − ρc(t)


dN(t)− i[H, ρc(t)] −

γ
2
cĎcρc(t)+

γ

2
ρc(t)cĎc


dt

+ γ tr

cĎcρ(t)


ρc(t)dt. (2.8)

Here dN(t) is the stochastic increment of a point process, which takes one of the two values 0 or 1 at any given time, and
thus satisfies [dN(t)]2 = dN(t). The times at which dN = 1 correspond to the detection of a photon by the photodetector.
The above equation (2.8) leads to the following stochastic master equation

dρc = G [c] ρcdN (t)+ H

−iH −

γ

2
cĎc

ρcdt. (2.9)

The superoperators G [r] ρc and H [r] ρc are defined as

G [r] ρc =
rρcrĎ

tr

rρcrĎ

 − ρc,

H [r] ρc = rρc + ρcrĎ − tr

r + rĎ


ρc

ρc. (2.10)

When we take an average over the stochastic noise dN , the conditioned stochastic master equation (2.9) becomes the
unconditioned master equation (2.4), and thus it can be shown that E[dN(t)] = γ tr[cĎcρ(t)]dt , in which E[·] denotes
the ensemble average over the stochastic noise.

Additionally, if the state of the cavity at time t is a pure state |ψc(t)⟩, then the state of the cavity at time t + dt is

|ψ0(t + dt)⟩ =
M0(dt)|ψc(t)⟩
⟨MĎ

0 (dt)M0(dt)⟩
=


1 −


iH +

γ

2 c
Ďc

dt

|ψc(t)⟩

1 − γ ⟨cĎc⟩dt

=


1 −


iH +

γ

2 c
Ďc

dt

|ψc(t)⟩

1 −
γ

2 ⟨cĎc⟩dt
=


1 −


iH +

γ

2
cĎc

dt
 

1 +
γ

2
⟨cĎc⟩dt


|ψc(t)⟩

= |ψc(t)⟩ +


−iH +

γ

2


⟨cĎc⟩ − cĎc


|ψc(t)⟩ dt,

when the state of the bath is |0⟩. Here ⟨·⟩ = ⟨ψc(t)| · |ψc(t)⟩. When the state of the bath is |1⟩, the state of the cavity at time
t + dt is

|ψ1(t + dt)⟩ =
M1(dt)|ψc(t)⟩
⟨MĎ

1 (dt)M1(dt)⟩
=

c
⟨cĎc⟩

|ψc(t)⟩.

Thus, the final state of the cavity at time t + dt can be written as

|ψc(t + dt)⟩ = [1 − dN(t)] |ψ0(t)⟩ + dN(t)|ψ1(t)⟩

= |ψc(t)⟩ +


c

⟨cĎc⟩(t)
− 1


|ψc(t)⟩ dN(t)+


−iH +

γ

2


⟨cĎc⟩(t)− cĎc


|ψc(t)⟩ dt,

by which we can obtain the following stochastic master equation

d|ψc⟩ =


−iH +

γ

2


⟨cĎc⟩ (t)− cĎc


|ψc⟩ dt +


c

⟨cĎc⟩ (t)
− 1


|ψc⟩ dN(t). (2.11)

In the above discussion, we have assumed that the photodetector is ideal, meaning that it never misses a photon, and
never clicks when there is no photon. Under this condition, an initially pure state remains pure, and the SSE is sufficient
to describe the observer’s state-of-knowledge as the measurement proceeds. But if the photodetector is not perfect, the
observer no longer has full information about the quantum state as the measurement proceeds [101,102]. The observer’s
state-of-knowledge is then necessarily given by a densitymatrix, andwemust use a stochasticmaster equation (SME), rather
than a Schrödinger equation. Wemust also modify the master equation to include imperfect detection. If the photodetector
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is inefficient, so that it records only a fraction η of the photons emitted by the cavity, and does not record any non-existent
photons, then the SME in Eq. (2.9) should be modified as

dρc =


dNG

√
γ ηa


+ dtH


−iH −

ηγ

2
aĎa


+ dt (1 − η)D
√
γ a

ρc, (2.12)

where

D [c] ρ = cρcĎ −
1
2
cĎcρ −

1
2
ρcĎc. (2.13)

For more general case of quantum-jump continuous measurement, let us consider the following measurement-induced
unconditioned master equation

ρ̇ = −i[H, ρ] +
1
2


µ

γµ

2cµρcĎµ − cĎµcµρ − ρcĎµcµ


. (2.14)

The quantum continuous measurement represented by the above master equation can be written using the general
representation of a quantummeasurement that is often referred to as a positive-operator-valued-measure (POVM). A POVM
is a set of measurement operators {Mµ̃} such that

µ̃

MĎ
µ̃
Mµ̃ = I, (2.15)

where I is the identity operator. Each of the operators Mµ̃ plays the role that a projector plays in a simple von Neumann
measurement in projecting the system onto the final state. Let us denote the state of the system before and after the
measurement as ρbefore and ρafter, respectively. If a measurement described by the above POVM is made, and the observer is
ignorant of the measurement result µ̃, then we have

ρafter =


µ̃

Mµ̃ ρbefore MĎ
µ̃
. (2.16)

By taking a set of measurement operators

M0(dt) = 1 −


iH +

1
2


µ̃

γµcĎµcµ


dt, Mµ(dt) =


γµdt cµ, (2.17)

the quantum continuous measurement given by the master equation (2.14) can be seen as being given by an infinitesimal
POVM, in the sense that

ρ(t + dt) = M0(dt) ρ(t)M
Ď
0 (dt)+


µ

Mµ(dt) ρ(t)MĎ
µ(dt), (2.18)

where ρ(t + dt) and ρ(t) are the solutions of Eq. (2.14) at (t + dt) and t .
A stochastic equation that unravels the master equation (2.14), and that is driven by a point process, is [100]

d|ψc⟩ =


−iH +

1
2


µ

γµ

⟨cĎµcµ⟩ (t)− cĎµcµ


|ψc⟩ dt +


µ

 cµ
⟨cĎµcµ⟩ (t)

− 1

 |ψc⟩ dNµ. (2.19)

The notation ⟨cĎµcµ⟩ = ⟨ψc|cĎµcµ|ψc⟩ represents the average of cĎµcµ over the state |ψc⟩ given by Eq. (2.19), whichmeans that
the Eq. (2.19) is a nonlinear stochastic differential equation and thus is different from usual Schrödinger equation which is a
linear equation of the quantum state. That is one of themost interesting features of the stochastic differential equation (2.19)
and leads to various effects such as state localization by quantummeasurement. In Eq. (2.19), for eachµ, the increment dNµ
is an increment of a point process, and takes only two values, either 0 or 1. The value 1 corresponds to an instantaneous
event, and thus dNµ is equal to 1 only at a set of discrete points. The rest of the time dNµ = 0. The events occur randomly
and independently, and the probability per unit time that an event occurs for the process labeled by µ is γµ⟨cĎµcµ⟩ (t). This
means that the probability for an event in the time interval [t, t + dt] is γµ⟨cĎµcµ⟩dt . The point-process increments satisfy
the relations

E

dNµ (t)


= γµ⟨cĎµcµ⟩dt, dNµdNν = dNµδµν, (2.20)

where the average E(dNµ) is in fact a conditional expectation of the classical stochastic process dNµ conditioned on all the
past-time measurement outputs. Since Eq. (2.19) is a stochastic equation for the state vector, it is usually called a stochastic
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Schrödinger equation. We can alternatively write down a stochastic master equation for the density matrix ρc = |ψc⟩⟨ψc|,
which is [100]

dρc =


µ

G

cµ

ρcdNµ (t)+ H


−iH −

1
2


µ

γµcĎµcµ


ρcdt. (2.21)

2. Quantum diffusion:
The master equation given by Eq. (2.14) is also unraveled by the SSE [42,94,96,97,103]

d|ψc⟩ = −iH|ψc⟩dt +


µ

γµ


⟨cĎµ⟩cµ −

1
2
cĎµcµ −

1
2
⟨cĎµ⟩⟨cµ⟩


|ψc⟩dt +


µ

√
γµ

cµ − ⟨cµ⟩


|ψc⟩dWµ, (2.22)

where the dWµ are a set of mutually independent Wiener noises satisfying

E

dWµ


= 0, dWµdWν = δµνdt. (2.23)

The equivalent stochastic master equation is

dρc = −i [H, ρc] dt +


µ


γµD


cµ

ρcdt +

√
γµ H


cµ

ρc dWµ


. (2.24)

Stochastic SSEs and SMEs driven by Wiener noise correspond to measurement techniques that are quite different from
photon-counting. An important example is themeasurement system shown in Fig. 2(b). In this case, instead of detecting the
light from a cavity with a photodetector directly, one first interferes the light with a laser (traditionally called local oscillator
in the literature) whose intensity is much greater than the cavity output. This measurement technique is sensitive to the
phase of the cavity output, whereas direct photo-detection is not, and is called homodyne detection [42,99]. If we assume that
the phase difference between the output light from the cavity and the local oscillator is zero, the SME describing homodyne
detection can be obtained from Eq. (2.9) by replacing the operator c by (c + β), giving

dρc = G [c + β] ρc dN (t)+ H

−iH − βγ c −

γ

2
cĎc

ρcdt, (2.25)

in which β is the amplitude of the local oscillator. In order to obtain a continuous stochastic master equation, we let
β ∼ (dt)−2/3 by which we can see that β → ∞ when dt → 0. Note that dN is a stochastic noise, and in the limit in
which β tends to infinity there are many jumps in a small interval dt . The result is that the number of jumps in this small
interval becomes Gaussian due to the central limit theorem. The mean and variance of the number of jumps in an interval
dt are

µ = γ ⟨(cĎ + β)(c + β)⟩ dt = γ β2dt +
√
2γ β⟨x⟩dt,

σ 2
= γ β2dt.

Thus we can replace dN by the Gaussian process

dN = γ β2dt +
√
2γ β⟨x⟩dt +

√
γ βdW (t), (2.26)

where dW is a Wiener noise satisfying E(dW ) = 0 and (dW )2 = dt . The symbol x = (c + cĎ)/
√
2 denotes the normalized

position operator of the cavity mode. By substituting dM in Eq. (2.26) for dN in Eq. (2.25) and omitting the higher-order
products of infinitesimals that vanish, we obtain the following stochastic master equation

dρc = −i [H, ρc] dt + γD [c] ρc + H
√
γ c

ρcdW . (2.27)

The stream of measurement results for homodyne detection is given by

dy = lim
β→∞

dN(t)− γ β2

√
2γ β

= ⟨x⟩dt +
1

√
2γ

dW , (2.28)

where dW is the same Wiener noise increment that appears in the SME.
If the initial state of the cavitymode is a pure state, then the dynamical equation for the cavity under homodyne detection

can be obtained by replacing the operator c in Eq. (2.11) by the displacement operator c + β

d|ψc⟩ =


−iH +

γ

2


⟨cĎc⟩(t)− cĎc +

γ

2
⟨cĎβ + βc⟩ − βc


|ψc⟩ dt

+


c + β

⟨(cĎ + β)(c + β)⟩(t)
− 1


|ψc⟩ dN(t). (2.29)
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By substituting Eq. (2.26) into Eq. (2.29), it can be shown that

d|ψc⟩ = −iH|ψc⟩dt + γ


⟨cĎ⟩c −

1
2
cĎc −

1
2
⟨cĎ⟩⟨c⟩c


|ψc⟩dt +

√
γ (c − ⟨c⟩) |ψc⟩dW . (2.30)

If the photo-detector is inefficient, then the SME becomes

dρc = −i [H, ρc] dt + γD [cx] ρc + H
√
ηγ c


ρcdW , (2.31)

and the measurement output is

dy = ⟨x⟩dt +
1

√
2ηγ

dW , (2.32)

where η is the detection efficiency. Continuous measurements containing Wiener noise are also sometimes referred to as
weakmeasurements. We prefer to call them continuous measurements because (i) weakmeasurements are not necessarily
continuous, and (ii) it can lead to confusion with the ‘‘weak values’’ of Aharonov, Albert and Vaidman [104–106].

More generally, a continuousmeasurement of the quantumvariables Al (l = 1, . . . ,m) can be expressed as the stochastic
master equation [94]

dρc = −i [H, ρc] dt +

m
l=1


Γl D [Al] ρc dt +


ηlΓl H [Al] ρc dWl


, (2.33)

and output equation

dyl = ⟨Al⟩ dt +
1

√
2ηlΓl

dWl, (2.34)

where Γl and ηl represent the measurement strengths and measurement efficiencies. Note that the measurement strengths
of continuous measurements have units of inverse time [see, e.g., Γl in Eq. (2.33)], as well as the inverse square of the
observable beingmeasured. It can be thought of as the rate at which the inverse variance of the observable is increased (and
thus the variance reduced) by the measurement. The stochastic master equation (2.33) and the equation for the stream of
measurement results, Eq. (2.34), are just the quantum filtering equations (Eqs. (2.56) and (2.55)).

As mentioned above, we can simultaneously make more than one continuous measurement on a system, and we can
simultaneously measure observables that do not commute. Since the respective dynamics induced by the continuous
measurements of two different observables commute to first order in dt , we can think of the measurements of the two
observables as being interleaved—the process alternates between infinitesimal measurements of each observable. Note
that a von Neumann measurement cannot simultaneously project a system onto the eigenstates of two noncommuting
observables, but continuous measurements do not perform instantaneous projections. The effect of simultaneously
measuring the position and momentum of a single particle, for example [107,108], is to feed noise into both observables.
Measuring noncommuting observables therefore in general introduces more noise into a system than is necessary to obtain
a given amount of information. The opticalmeasurement techniques of heterodyne detection [22] and eight-port homodyne
detection [109] are very similar to simultaneous measurements of momentum and position [99].

2.1.2. Another point of view: quantum filtering

When we make a continuous measurement on a quantum system, if we know the dynamics of the system, then we
can derive an equation of motion for our full state-of-knowledge of the system determined by the continuous stream of
measurement results. For a classical system, an observer’s state-of-knowledge is given by a probability distribution over
the state-space. For a quantum system, it is the density matrix that captures all the information that an observer has about
a system. Control theorists refer to the process by which an observer calculates his or her state-of-knowledge of a system
from a series of measurement results filtering, and the quantum version of this quantum filtering [45,46,110]. In classical
control theory, when we can only obtain partial information of the system state from the measurement output (e.g., we can
measure the position but not the momentum of a mechanical system), we can introduce a dynamical system called a filter,
using the measurement results as inputs to recover the whole system dynamics. However, quantum filtering is not just a
trivial extension of classical filtering. In quantum filtering, we feed the measurement output (which is a classical signal)
into a classical system to generate an estimated state of the measured quantum system. Thus, we use a classical system to
mimic a quantum system, and some particular quantum effects, such as quantum coherence, may be lost during this process
by the action of the measurement on the system. Quantum filtering is a bridge between a quantum system and a classical
controller, since the classical controller can use the resulting state-of-knowledge to decide how to apply control forces to
the system. For certain systems, results for optimal control from classical control theory can be directly applied to obtain
optimal protocols for quantum system [50,111].

There is a way to formulate quantum theory as a non-commutative generalization of the measure-theoretic formulation
of classical probability. We discuss this now because it tends to be used by control theorists and mathematicians who
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work on quantum feedback control. While traditional quantum theory deals with operators in a Hilbert space, quantum
probability deals with quite different objects, such as a (non-commutative) sigma-algebra of events in a probability space.
A set of quantum observables that are mutually commuting are then described by a subset of the full probability space that
is merely a classical probability space. To the authors’ knowledge there is no practical advantage in using one formulation
of quantum mechanics or the other; control theorists use the quantum probability formulation since it is an extension of
something that is part of their training, whereas physicists use the traditional formulation because it is part of their training.
Interestingly, however, in quantum probability theory it is simpler to show the equivalence between the measurement
record as described by the SME and the statistics of the measurement record as described by input–output theory.

We now introduce the quantum probability formulation of quantum mechanics, and then present continuous
measurement theory (the theory of quantum filtering) in terms of this formulation. The main difference between classical
and quantummechanics is that quantummechanics is noncommutative, bywhichwemean that the operators that represent
different physical variables do not always commute with each other. Heisenberg’s uncertainty principle, for example, is a
direct result of the commutation relation [x, p] = ih̄, between the position x and the momentum p of a quantum degree of
freedom. Because of this, quantumprobability theory is a noncommutative version of classical probability theory. Recall that
classical probability theory consists of the triple, (Ω,F , P), referred to as a probability space. Here Ω is the sample space
which is the set of all elementary, mutually exclusive outcomes. For example, for the probability experiment of throwing a
coin, the sample space is the setΩ = {head, tail}. The second item in the triple, F , is the set of ‘‘events’’, where each event
is some subset of the possible outcomes (a subset of the set Ω). This makes F a so-called σ -algebra, which satisfies the
following conditions: (i) the empty set ∅ belongs to F ; (ii) F is closed under complement: Ω \ A ∈ F if A ∈ F ; and (iii)
F is closed under countable unions:


∞

n=1 An ∈ F if all An ∈ F . The elements of F can also be equivalently expressed as a
function defined onΩ (that is, something that associates a value with every outcome), which is called a random variable. In
fact, for any A ∈ F , we can define a random variable χA : Ω → R such that χA (ω) = 1 if ω ∈ A, and χA (ω) = 0 if it is not.
The final item in the triple is the probability measure P, which is a function that associates a probability with every subset of
F : (P : F → [0, 1]) such that: (i) P is countably additive, i.e., P


∞

n=1 An


=


∞

n=1 P (An) for any sequence A1, A2, . . . , An
of disjoint sets in F , and (ii) the measure of the whole sample spaceΩ is normalized so that P (Ω) = 1.

Quantum probability theory, developed in the 1980s [45,46,50,84,110,111] is a non-commutative analog of classical
probability theory. In quantum probability theory, there is no longer an underlying sample space, and so the quantum
probability model can be described by a pair (N , P). The first item,N , is an algebra, and is defined as the set of all Hermitian
operators on theHilbert space of the system. An elementA ∈ N is an observable of the quantum systemwhich can be seen as
the quantum version of the random variable. The ‘‘events’’ of quantum probability are defined as all the projection operators
P ∈ N . These project onto the subspaces of the Hilbert space. Thus each possible set of outcomes is given by a subspace
of the Hilbert space. This is simply the projection postulate of quantum measurement theory. The function P : N → C,
where C is the complex space, is called a state on N . In fact, we can always find a system density operator ρ such that
P (A) = tr (Aρ) for any A ∈ N .

By comparing the classical probability model (Ω,F , P) and the quantum probability model (N , P), the main difference
is that the algebra N , called the von Neumann algebra, is noncommutative (the Hermitian operators may not commute
with each other) while the σ -algebra F in classical probability is a commutative algebra. As an example, let us consider a
quantummeasurement of the observable A. Before thismeasurement, the quantum system can be described by the quantum
probabilitymodel (N , P). After thismeasurement, the quantum state collapse occurs. Themeasurement output corresponds
to a classical probability model (A, P), where

A = {X : X = f (A) , f : R → C} (2.35)
forms a commutative algebra. Thus, the quantum measurement of the observable A converts a quantum probability model
into a classical probability model. More generally, in the following discussions, we will show that the quantum filtering
process, which is based on quantummeasurement, is merely a bridge between a quantum probability model and a classical
probability model.

To better understand quantum filtering, let us consider an indirect quantum measurement, which is achieved by
interacting themeasured systemwith a bath via a system operator L, and thenmaking ameasurement on the bath. The bath
is a continuum of harmonic oscillators of different frequencies. The bath also describes a field, such as the electromagnetic
field, in which the oscillators are the modes of the field. The Hamiltonian of the total system composed of the measured
system and the bath is given by

H = Hs + Hb + Hint,

Hb =


+∞

−∞

dω ω bĎ(ω) b (ω) ,

Hint = i


+∞

−∞

dω

κ (ω) bĎ (ω) L − h.c.


, (2.36)

where Hs is the free Hamiltonian of the measured system, bĎ (ω) and b (ω) are the creation and annihilation operators of
the bath mode with frequency ω, and satisfy

b (ω) , bĎ (ω̃)


= δ (ω − ω̃) . (2.37)



J. Zhang et al. / Physics Reports 679 (2017) 1–60 15

The bath mode with frequency ω interacts with the system via the system operator L, where κ (ω) is the corresponding
coupling strength. Hereafter we set h̄ = 1. The total Hamiltonian H can be re-expressed in the interaction picture as

Heff = exp (iHbt) (Hs + Hint) exp (−iHbt) = Hs + i


+∞

−∞

dω

κ (ω) eiωtbĎ (ω) L − h.c.


. (2.38)

We now introduce the Markovian assumption. In probability theory, the term ‘‘Markovian’’ refers to the memoryless
property of a stochastic process: a process is said to be Markovian if the conditional probability distribution of the future
states of this process, in general conditional on both past and present states, depends only upon the present state. In short,
given the present, the future does not depend on the past. Given the following assumption

κ (ω) =


γ

2π
, (2.39)

it will be presented in the following discussions that the output field and the dynamical equation of the system do not
depend on the past. We thus refer to Eq. (2.39) as the Markovian assumption. Under this assumption, the Hamiltonian Heff
can be expressed as

Heff = Hs + i
√
γ

bĎin (t) L − LĎbin (t)


, (2.40)

where

bin (t) =
1

√
2π


+∞

−∞

dω e−iωt b (ω) (2.41)

is the Fourier transform of the bath modes. The operator bin (t) is, in fact, the time-varying field that is incident on, and thus
the input to, the system, and satisfies [53,54,86]

bin (t) , b
Ď
in


t̃


= δ

t − t̃


. (2.42)

We now define a new bath operator

Bin (t) =

 t

0
bin (τ ) dτ (2.43)

which is called a quantum Wiener process. If we assume that the bath is initially in a vacuum state, the increment of the
quantumWiener process dBin and its conjugate dBĎin satisfy the following algebraic conditions:

dBin dBĎin = dt, dBĎin dBin = dBĎin dBĎin = dBin dBin = 0. (2.44)

These constitute the quantum version of the so-called classical Ito rule [84]
dW̃

2
= dt, (2.45)

where dW̃ is the increment of the classical Wiener process W̃ (t), which has zero mean, and the above equality is defined
in the root-mean-square sense. The unitary evolution operator V (t) of the total system composed of the controlled system
and the input field satisfies the following dynamical equation

dV (t) =


√
γ dBĎinL −

√
γ LĎ dBin −

γ

2
LĎL dt − iHsdt


V (t) (2.46)

with initial condition V (0) = I . In the Heisenberg picture, an arbitrary system operator X (t) = V Ď(t)XV (t) satisfies the
following quantum stochastic differential equation [53,54]

dX(t) = −i [X(t),Hs] dt +
γ

2


LĎ [X(t), L] +


LĎ, X(t)


L

dt +

√
γ

dBin


LĎ, X(t)


+ [X(t), L] dBĎin


, (2.47)

which can be derived by applying the quantum Ito rule (2.44) and expanding the unitary operator to second order in the
quantumWiener increment. In fact, it can be calculated that

dX(t) = dV Ď(t)XV (t)+ V Ď(t)XdV (t)+ dV Ď(t)XdV (t)

=
√
γ dBinLĎX(t)−

√
γ LX(t) dBĎin −

γ

2
LĎLX(t)dt + iHsX(t)dt

+
√
γ X(t)L dBĎin −

√
γ dBinX(t)LĎ −

γ

2
X(t)LĎL dt − iX(t)Hsdt + γ LĎX(t)Ldt

= −i [X(t),Hs] dt +
γ

2


LĎ [X(t), L] +


LĎ, X(t)


L

dt +

√
γ

dBin


LĎ, X(t)


+ [X(t), L] dBĎin


. (2.48)
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It is then possible to define an output field Bout (t) which describes the field leaving the system after it has interacted with
it by

Bout (t) = V Ď(t)Bin(t)V (t).

The celebrated input–output relation for the system can then be written in the increment form as [53,54]

dBout = dBin +
√
γ L(t), (2.49)

which can also be derived by applying the quantum Ito rule (2.44) and expanding the unitary operator to second order in
the quantumWiener increment. In fact, it can be shown that

dBout = V Ď(t) dBin V (t)+ dV Ď(t) dBin V (t)+ V Ď(t) dBin dV (t)

= dBin + 0 +
√
γ V Ď(t) L V (t) = dBin +

√
γ L(t). (2.50)

If homodyne detection is performed [99] on the output field Bout (t), and we set the phase of the local oscillator to zero, then
the operator corresponding to the output of the homodyne measurement is

dYout =
1

√
γ


dBout + dBĎout


,

and satisfies the following equation

dYout =

L + LĎ


dt +

1
√
γ


dBin + dBĎin


. (2.51)

With the above preparation, we can now present the main results of quantum filtering theory [110]. The purpose of
quantum filtering is to provide an estimate π (X) of the value of the system observable X , at time t , given the stream of
measurement results up until that time. We will define this estimate as the expectation value of X given the measurement
results. To obtain π (X)we first define the event set generated by the measurement output signals up to the current time t
as

Yout = {Y (t) | Y (t) = f [Yout(τ ) : 0 ≤ τ ≤ t]} (2.52)

where f (·) is an arbitrary function, and denote P as the probability measure on Yout. The estimate πt (X) is then the
conditional expectation of X(t) on Yout

πt (X) = P (X(t)|Yout) . (2.53)

From the definition of πt (X) given in Eq. (2.53), it can be proved (see, e.g., the derivations in Ref. [110]) that we can obtain
the following dynamical equation for π (X) and the corresponding output equation from Eqs. (2.47) and (2.51)

dπt (X) = πt [L (X)] dt +
√
γ

πt

LĎX + XL


− πt


L + LĎ


πt (X)


dW , (2.54)

dYout = πt

L + LĎ


dt +

1
√
γ

dW , (2.55)

where L (X) is the Liouville superoperator of the system defined as

L (X) = −i [X,Hs] + γ


LĎXL −

1
2
LĎLX +

1
2
XLĎL


.

The process W (t) in Eqs. (2.54) and (2.55) is called the innovation process of quantum filtering, and has been shown to
be a classical Wiener process [110]. The increment of W (t), i.e., dW , satisfies the classical Ito rule given by Eq. (2.45). The
dynamical equation (2.54) of π (X) is called the quantum filtering equation. The filtering equation (2.54) and the output
equation (2.55) are the main results of quantum filtering theory.

Additionally,we can rewrite the filtering equation (2.54) as a stochastic equation for the evolution of the density operator.
To show this, we use the fact that the density operator ρc(t) satisfies πt (X) = tr (Xρc(t)), where X is the corresponding
system observable at t = 0. Substituting Eq. (2.54) into the above relation, the system density operator ρc(t) evolves
according to the following stochastic master equation [110]

dρc(t) = −i [Hs, ρc(t)] dt +
1
2


2Lρc(t)LĎ − LĎLρc(t)− ρc(t)LĎL


dt

+

Lρc(t)+ ρc(t)LĎ − tr


L + LĎ


ρc(t)


ρc(t)


dW . (2.56)

The stochastic master equation (2.56) is also often referred to as quantum filtering equation.
To summarize, the quantum stochastic differential equation (2.47) and the output equation (2.51) give the dynamics

of the operators that describe the measured quantum system. These equations are driven by the quantum Wiener noise
dBin, and are thus defined on a quantum probability space. As a comparison, the quantum filtering equation (2.54) [or the
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stochastic master equation (2.56)] and the output equation (2.55) give the observer’s state-of-knowledge of the measured
quantum system based on the information extracted by the quantum measurement. These equations are driven by the
classical Wiener noise dW and thus defined on a classical probability space. Thus, in quantum filtering theory we use a
classical stochastic system tomimic the dynamics of a quantum stochasticmodel, which iswhywe refer to quantum filtering
as a bridge between a quantum probability model and a classical probability model.

2.2. Markovian quantum feedback

The continuous collapse of the quantum state in continuous quantum measurement means that we can execute real-
time quantum feedback control before the quantum state collapses to a completely classical state. That is the starting point
of continuous measurement-based feedback control. The key questions in feedback control are usually (i) what observable
should we measure? and (ii) how should we choose the feedback forces as a function(al) of the stream of measurement
results? Optimal feedback strategies can always be obtained by using the SME to determine the observer’s full state of
knowledge (the densitymatrix) given the stream ofmeasurement results up to the present time, and using this to determine
the choice of Hamiltonian at each time. But solving the SME can take significant numerical resources, and it may not be
possible to do so in real-time. In that case, one can attempt to approximate the SME with a simpler differential equation,
which may be possible depending on the dynamics of the system [112–114]. Alternatively we can take the opposite
approach, and see what can be achieved with quantum feedback when we perform no processing of the measurement
results, and merely engineer a term in the Hamiltonian of the system that, at each time, is proportional to the measurement
result at that time. This is the kind of feedback protocols that were introduced byWiseman and Milburn [42,43,48], and are
now referred to asMarkovian feedback. The reason for this name is that for this kind of feedback, if we average the evolution
over all trajectories, the result is a Markovian master equation. This is not usually true for feedback protocols.

Let us consider a quantum continuous measurement of the operator Awith efficiency η. From Eqs. (2.33) and (2.34), the
measurement and output equations of this measurement can be expressed as

dρc = −i [H, ρc] dt + ΓA D [A] ρc dt +

ηΓA H [A] ρc dW , (2.57)

and

dy = ⟨A⟩ dt +
1

√
2ηΓA

dW . (2.58)

The main objective of measurement-based quantum feedback is to use the output signal dy (t) to engineer the system
dynamics given by Eq. (2.57). The most general form of the system dynamics, modified based on the output signal dy (t),
can be expressed as [22]

dρf = F [t, {dy (τ ) |τ ∈ [0, t]}] ρc, (2.59)

whereF [t, {dy (τ ) |τ ∈ [0, t]}] is a superoperator that depends on the output signal dy (t) for all past times.ρf is the system
state modified by the feedback control.

For most of the existing studies, quantum feedback control is introduced by varying the parameters in the system
Hamiltonian based on the output signals {dy (τ ) |τ ∈ [0, t]}. The simplest case is Markovian quantum feedback in which the
control is applied by adding a Hamiltonian that is proportional to the measured signal dy(t)/dt . This Hamiltonian generates
the dynamics

dρf = [exp(Kdy)− 1] ρc, (2.60)

where the superoperator K is defined by Kρc = −i[F , ρc] for some Hermitian operator F . Combining the measurement
equation (2.57) and the feedback equation (2.60), we can obtain the following modified closed-loop stochastic master
equation [22]

dρf =


−i

H, ρf


+ ΓAD [A] ρf − i


F , Aρf + ρf A


+

1
η

D [F ] ρf


dt + H


√
ηA −

i
√
η
F

ρf dW . (2.61)

By averaging over the noise term dW , we can derive the followingWiseman–Milburn master equation [22] from Eq. (2.61):

ρ̇ = −i [H, ρ] + ΓAD [A] ρ − i [F , Aρ + ρA] +
1
η

D [F ] ρ, (2.62)

whereρ = E(ρf ). The effects induced by the feedback loop are clearer in this form: (i) the first feedback term−i [F , Aρ + ρA]
plays a positive role to steer the system dynamics to achieve the desired effects; and (ii) the second feedback termD [F ] ρ/η
represents the decoherence effects induced by feedback, which tends to play a negative role for purposes of control. The
master equation (2.62) can be reexpressed as the traditional Lindblad form [22,48]

ρ̇ = −i

H +

(AF + FA)
2

, ρ


+ D [A − iF ] ρ +

1 − η

η
D [F ] ρ. (2.63)
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Although the Markovian quantum feedback given by Eq. (2.62) is the simplest measurement-based quantum feedback
approach, it can be used to solve various problems by choosingA and F appropriately.Markovian quantum feedback has been
used to stabilize arbitrary one-qubit quantum states [115–117], manipulate quantum entanglement [118–131], generate
and protect Schrödinger cat states [132–136], and induce optical, mechanical, and spin squeezing [137–145].

2.3. Feedback via time-averaging

Markovian quantum feedback is simple to describe analytically, but is also rather limited. Further, feeding back the
measurement signal at each instant of time does not make optimal use of the information extracted by the measurement.
To do that we must process the measurement results using the SME. It is worth pausing at this point to understand a little
more how the measurement results, given by Eq. (2.34), provide information about the measured operator and the state of
the system. If we process the measurement results so that we know ρc at each time, then we also know the expectation
value of the measured operator, ⟨A⟩, at each time. The first term in Eq. (2.34) is therefore already known, and provides no
new information about the system. It is the noise term dW that carries the new information, and that modifies our state-
of-knowledge. In fact, by definition we always know the expectation value ⟨A⟩ = tr(Aρc) at the start of the continuous
measurement, because ρc is our state-of-knowledge. But the systemmight really be in some pure state |ψ⟩, so that the true
mean value of A is Ā = ⟨ψ |A|ψ⟩. As the measurement proceeds, the conditional expectation value ⟨A⟩ tends to Ā and ρc
tends to |ψ⟩.

Now consider what happens if A is a Hermitian observable, and |ψ⟩ is an eigenstate of both the system Hamiltonian and
A. In this case, assuming that the system is not driven by other noise sources, it remains in the state |ψ⟩ as themeasurement
proceeds, and Ā is constant. In that case we can obtain an estimate of Ā of ever increasing accuracy without solving the SME.
All we need to do is to average the measurement results obtained so far, and divide by the total time [146]. If we define

YA (t) =
1
t

 t

0
dy =

1
t

 t

0
⟨A⟩dt ′ +

1
t
√
2ηΓA

 t

0
dW , (2.64)

then as t → ∞ the second term tends to zero and YA (t) → Ā. The reason that the second term, being the average of the
noise, tends to zero is that it has equally positive and negative fluctuations and these average to zero over time.

The mean value of the measured observable, Ā, is usually not constant for a system that we are trying to control.
Nevertheless we can still use an averaging procedure to obtain an estimate of Ā and use this to choose our feedback
forces. This method is not as complex as processing the measurements using the SME, but more complex than Markovian
feedback [147–150]. To do this we average the signal over a time T that is long enough to reduce the noise but not so long
that Ā changes toomuch during T . We can also include aweighting function, f (t), to smoothly reduce the dependence on our
estimate of Ā on measurement results that are too far in the past. For example, if we use an exponential weighting function,
our estimate of Ā at time t is

ỸA (t) =
1
T

 t

t−T
exp


−γf t ′

 
⟨A⟩dt ′ +

1
√
2ηΓA

dW

. (2.65)

When T ≪ 1/γf , the estimate converges as

ỸA (t)− Ā (t) = exp

−γf t

 
ỸA (0)− Ā (0)


. (2.66)

Such an exponentially-convergent filter has been introduced in the literature to stabilize two-qubit entanglement
[151,152] and a three-qubit GHZ state [153] both in optical systems and in superconducting circuits. It has also been applied
experimentally to the adaptive estimation of the optical phase [154].

2.4. Bayesian quantum feedback

To make full use of the information provided by the measurement, we must process the measurement results using
the SME [Eq. (2.33)] to obtain the conditional density matrix. Since this density matrix, along with the knowledge of the
dynamics of the system, determines the probabilities of the results of any measurement on the system at any time in the
future, any optimal strategy for controlling the system can ultimately be specified as a rule for choosing the Hamiltonian at
time t as a function of the density matrix at that time and possibly the time itself: H(t) = f (ρc(t), t). Feedback control in
which the feedback protocol is specified in this way is sometimes referred to as ‘‘Bayesian feedback’’ because the SME is the
quantum equivalent of processing the measurement record using Bayes’ theorem [155].

As we have mentioned above, the SME, since it requires simulating the full dynamics of the system, may be impractical
to solve in real-time. Sometimes it is possible to approximately, or even exactly, reduce the computational overhead by
choosing an ansatz for ρc that contains only a small number of parameters. The SME then reduces to a stochastic differential
equation for these parameters. Two examples in which an approximate ansatz provides an effective control protocol can be
found in [112–114]. There is one class of systems in which an ansatz with a small number of parameters provides an exact
solution to the SME, that of linear systems. A quantum system is referred to as linear if its Hamiltonian is no more than
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Fig. 3. Diagram for state-based quantum feedback. The controlled system (top branch, in blue) is described by a quantum stochastic differential equation
driven by the quantum Wiener noise dBin . Part of the quantum output field Yout from the controlled system is converted into a classical signal dW by a
measurement device (shown in yellow) and then fed into the filter. The dynamics of the filter is determined by the quantum filtering equation driven by
the classical Wiener noise, i.e., the innovation process dW . The estimated quantum state π (X) is fed into a classical controller to obtain a control signal
u, which is then fed back to steer the dynamics of the controlled system. The filter and controller which form the classical control loop (in pink) can be
realized by a classical digital signal processor.

quadratic in the position and momentum operators, any Lindblad operators that describe the noise driving the system are
linear in the position and momentum operators, and any measurements are (i) driven byWiener noise, and (ii) of operators
that are linear in the position and momentum.

If we further assume that the initial states of the noise-driven linear systems are Gaussian states (states that are Gaussian
in the position and momentum bases, and thus have Gaussian Wigner functions), then the states of the system will remain
Gaussian under the evolution. This fact is not difficult to show, and implies immediately that if the state of a linear system
is Gaussian, the SME reduces to a stochastic differential equation for the means and (co-)variances of the position and
momentum [50]. What is more, the dynamics of these variables are exactly reproduced by those of a classical linear system
driven by Gaussian noise, and subjected to continuous measurements of the same observables. To correctly reproduce the
quantum dynamics, for each continuous measurement made on the system a noise source must be added to the classical
system to mimic Heisenberg’s uncertainty principle.

Consider a linear quantum system with N degrees of freedom [156–160], and write the N position and momentum
operators, denoted respectively by qn and pn, in the vector

x = (q1, p1, . . . , qN , pN)T . (2.67)

We scale these operators so that [qn, pn] = i. If xm is the mth element of the vector x, then we have [xn, xm] = iΣnm, where

Σ =

N
n=1


0 1

−1 0


.

For linear quantum systems, the system Hamiltonian Hs and the dissipation operator L in Eq. (2.47) can be written as
[156–158]

Hs =
1
2
xTG x − xTΣ b u, L = lTx, (2.68)

where G is a real and symmetric matrix, and b, l are real and complex vectors, respectively. The second term in Hs,
including the time-dependent function u (t), describes the force applied by the feedback controller (see Fig. 3). This feedback
Hamiltonianmust be linear in the conditional mean values of the position andmomentum operators, in order to ensure that
the system remains linear. This also means that there is a linear map from the measurement output Yout to u (t), and thus
a linear input–output relation for the controlled system. From Eq. (2.47), the dynamics of the controlled system can be
expressed as the following linear quantum stochastic differential equation:

dx = A x dt + b u dt + i
√
γ Σ


l dBĎin − l∗ dBin


, (2.69)

where the matrix A = Σ

G + Im


l∗lT

. The output equation (2.51) can be written as

dYout = F x dt +
1

√
γ


dBin + dBĎin


, F = lT + lĎ. (2.70)

After quantum measurement, the dynamics of this linear quantum system can be fully described by the conditional means
π (x) and variances Vt = P (Pt |Yout), where Pt is the covariance matrix of the position and momentum variables with the
(i, j)-element being Pij =


∆xi∆xj +∆xj∆xi


/2, and∆xi = xi −π (xi). The conditional mean values π (x) obey the filtering

equation

dπ (x) = Aπ (x) dt + B u dt +

Vt F T

+ΣT Im (l)

× [dY − Fπ (x) dt] , (2.71)
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and the conditional covariance matrix satisfies the deterministic Riccati differential equation

V̇t = A Vt + Vt AT
+ D −


Vt F T

+ΣT Im (l)

×

F Vt + Im


lT

Σ

, (2.72)

where D = Σ Re

l∗lT

ΣT. Thus, the filtering equation (2.54) or (2.56) is equivalent to the closed set of filtering

equations (2.71) for the first-order quadrature and the Riccati differential equation (2.72), which is finite-dimensional and
thus simulated with relative ease. The quantum filter given by Eqs. (2.71) and (2.72) is called a quantum Kalman filter
[50,111,156–158].

For linear quantum feedback control systems, many objectives, such as cooling and squeezing, can be reduced to the
optimization of the following quadratic cost function of the system state x

Jq =
1
2
xTT S xT +

1
2

 T

0


xTτ Q xτ + uT

τ R uτ

dτ . (2.73)

To obtain a closed-form control problem, we should first take the expectation value over the conditioned state and then
average over all the stochastic trajectories to define a new quadratic cost function J = E


P

Jq|Yout


, where E(·) is the

average taken over the classical Wiener noise dW . From Eq. (2.73) we have

J = E

1
2

 T

0


π (xτ )T Q π (xτ )+ tr (QVτ )+ uT

τ R uτ

dτ


+ E

1
2
π (xT )T Sπ (xT )+

1
2
tr (SVT )


. (2.74)

Here the control ut = u (π (xt) , Vt) is a function of the conditional means and variances π (xt) and Vt . The optimization
of the quadratic cost function (2.74) subject to the quantum filtering equations (2.71) and (2.72) is a standard classical
Linear–Quadratic–Gaussian (LQG) control problem which can be solved by the Kalman filtering theory well developed in
the field of classical control.

2.5. Applications

2.5.1. Noise reduction and quantum error correction

Similar to classical feedback, one of the most important applications of quantum feedback is to suppress the effects
of noise, which in quantum systems causes decoherence. Markovian quantum feedback can be used to suppress the
decoherence of macroscopic-superposition states (so-called ‘‘Schrödinger cat’’ states) [132–136] if we measure the output
channel that is causing the decoherence. As an example, if we prepare the following superposition of two coherent states,

|ψ⟩ =
|α0⟩ + | − α0⟩

√
2

, (2.75)

in an optical cavity, then bymaking a homodynemeasurement of the light that leaks out of the cavity we can useMarkovian
feedback to extend the time over which the coherence survives. Without quantum feedback, the timescale over which the
coherence between the two coherent states survives is τ = 1/


2γ |α0|

2

, where γ is the decay rate of the cavity [161]. If

the signal from the homodyne measurement is used to control the transmissivity of an electro-optic modulator (EOM), as
depicted in Fig. 4, then the timescale over which the coherence survives is [133]

τfb =
τ

(1 − g sin θ)2
, (2.76)

where φ and g are the phase shift and gain of the feedback, respectively.
Another example of the use of Markovian quantum feedback is to reduce the phase noise in an atom laser [162,163]. The

primary source of this phase noise is collisions between atoms. A single-mode atom laser can be described by the master
equation

ρ̇ = −i[C(aĎ)2a2, ρ] + κµD[aĎ] A[aĎ]−1ρ + κ D[a] ρ, (2.77)

where as usual a is the annihilation operator for the mode, κ, µ ≫ 1 are respectively the damping rate and the stationary
mean number of atoms in the laser mode, and the superoperator A[·] is defined by

A[r]ρ =
1
2


rĎr, ρ


.

The nonlinear Hamiltonian

Hcoll = h̄C(aĎ)2a2
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Fig. 4. Diagram of a proposal by Goetsch et al. [133] to extend the lifetime of superpositions of macroscopically distinguishable coherent states. Such
a ‘‘Schrödinger-cat’’ state is initially prepared inside an optical or superconducting cavity. The output field from the cavity is measured by homodyne
detection and then the homodyne photocurrent is fed back to control the transmissivity of an electro-optic modulator. The feedback gain and phase are
denoted by g and θ , respectively. The negative sign in the circle indicates that the two signals are subtracted.

describes the collisions between atoms at a rate C . From Eq. (2.77) the linewidth of the atom laser without feedback can be
shown to be

l =


κ

2µ


1 + χ2 , χ ≪

√
µ,

κχ
√
πµ/2

, χ ≫
√
µ,

(2.78)

where χ = 4µC/κ is a dimensionless atomic interaction strength. We nowmake a quantum nondemolition measurement
of the atomic number, and use the photocurrent (the stream of measurement results) from this measurement to modulate
the external field applied to the condensate of atoms to generate the output of the laser. With this feedback the linewidth
of the atom laser becomes

l =
κ

2µ


1 +

χ
√
η


, (2.79)

whereη is the detection efficiency. The feedback is thus capable of eliminating the effect of atomic collisions on the linewidth
of the laser [162,163].

Continuous-time feedback has also been applied to quantum error correction, a technique that is able to slow the
decoherence of unknown quantum states [91,92,164–168]. By ‘‘unknown’’, we mean that the controller is able to preserve
the initial state without knowing what the state is. This requires that the state is initially encoded in a larger Hilbert
space before the error-correction can be applied. As an example, we return to the three-qubit bit-flip code given in the
beginning of this section. The idea is to replace theprojectivemeasurements that extract the error syndromewith continuous
measurements [91]. Recall that the state of a single logical-qubit is encoded (stored) in three physical qubits. To extract the
information about the error, we make a continuous measurement of the three operators ZZI , IZZ , and ZIZ , all with the same
measurement strength, κ . We also apply three control Hamiltonians, H1 = h̄λ1XII , H2 = h̄λ2IXI , and H3 = h̄λ3IIX . These
three Hamiltonians apply the corrections for the three possible errors, and thus the rates λ1, λ2, and λ3 are to be determined
by the measurement results. Recall that Bayesian feedback involves integrating the stochastic master equation, which in
this case is

dρc = −i[λ1XII + λ2IXI + λ3IIX, ρc]dt + γ (D[XII] + D[IXI] + D[IIX]) ρcdt

+ κ (D[ZZI] + D[IZZ] + D[ZIZ]) ρcdt +
√
κ (H[ZZI]dW1 + H[IZZ]dW2 + H[ZIZ]dW3) ρc. (2.80)

By minimizing a cost function, which is defined as the distance between the conditional density matrix and the space in
which the logical qubit should reside (the codespace), the optimal feedback is determined to be

λ1 = λ sgn⟨YZI + YIZ⟩c,

λ2 = λ sgn⟨ZYI + IYZ⟩c,

λ3 = λ sgn⟨ZIY + IZY ⟩c, (2.81)

where λ is the maximum available feedback strength. Here, sgn(x) = +1 if x > 0, sgn(0) = 0, and sgn(x) = −1 if
x < 0. It is shown in Ref. [91] that this quantum error-correction protocol can efficiently increase the fidelity of the encoded
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quantum states beyond that achieved by traditional projective-measurement-based error-correction, so long as the time
delay induced by the feedback loop is small enough.

It was shown in [164] that averaging the stream of measurement results is sufficient to perform quantum error-
correction, thus replacing the highly complex Bayesian feedback with time-averaged feedback. Further efficient methods
for continuous-time quantum error-correction are presented in [165].

A simpler situation occurs if the environment that is causing the errors can itself bemeasured. An example of this is when
the light that leaks out of an optical cavity is detected. In this case themeasurement provides direct information about what
error has occurred, reducing the resources required for quantum error correction. It is shown in [92] that when the bath that
causes the errors is detected, Markovian feedback is all that is required to perform error-correction, and only n+ 1 physical
qubits are required to encode n logical qubits.

Quantum feedback has been combinedwith open-loop control protocols to reduce errors in quantum systems. The open-
loop technique of dynamical decoupling allows errors to be reduced if they are due to noise that has a sufficiently long
correlation time [169–172]. In [173], feedback and dynamical decoupling are combined by feeding the output of a dynamical
decoupling protocol to a feedback controller. It is shown that for a single qubit the combination of quantum feedback and
dynamical decoupling outperforms either method when used alone.

2.5.2. State reduction and stabilization

In the previous sectionwe discussed the use of feedback to protect quantum states temporarily.We refer to the indefinite
protection of a quantum state as stabilization. Unknown states cannot be stabilized, but known states certainly can be.
Sometimes open-loop control can be used to stabilize states, but only in certain circumstances, for example when an
effectively zero-temperature environment is available [115]. Markovian quantum feedback can be used to stabilize the
states of a single two-level atom when the source of decoherence is detected [115–117]. In Ref. [115] it is shown that for a
two-level atom, states in an ellipsoid in the lower hemisphere of the Block sphere can be stabilized by open-loop control
under the damping process. However, when we introduce Markovian quantum feedback and carefully choose the feedback
gain and the strength of the driving field, it is only states on the equator of the Bloch sphere that cannot be stabilized.

More generally, Bayesian feedback has been applied to the stabilization of quantum states in a variety of mesoscopic
systems [174–198]. These include nano-mechanical resonators [176–178], quantum-dots [179–190,196–198], and
superconducting qubits [191–195].

Immediately before a stabilization feedback process starts, the system to be controlled will likely be in some steady state
determinedby thenoise processes that drive it, and this state is often significantlymixed.Whenwe first applymeasurement-
based feedback, the measurement will reduce the entropy of the system, a process often called purification. If the state
towards which the measurement projects the system is not one of the eigenstates of the initial density matrix, then the
measurement necessarily also induces a ‘‘collapse’’ of the wave-function, a process often called ‘‘state-reduction’’. Thus
purification may or may not involve state-reduction, although often these terms are used interchangeably.

Ifwemake a continuousmeasurement of an observable, and performno feedback, then themeasurementwill continually
try to project the system onto one of the eigenstates of the observable, where the choice of eigenstate is random. In the
absence of noise that interferes with the reduction process, the final state of the system will be one of these eigenstates. As
shown in [199–203], if we perform feedback control during the state-reduction process, we can control which eigenstate
that the measurement projects onto.

To examine this process further, we consider the single-qubit state-reduction protocol presented in Ref. [199]. As shown
in Fig. 5, a single two-level system, such as an atom, is inserted into an optical cavity, and the output of the cavity ismeasured
by a homodyne detection. When the cavity damping rate is much faster than the dynamics of the qubit, this measurement
procedure realizes a continuous measurement of the σz operator of the two-level system.

The stream of measurement results is fed into a digital controller and then back to control a classical field that allows
us to rotate the two-level system around the y-axis. The control Hamiltonian is thus H = B (t) σy, where B(t) is the
control parameter that we can vary. Writing the state of the two-level system using the Bloch vector v =


vx, vy, vz

T
=

⟨σx⟩, ⟨σy⟩, ⟨σz⟩
T, the dynamics under the feedback process is

dvx =


B (t) vz −

Γz

2
vx


dt −

√
Γz vxvz dW ,

dvy = −
Γz

2
vy dt −

√
Γz vyvz dW ,

dvz = −B (t) vx dt +
√
Γz

1 − v2z


dW . (2.82)

If we assume that vy = 0, the control field B (t) = Gvx with G > 0 can steer the system to the spin-up state with unit
probability. This method is extended in Ref. [203] to systems with any fixed total angular momentum J , such as a dilute gas
of two-level atoms. In this work a piecewise-continuous control protocol is designed to stabilize any selected eigenstate of
the Jz operator, and can also be used to stabilize the symmetric and antisymmetric states in a system with two qubits.
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Fig. 5. Diagram of a proposal by van Handel et al. [199] for the stabilization of qubit states. The information of the spin inside the cavity is continuously
extracted by an optical probe field and then detected by homodyne measurement. The electric output signal I (t) of the homodyne measurement is fed
into a digital controller and then fed back to control the magnetic field (shown in green) imposed on the spin.

As our final example of stabilization, we now present the approaches introduced in [204–206] in which feedback is used
to stabilize a particular dressed state in a strongly-coupled cavity-QED system. For a weakly-driven single-cavity mode
strongly coupled to N atoms with coupling strength g , the steady state is

|ψss⟩ = |0, g⟩ + λ


|1, g⟩ −

2g
√
N

γ
|0, e⟩


+ O


λ2

. (2.83)

Here γ is the damping rate of the atom, and λ ≪ 1 is proportional to the ratio εd/κ , where εd and κ are the driving strength
and damping rate of the cavity, respectively. The state |j, g⟩ denotes j photons in the cavity mode, and all the atoms in the
their ground states, while |j, e⟩ denotes j photons in the cavity mode and all but one of the atoms are in their ground states.

Since the steady state has almost no photons, photon detections are relatively rare. When a photon is detected, the
conditional state changes abruptly, and evolves as

|ψc (τ )⟩ = |0, g⟩ + λ [ξ (τ ) |1, g⟩ + θ (τ ) |0, e⟩] , (2.84)

where ξ (τ ) and θ (τ ) are oscillatory functions of time. It turns out that by adjusting the driving field at a specific time after
the detection, the state of the system can be frozen indefinitely. Once the driving field has returned to its original value,
the evolution of the conditioned state continues as if it had never been interrupted, and returns to the steady state. This
feedback scheme was realized experimentally in Ref. [204].

It has also been shown that the same atom–cavity system can be stabilized in the opposite regime of strong-driving [205].
In this case one of the dressed states is stabilized by flipping the atomic state using a π-pulse when ameasurement-induced
quantum jump is observed. The signature of this stabilization process appears in the atomic fluorescence spectrum as the
enhancement of one sideband.

Not all feedback involves changing theHamiltonian of a system conditional upon themeasurement stream. If the purpose
is to engineer a specific kind of measurement, for example, one may change the measurement conditional on the stream of
measurement results. The result of this feedback-modified measurement is referred to as an adaptive measurement. We
will give examples of adaptive measurements below. In Refs. [207,208], the authors consider how to design an adaptive
measurement to minimize the classical memory required to track the state of the measured system. They show that a d-
dimensional system can be tracked by a classical k-state machine where k ≥ (d − 1)2 + 1, and a special case shows that a
qubit can be tracked by a classical bit.

2.5.3. Squeezing via feedback

A quantumharmonic oscillator obeys Heisenberg’s uncertainty principle,meaning that themomentumvariance can only
be reduced below h̄mω/2 at the expense of increasing the position variance above h̄/(2mω). Herem and ω are respectively
the mass and frequency of the oscillator. For an optical mode, the equivalent conjugate variables are referred to as the
amplitude quadrature X and phase quadrature Y . A state in which the variance of one conjugate variable is decreased at the
necessary expense of the other is called a squeezed state. For a single mode of an optical or microwave cavity it is not only
the state of the mode that is of interest, but the state of the traveling-wave light or electrical signal that is emitted from
the cavity. We may want to squeeze either the oscillator or this output. Methods for squeezing both have been investigated
quite extensively [209–211].
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Assuming that the thermal noise on an oscillator is negligible, its state can be squeezed merely by modulating its
frequencyω at 2ω. This is called parametric amplification because it amplifies one quadrature, and becauseω is a ‘‘parameter’’
in the Hamiltonian [212]. If we want to squeeze the oscillator in the presence of thermal noise, then we need to reduce this
noise, forwhichmeasurement-based feedback is one option.Neithermeasuring a single quadrature, normaking ahomodyne
measurement are sufficient for this purpose [137]. There are two methods presently known to do this. One is to make a
measurement of a single quadrature, but do so in the rotating frame of the oscillator. Braginsky et al. [213] were the first
to devise a method to do this, which effectively involves making a measurement of an oscillator’s position, and turning the
measurement off and on at the frequency 2ω (see also [143,177,214]). This ‘‘strobing’’ of the measurement can be achieved
merely by modulating the interaction with the measuring device sinusoidally at this frequency. In the interaction picture
the quadrature variables are unchanging, so that Braginsky’smeasurement is a quantumnondemolition (QND)measurement.
Other methods for making QND measurements of the quadratures have be devised [137–141], but Braginsky’s is probably
still the most practical. A QND measurement produces a squeezed conditional state—a squeezed state from the point of
view of someone who is able to have processed the measurement record to determine the means and the variances of the
quadratures. Since the means fluctuate, without this information the state is not squeezed. But since a linear feedback force
can be used to stabilize the means, we can use feedback from the QNDmeasurement to produce an unconditional squeezed
steady state [177,214].

The second method to produce squeezed states in the presence of significant thermal or other noise is to combine a
parametric drive with a standard (unmodulated) measurement of position. Here the parametric drive creates the squeezing
and the measurement is much weaker, and extracts the entropy injected by the thermal noise [215,216]. This method of
producing squeezing has been realized, although not in the quantum regime, in Refs. [144,217,218].

We note that QND measurements have also been used to generate squeezing in the collective spin state of a gas of
two-level atoms, both theoretically [145] and experimentally [219–221].

2.5.4. Controlling mechanical resonators

In the previous section we discussed the use of feedback to squeeze oscillators, mechanical or otherwise. We now focus
on mechanical oscillators, and consider the creation of other states. The first task in bringing a mechanical resonator into
the quantum regime is to suck out all the thermal noise so as to put the resonator in its ground state. From there we can
use purely open-loop control protocols to place it in a more interesting nonclassical state. To make it possible to cool a
mechanical resonator to the ground state (see, e.g., Refs. [222–224]), it must have a very high frequency so as to reduce
the thermal noise, even when placed in a dilution refrigerator. To attain the required frequencies the resonators must
have a very small mass, and there are a number of ways to realize such microscopic and mesoscopic resonators. One can
merely make them small [225–237], in which case their frequencies are still a little low to enter the quantum regime. One
can go even smaller by fabricating resonators on layered structures using lithography, and these are usually referred to
as nano-resonators [238–244]. One can also use microscopic systems such as trapped ions [245], electrons [246], laser-
trapped nano-particles [247], or a gas of neutral atoms trapped in an optical lattice [248–253]. Quite recently, quantum
feedback has also been applied to Bose–Einstein condensates (BECs) for feedback-cooling an ultra-cold atomic ensemble
undergoing continuous weak measurement [254,255]. It is shown that, in certain regimes, full quantum-field simulations
and more exotic feedback controls are required in order to successfully cool the BEC close to the ground state [256], and the
robustness of a control scheme to corruption of themeasurement signal by classical noise, detector inefficiencies, parameter
mismatches and a time delay is considered [257].

State-of-the-art cooling schemes for nano- and micro-mechanical resonators currently use coherent feedback, to be
discussed in Section 3. Neverthelessmeasurement-based coolingmethods formechanical resonators have been investigated
quite extensively. When the resonator is far from the quantum regime, feedback cooling of resonators can be considered
classical [258–260]. The primary obstacle to cooling resonators to the ground state usingmeasurement-based feedback is the
requirement that the measurement has an efficiency near unity. At the time of writing, measurements on nano-resonators
do not have the required efficiency, but we expect this to change in the near future. Cooling via measurement has been
investigated both for Markovian feedback [261–263] and Bayesian feedback [112,113,176,177,264]. Feedback can also be
used to create and control highly nonclassical states of resonators [114].

2.5.5. Controlling transport in nano-structures

In principle, measurement-based quantum feedback can be used to control the quantum transport process in
nanostructures [265–268]. This can be thought of as stabilizing the quantum state of the transport device. The proposal in
Ref. [267] shows that a classical feedback control can freeze the fluctuations of quantum transport by changing parameters
in the Hamiltonian conditional to the number of tunneled particles. This feedbackmethod can be further used to reconstruct
the full counting statistics of the transport device from the frozen distribution. In [268], this proposal was applied to
nonequilibrium-electron-transport through a double-quantum-dot, which for this purpose can be treated as a two-level
system. The feedback is able to purify the transport state, represented by the full counting statistics of the electron flow
through the device, and it is shown that half of the quantum states on the Bloch sphere of the double-quantum-dot can be
stabilized. The feedback is also able to stabilize the coherent delocalized states of the electrons.
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Fig. 6. Diagram of a theoretical proposal by Wang et al. [118] for two-atom entanglement creation by homodyne-mediated feedback. The homodyne
current I(t) from the damped cavity is directly fed back to generate a control signal α+ λI(t), which is converted into an optical signal by an electro-optic
modulator and then used to resonantly drive the cavity coupled to the two atoms. These two atoms are entangled in the steady state.

2.5.6. Entanglement creation and control

It is shown theoretically in Ref. [269] that when a cavity containing two two-level atoms is resonantly driven, the steady
state of the atoms can be entangled.More specifically, if (i) the cavity damping rate κ ismuch faster than all other timescales,
so that the cavity can be adiabatically eliminated, and (ii) the collective damping rate of the atoms induced by the cavity is
much larger than the atoms’ spontaneous emission rates, then one can recover a Dicke model for the atoms. The steady
state of this Dicke model can be written in the angular momentum basis and analyzed in terms of the symmetric and
antisymmetric subspaces. When the initial state of the atoms is symmetric, the stationary state is entangled, although this
entanglement, measured by the Wootters’ concurrence [270], is only about 0.11 [269]. Additionally, it is shown that more
complex and interesting ‘‘entangled-state cycles’’ can be observed in which N effective two-level atoms driven by laser and
cavity fields switch between entangled states conditioned on the detections of the cavity output field [271].

It turns out that Markovian quantum feedback can be used to increase the steady state entanglement of the atoms [118–
131]. It has been shown that this is possible using both feedback based on photon detections (quantum jumps) [125–131],
and feedback using homodyne detection (trajectories driven by Gaussian noise) [118–122].

In Ref. [118] the authors show that for homodyne detection the stationary entanglement can be increased from 0.31
under feedback that is symmetric for the two atoms (see Fig. 6). This stationary entanglement can be increased further to
0.82 if local asymmetric feedback is introduced [119]. Feedback based on photon detections is even better at maintaining
entangled states, and for symmetric feedback is able to achieve a concurrence of 0.49 [126]. This stationary entanglement
is reduced by spontaneous emission, but can be increased further by the use of local asymmetric feedback. Feedback based
on photon-detections is also robust against fluctuations in various parameters, such as the detection efficiency, especially
in the adiabatic regime [126]. Bayesian feedback has also been used to generate and protect entanglement in the above
system [146,272]. Although the computational complexity for this kind of control is high, it can also potentially produce
higher entanglement.

As an extension of the above feedback schemes, the stabilization of multipartite entanglement via feedback has also
been considered [273,274]. Due to the lack of a measure for multipartite entanglement, these studies have focussed on
stabilizing particularmultipartite entangled states, such as Dicke states [146] or GHZ states [153]. More recently, the control
of entanglement via feedback has been discussed for solid-state systems, especially superconducting circuits [151–153], and
has been demonstrated experimentally both in superconducting circuits [275] and cavity QED systems [276].

Continuous-variable entanglement of optical beams, which is closely related to multi-mode optical squeezing, can, and
usually is, produced by using a nondegenerate parametric oscillator in an optical cavity. This method is limited by the
strength of the optical nonlinearity employed, which is usually very weak, and is further reduced by the cavity damping. It
has been shown that feedback can be used to increase the continuous-variable entanglement [277–285] generated in this
way.

Consider two optical modes with quadrature operators X1, Y1 and X2, Y2, respectively. In Ref. [277] it is shown that a
single-loop Markovian feedback scheme can be used to reduce the variance of the operator (X1 − X2)while preserving the
variance of the operator (Y1 + Y2), thus improving the steady-state entanglement of the twomodes. However, the entangled
state in this case is a mixed state. A modified proposal in Refs. [278,279] is able to produce a pure steady-state two-mode
entangled state by using two independent feedback loops to control the variances of (X1 − X2) and (Y1 + Y2) simultaneously.

It has been shown that the problem of finding the optimal homodyne measurement and Markovian feedback to produce
two-mode intracavity Einstein–Podolsky–Rosen correlations for both a vacuumenvironment [280] and a thermal bath [281]
is a semidefinite programming problem [286]. This means that a global optimum can be found numerically in a systematic
way. A general upper bound for the generation of steady-state entanglement for multi-mode bosonic fields via feedback has
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also been obtained [282]. Quantum feedback has been applied to the problem of generating deterministic entanglement at
the single-photon level [283], to avoid entanglement sudden death [284], and to enhance entanglement distributed between
cavities including propagation delays and photon loss [285].

2.5.7. Quantum state discrimination

The efficient discrimination of nonorthogonal quantum states has various applications in quantum and classical
communications and quantum-enhanced metrology. For discrete-variable quantum systems, such as qubits, it has been
shown theoretically [287] and experimentally [288] that continuousmeasurement and feedback can efficiently discriminate
two nonorthogonal states of a single qubit, as well as correct these states against dephasing noise. It has also been
demonstrated experimentally that adaptive local measurement and feedback performs much better than non-adaptive
measurements for discriminating non-orthogonal states of qubits, given multiple copies, and can efficiently suppress
noise [289].

Quantum feedback has also been used for the discrimination of coherent states of oscillators or traveling-wave fields.
Such discrimination is useful for communication, because coherent states are easy to prepare and manipulate. Adaptive
measurement schemes canmaximize the information rate so as to achieveHolevo’s bound [290], and allow for long-distance
communication. It has been shown both theoretically [291] and experimentally [292–294] that joint-detection and adaptive
feedback with pulse-position-modulation codewords reduces the error probability for both conditioned and unconditioned
coherent-state discrimination, comparedwith traditional direct detectionmethods (e.g., homodyne detection). Thismethod
can also beat the standard quantum limit to approach the Helstrom limit [295], being the minimum achievable average
probability of error for discriminating quantum states.

2.5.8. Quantum parameter estimation

High-precision phase measurements of optical beams, especially those in the quantum regime, have various important
applications, such as interferometric gravity-wave detection or quantum communication. However, the phase of the
electromagnetic field mode is not a directly-measurable quantity, and phase measurement protocols always measure some
other quantity that introduces excess uncertainty and noise into the estimation process.

The traditional method for measuring phase was to use heterodyne detection, in which the field mode to be measured is
combined with a far-detuned strong local oscillator field. It is well known that phase measurements based on heterodyne
detection can reach the standard quantum limit, in which the phase sensitivity, being the variance of the measured phase
(δφ)2, scales as N−1 when a state with an average of N photons is fed into the input port to be measured. But this is not the
fundamental limit to phase estimation. The latter is the Heisenberg limit, which gives a scaling of N−2. Theoretically, the
Heisenberg limit could be achievedwith a perfect measurement of canonical phase [296,297], but experimentally this is not
easy.

Wiseman and collaborators [298–306] have shown that by using an adaptive measurement it is possible to realize a
measurement of phase that is very close to the Heisenberg limit [296,297,307,308]. There are primarily two approaches.
One can use an adaptive homodyne measurement [298–303] or an adaptive interferometric measurement [304–306] (see
Fig. 7). As shown in Fig. 7(a), the key element of an adaptive homodyne phase measurement is to feed back the output of
the homodyne detection to control the phase of a local oscillator, and thus track the phase quadrature to be estimated. It is
shown in Ref. [299] for a semiclassical model and in Ref. [300] for a full quantum analysis that an excess phase uncertainty
scaling as N−3/2 can be reached. A modified approach in Ref. [302] shows that a more sophisticated feedback protocol can
reach a better theoretical limit, scaling as lnN/N2.

The adaptive interferometric phase measurement can perform even better than the adaptive homodyne method. In an
adaptive interferometry phase measurement, a Mach–Zehnder interferometer is introduced with the unknown phase to
be estimated in one arm and the controllable phase used to track the unknown phase in the other arm. This achieves a
phase sensitivity very close to the Heisenberg limit [304,305]. It has also been shown that both the adaptive homodyne
method [303] and the interferometric method [306] can be used to estimate a stochastically-varying phase. More complex
feedback designs, such as those based on time-symmetric smoothing [309–311], can also be used in adaptive phase
measurement. A number of adaptive phase-measurement schemes have been demonstrated in experiments [154,312–318].

More generally, we may wish to estimate one or more numbers that parameterize the state, Hamiltonian, or overall
evolution of a system. Such parameters can be estimated by making a continuous measurement on an evolving system and
processing the measurement results [319–324]. Such a procedure has applications to metrology, such as the detection of
weak force by monitoring a harmonic oscillator [323], or estimating the Rabi frequency of a two-level atom [320]. Feedback
control can be used tomake the estimation processmore robust to the uncertainty in the systemparameters [324]. The basic
method involved in parameter estimation and metrology via continuous measurements to use a ‘‘hybrid’’ master equation
that evolves the observer’s knowledge of the system as well as their knowledge of the parameters [323], or an equivalent
quantum particle filtering equation [322].
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Fig. 7. (a) Theoretical proposal by Wiseman [298] for adaptive homodyne phase measurement. The output I(t) of the homodyne detection is processed
by a Signal Processor (SP) which then controls the phase of the local oscillator by an electro-optic modulator (EOM). (b) Theoretical proposal [305] for
adaptive interferometry phase measurements. The figure shows a Mach–Zehnder interferometer with the unknown phase φ to be estimated in one arm
and the controllable phaseΦ (used to track the unknown phase φ) in another arm.

2.5.9. Rapid state-purification and measurement

It is possible to use quantum feedback to speed up the rate at which a continuous measurement purifies, or provides
information about a quantum system [183,325–337]. To understand this further, let us consider a continuous measurement
of a qubit which provides information about the basis {|0⟩, |1⟩}. The dynamics of this measurement is given by the SME

dρ = D[σz] ρ dt + H[σz] ρ dW . (2.85)

In order to study how one can reduce the observer’s uncertainty of the measured quantum system, an algebraically simple
measure of the observer’s uncertainty, called ‘‘linear entropy’’, s = 1 − tr


ρ2

, is useful. If we assume without loss of

generality that y = 0, we can obtain from Eq. (2.85) that [327]

ds = −

8s2 + 4x2s


dt − 4zs dW , (2.86)

where α = tr [σαρ] , α = x, y, z. It can be seen that s will decrease more rapidly when x is maximized. If we introduce an
ideal Hamiltonian feedback that rotates the qubit at each time step to maintain z = 0, then ds is maximized and given by
ds = −4sdt . As shown in Ref. [325], if we start from amaximally mixed state, then under this feedback, and in the long time
limit, the time required to achieve a purity of 1− ϵ is τq = ln


ϵ−1


/4, which is half the time taken for the average purity to

reach this level without feedback. Here ϵ ≪ 1 denotes the error threshold value. Such an increase in the rate of purification
is a purely quantum effect, and cannot be realized for an equivalent measurement on a classical bit.

Although the above analysis shows that using feedback to continually rotate the quantum state onto the plane orthogonal
to the measurement axis will speed up purification, Ref. [327] shows that keeping the quantum states parallel to the
measurement axis can reduce the average time for the measured quantum system to reach a given purity.

As an extension of the results in Ref. [325], a more general study in Ref. [326] shows that Hamiltonian feedback can
speed up the rate of purification, or state reduction, by at least a factor of 2 (d + 1) /3 for an observable with d equispaced
eigenvalues. However, the quantum feedback methods in these studies concentrate only on maximizing the purity of the
measured quantum states, and do not care about how to obtain information about the initial state of the system. That is why
they are referred to as rapid purification protocols rather than rapid measurement protocols.

In contrast to quantum rapid purification, in Ref. [332] the authors show that quantum feedback can increase the rate of
information gain about the initial preparation. It is found that the information-extraction rate for a d-dimensional system
can be increased by a factor that scales as d2. More exact bounds for rapid measurement protocols are given in [334], in
which it is shown that feedback can increase the rate of information extraction by a factor R by

2
3
(d + 1) ≤ R ≤

d2

2
(2.87)

for an observable with d equispaced eigenvalues. Further results on quantum rapid purification and measurement can be
found in Ref. [335].

2.5.10. Control-free control

The term ‘‘control-free control’’ refers to measurement-based feedback control in which the state of the system is
controlled without modifying the Hamiltonian of the system, but merely by changing the measurement with time. This
is an adaptive measurement process designed to control the system. Control-free control exploits the fact that, in general,
quantum measurements affect the dynamics of a system in ways that classical measurements do not. Several approaches
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Fig. 8. Comparison of (a)measurement-based feedback and (b) coherent feedback. Inmeasurement-based feedback in (a), the system (in blue) is controlled
by a classical feedback loop (in pink); while in coherent feedback (b) the system is coherently controlled by a fully quantum feedback loop.

for control-free control have been discussed to date. In one of these, the quantum anti-Zeno effect is used to drag the system
in the direction of one of the states onto which the measurement projects [338,339]. However, this requires rather strong
measurements.

In another approach, a small set of measurements [340–342] is able to prepare a state by alternating between the
measurements [343,344]. This process is able to stochastically drive the system towards a final pure state with unit
probability. The control-free control protocols [343] have been realized in recent experiments. For example, in Ref. [345],
measurement-only state manipulations are realized on a nuclear spin qubit in diamond by adaptive partial measurements.
By combining a quantumnondemolition readout on the electron ancilla qubitwith real-time adaptation of themeasurement
strength, the nuclear spin can be steered to a target state by measurements alone. This interesting work [345] shows that it
is possible to implement measurement-based quantum computing by quantum feedback.

A third method [346] involves making a continuous measurement, and exploiting the fact that when the measurement-
basis is chosen in the right way, the measurement generates diffusion of the state in Hilbert space. By changing the
measurement basis with time, a diffusion gradient can be created in Hilbert space. This diffusion gradient will then
stochastically drive the system towards a single pure state [346].

3. Coherent quantum feedback

As explained above, measurement-based feedback involves using the results of measurements on a quantum system to
direct its motion. When wemake ameasurement on a quantum system, we obtain classical information. But we necessarily
obtain only partial information about the dynamical variables, and in general we disturb the state at the same time. It is
therefore interesting to consider a feedback loop in which classical information is not extracted. This concept, now referred
to as coherent feedback, was first introduced by Lloyd in 2000 [57], and it can be seen as themore general case of the all-optical
feedback proposed earlier, in 1994, in quantum optical systems by Wiseman and Milburn [51]. The idea is that instead of
having a classical controller that makes a measurement on the system, the controller is a quantum system, and the control
is achieved simply by having the two systems interact. To understand this better, it is worth examining the Watt governor,
which has a very simple feedback mechanism. The purpose of the Watt governor is to control the speed of an engine. To
do this, the engine is connected to a simple mechanical device so that it spins the device. The device is designed so that
the centrifugal force from the spinning causes it to expand, so that the faster the engine spins, the more it expands. This
expansion is then used to reduce the fuel supply to the engine, thus stabilizing the engine at some chosen speed. The nice
thing about this simple feedback system is that we can think of it as a loop in which the control device obtains information
from the engine, and uses this to control it. It is also clear that the engine and controller are merely two coupled mechanical
systems. In the Hamiltonian description of the joint system, there is therefore no loop, but merely an interaction between
the two systems. A quantum controller can therefore act in the same way, performing feedback control even though the
description of the system may not involve an explicit loop.

In fact, there is a way to make the loop explicit for a quantum controller in which there are no measurements. This is
done by coupling the system to a traveling-wave electrical (optical) field that propagates in one direction from the system to
the controller. We then use a second traveling-wave field that propagates from the controller to the system, thus closing the
loop. To do this, the two traveling fields must continue propagating after they interact with the systems, and this introduces
an irreversible element to the dynamics. However, since control systems are usually intended to introduce some kind of
damping to the system, this irreversibility need not be detrimental. In what follows, we first discuss feedback control that
employs a unitary (Hamiltonian) interaction between the system and controller, often referred to as direct coherent feedback,
and then turn to feedback in which the interaction is mediated by traveling-wave fields, often referred to as field-mediated
feedback (see Fig. 8).
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3.1. Direct coherent feedback

In general, the action of a controller that is coupled to a system via a unitary interaction may not break down into clearly
defined processes which involve the extraction of information and use of this information to apply forces to the system.
Nevertheless, it is interesting to construct an interaction that does perform these individual processes. As an example, let
us consider the control of a single qubit by a controller that is also a qubit. The qubit to be controlled (the primary) is
initially in some unknown state |φ⟩ = α|0⟩ + β|1⟩, and we want to place it in the state |1⟩. If the state of the primary is
completely unknown, then from the point of view of any observer, and the controller, the state of the qubit is the density
matrix ρ = (1/2)|0⟩⟨0|+ (1/2)|1⟩⟨1|. We cannot do this by executing a unitary operation on the system, because to choose
the right unitary we would need to know the initial state. If we were using measurement-based feedback, then we could
perform a projective measurement on the primary, at which point we would know what unitary to apply and execute a
unitary operation according to the measurement output. Note, however, that if we did this we would have destroyed the
initial state, so that no other information can be extracted from it.

To use a unitary interaction to prepare the primary in the state |1⟩, we need the controller to be in a pure state. Starting
the controller in the state |0⟩, we turn on an interaction that will transform the controller to the state |1⟩ only if the primary
is in state |1⟩. If we write the states of the primary on the left of the tensor product, and those of the controller on the right,
then the unitary operator required is

Ucorr = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ (|0⟩⟨1| + |1⟩⟨0|), (3.1)

where ‘‘⊗’’ is the tensor product. This unitary transforms the state of the two systems as

Ucorr |ψ⟩ ⊗ |0⟩ = Ucorr (α|0⟩ + β|1⟩)⊗ |0⟩ = α|0⟩ ⊗ |0⟩ + β|1⟩ ⊗ |1⟩. (3.2)

The two qubits are now correlated, since the controller is in state |1⟩ if and only if the primary is in state |1⟩. The controller
now ‘‘knows’’ the state of the system, and can act accordingly. To do this, we need an interaction that performs a different
action on the primary for each of the states of the controller. In particular, we need to transform the state of the primary
from |0⟩ to |1⟩ only if the state of the controller is |0⟩. The unitary that does this is

Ufb = (|0⟩⟨1| + |1⟩⟨0|)⊗ |0⟩⟨0| + I ⊗ |1⟩⟨1|. (3.3)

Acting on the joint state in Eq. (3.2) with this unitary produces the final state

Ufb (α|0⟩ ⊗ |0⟩ + β|1⟩ ⊗ |1⟩) = |1⟩ ⊗ (α|0⟩ + β|1⟩) = |1⟩ ⊗ |ψ⟩. (3.4)

This completes the feedback procedure, placing the primary in the state |1⟩ for every value of α and β . Interestingly the
initial state of the primary has not been destroyed. This state, and thus the ‘‘quantum information’’ in the primary has been
transferred to the controller.

In the above example, the controller in the measurement-free feedback procedure performs essentially the same
action as a measurement that projects the primary onto the basis {|0⟩, |1⟩}. The controller becomes correlated with the
system in the basis {|0⟩, |1⟩}, and then performs an action depending on whether the system is in state |0⟩ or |1⟩, just
as the measurement-based feedback would. But because the projection is not actually performed, and the whole process
is ‘‘coherent’’, the quantum information in the primary is not destroyed. We note that direct coherent feedback was
experimentally demonstrated in a nuclear magnetic resonance (NMR) system shortly after it was proposed [58].

3.2. Field-mediated coherent feedback

To explain how traveling-wave fields can mediate interactions between quantum systems, it may be simplest to begin
with an example. As mentioned in the introduction, feedback mediated by fields was first introduced in the setting of
quantum optics [51]. In Fig. 9, we show the configuration considered in [51]. In this scheme, there are two optical cavities,
one of these is horizontal in the figure (cavity 1), and the other is vertical (cavity 2). The two cavities are coupled directly
by a nonlinear crystal, but this is not the field-mediated part of the coupling. The output beam from the horizontal cavity
is fed through a combination of a polarization beam splitter and a Faraday rotator, and then into cavity 2. This combination
breaks time-reversal symmetry, and acts differently depending on the direction that a beam passes through it. Because of
this, it is able to separate the input beam to cavity 2 from the beam that comes back out in the reverse direction, so that
this output beam does not go back into cavity 1. The output field from cavity 1 thus travels to cavity 2 but does not travel
in the reverse direction, and, because of this, it is referred to as a unidirectional, one-way, or cascade coupling between the
cavities. The combination of the polarization beam splitter and Faraday rotator is called a unidirectional coupler, or isolator,
and the equivalent exists for electrical (microwave) circuits.

In the feedback scheme in Fig. 9, cavity 1 is the primary system, and cavity 2 is the controller. The controller
obtains information about the system from the one-way field, and applies feedback via the direct coupling. Wiseman and
Milburn [51] considered three kinds of interaction Hamiltonian V . If we define A to be an arbitrary observable of the mode
in cavity 1, B an arbitrary operator of this mode, and c2 is the annihilation operator for cavity 2, then the three interactions
are (i) V = cĎ2c2A, (ii) V = (c2 + cĎ2)A and (iii) V = cĎ2B + c2BĎ. The first interaction is obtained by using a nonlinear crystal
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Fig. 9. Diagram of a theoretical proposal byWiseman andMilburn [51] for an all-optical feedback scheme used to reproduce feedback via photon counting.
An external input field b1 is first fed into the horizontal cavity c1 (the primary system), and then the output field b2 is directed back to be fed into another
vertical cavity c2 (controller) via an all-optical feedback loop. The vertical cavity (controller) and the horizontal cavity (system) are coupled to each other
by a nonlinear crystal which induces a nonlinear coupling, denoted by the interaction Hamiltonian V = cĎ2 c2A, where A is an arbitrary observable of the
mode in cavity 1. The Faraday rotator and the Polarization-sensitive Beam Splitter (PBS) are introduced to generate a unidirectional feedback loop.

with a χ (2) nonlinearity, and can be used to reproduce feedback via photon counting. The second interaction can be realized
by a χ (2)-nonlinear crystal and one additional field which may be treated classically. It can be used to mimic feedback via
homodyne detection. The third interaction provides feedback forwhich there is no equivalentmeasurement-based feedback
protocol, and can generate nonclassical states in the primary mode. For example, if we choose B = iλ(c1 + µcĎ1) where λ
is real and positive and µ is real, the resulting feedback produces squeezed states of the primary mode for 0 < |µ| < 1.
However, it is not easy to realize this interaction experimentally. One possibility, discussed in [51], would be to combine
mode conversion using a polarization rotator with a χ (2) nonlinear crystal.

3.2.1. Networks of quantum systems

The configuration of the feedback system in Fig. 9 has a unidirectional connection from the system to controller, which
replaces the measurement in measurement-based feedback, but does not use a unidirectional coupling for the feedback
part of the loop. We can, however, use a cascade connection for both, in which case we have a complete unidirectional
loop. What we now need to know is how to describe these cascade connections mathematically. To do this, we use the
input–output, or ‘‘quantum noise’’ formalism of Collett and Gardiner (CG) [53,83], also known as the Hudson–Parthasarathy
(HP)model. In fact, Hudson and Parthasarathy independently derived a somewhatmore general quantumstochastic calculus
in a mathematical context, using the rigorous formalism of quantum probability theory. The formalism uses Heisenberg
equations of motion for the operators of the systems, with input operators that drive these equations in a similar way to
that in whichWiener noise drives classical stochastic equations. The formalism also contains output operators, and systems
are then easily connected together by setting the input of one system equal to the output of another.

In the CG/HP formalism, each system is described by a Hamiltonian, along with the operators throughwhich it is coupled
to the input/output fields. Further, the fields can be coupled to each other using beam splitters, which take two inputs and
produce two outputs that are linear combinations of the inputs. By describing a single ‘‘unit’’ as having a Hamiltonian H , a
vector of input coupling operators L, and a linear transformation between inputs and outputs codified by a matrix S, Gough
and James [62] elucidated a set of rules that covered theways in which these units, or network elements, could be combined
into networks. We now describe the CG/HP formalism, and the Gough–James rules [62] for combining circuit elements.

The dynamics of a system coupled to input fields is given by the quantum Langevin equations, i.e., Eq. (2.11), and the
output fields that correspond to each input are given by Eq. (2.12). As mentioned above, we describe each unit by a tuple

G = (S, L,H) , (3.5)

where H is the internal Hamiltonian of the system;

S =

S11 · · · S1n
...

. . .
...

Sn1 · · · Snn

 (3.6)
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Table 1
Quantum Ito rule for quantumstochas-
tic calculus.

dX/dY dB dΛ dBĎ dt

dB 0 dB dt 0
dΛ 0 dΛ dBĎ 0
dBĎ 0 0 0 0
dt 0 0 0 0

is a scattering matrix with operator entries satisfying SĎS = SSĎ = I and SĎ is defined by

SĎ =

SĎ11 · · · SĎn1
...

. . .
...

SĎ1n · · · SĎnn

 ; (3.7)

L = (L1, . . . , Ln)T is a vector of operators through which the system couples to the inputs, with one for each input. We
denote the inputs to the system by bin (t) = [b1 (t) , . . . , bn (t)]T in which each of the bi (t) , (i = 1, . . . , n) are separate
input fields, all initially in the vacuum state. The notation given in Eq. (3.7) can be used to describe awide range of dynamical
and static systems. A single quantum input–output system given by Eqs. (2.47) and (2.49) can be written as GLH = (I, L,H),
and a quantum beam splitter is given by GBS = (S, 0, 0). Many examples of the use of this formalism can be found in
Refs. [62,347–352]. We now present the Langevin equations describing input–output systems in more generality. To begin,
we introduce a vector of quantumWiener processes B (t) and a matrix of quantum Poisson processes Λ (t) as

B (t) =

B1
...
Bn

 , Λ (t) =

B11 · · · B1n
...

. . .
...

Bn1 · · · Bnn

 . (3.8)

These noise processes are integrals of the input fields:

Bi (t) =

 T

0
bi (τ ) dτ , Bij (t) =

 T

0
bĎi (τ ) bj (τ ) dτ . (3.9)

The increments of these processes B (t) and Λ (t) satisfy the quantum stochastic calculus relations given in Table 1. Let
V (t) be the unitary evolution operator of the total system composed of the controlled system and the input field, then the
evolution equation of the total system can be written as [62]

dV (t) =


tr

(S − I) dΛT

+ dBĎL − LĎS dB −
1
2
LĎL dt − iHdt


V (t) (3.10)

with initial condition V (0) = I . Note that dBĎ is defined by

dBĎ
=


dBĎ1, . . . , dB

Ď
n


. (3.11)

In theHeisenberg picture, the systemoperatorX (t) = V Ď(t) XV (t) satisfies the following quantum stochastic differential
equation

dX (t) =

LL(t) [X (t)] − i [X (t) ,H (t)]


dt + dBĎ (t) SĎ (t) [X (t) , L (t)] +


LĎ (t) , X (t)


S (t) dB (t)

+ tr


SĎ (t) X (t) S (t)− X (t)

dΛT (t)


, (3.12)

where the Liouville superoperator LL (·) is defined by

LL (X) =
1
2
LĎ [X, L] +

1
2


LĎ, X


L =

n
j=1


1
2
LĎj

X, Lj


+

1
2


LĎj , X


Lj


, (3.13)

which is of the standard Lindblad form. Similar to Eq. (2.49), the output fields corresponding to the inputs B (t) and Poisson
processΛ (t) are given by

Bout (t) = V Ď(t) B (t) V (t) , Λout (t) = V Ď(t)Λ (t) V (t) ,

from which we obtain the following input–output relation

dBout (t) = S (t) dB (t)+ L (t) dt,

dΛout (t) = S∗ (t) dΛ (t) ST (t)+ S∗ (t) dB∗ (t) LT (t)+ L∗ (t) dBT (t) ST (t)+ L∗ (t) LT (t) dt. (3.14)
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For the matrixM = {mij} with operator entriesmij, the notations in the above equation are defined by

MĎ
= {mĎ

ji}, M∗
= {mĎ

ij}, MT
= {mji}. (3.15)

It can be verified that the increments dBout and dΛout of the output processes also satisfy the rules of quantum stochastic
calculus shown in Table 1.

For linear quantum systems, the quantum Langevin equations can be solved directly. In order to perform calculations
for nonlinear quantum systems, one must transform the Heisenberg equations of the input–output formalism to master
equations. The corresponding master equations are

ρ̇ = −i [H, ρ] +


j


LjρL

Ď
j −

1
2
LĎj Ljρ −

1
2
ρLĎj Lj


. (3.16)

Although the scattering matrix S does not appear in the master equation (3.16), it affects the input–output relation of the
system as shown in Eq. (3.14) and thus will affect the dynamics of more complex quantum input–output systems, such as
the quantum cascade systems which will be specified below.

To connect the outputs of one unit to the inputs of another, so as to form an arbitrary network, we need only two rules.
The first is merely a rule that says how to represent a universe that contains more than one separate unit, none of which
are connected. If we have the two units G1 = (S1, L1,H1) and G2 = (S2, L2,H2), the larger unit that describes both of these
units with no connections between them is

G1 � G2 =


S1 0
0 S2


,


L1
L2


,H1 + H2


. (3.17)

Gough and James [62] refer to this rule as the concatenation product.
The second rule for combining circuit elements tells us how to determine the unit that describes a network in which the

outputs of a unit G1 are connected to the inputs of a unit G2. This rule is

G2 ▹ G1 =


S2S1, L2 + S2L1,H1 + H2 +

1
2i


LĎ2S2L1 − LĎ1S

Ď
2L2

, (3.18)

and is called the series product. The concatenation and series products can also be used to decompose a given system into
subsystems, and are thus fundamental to feedforward and feedback control.

3.2.2. Quantum transfer-function model

The Collett–Gardiner/Hudson–Parthasarathy cascade connections can be used to model essentially any network.
However, for linear systems, time delays and quantum amplifiers can be modeled more easily in frequency space. If we
specialize the network formalism of Gough and James [62] so that all the systems are linear, and transform the equations of
motion to frequency space, then we have the method of quantum transfer functions [347–350].

A general linear quantum network described by the tuple (S, L,H) satisfies the following conditions [349]: (i) the
scatteringmatrix S is now amatrix of numbers rather than operators; (ii) the dissipation operators Lj are linear combinations
of the ak and aĎk; and (iii) the system Hamiltonian H is a quadratic function of the ak and aĎk . To elucidate the transfer-
function method further, we consider a useful special case, in which each system is a harmonic oscillator, and the field
coupling operators are linear combinations of only the annihilation operators. In this case, the Langevin equations for the
annihilation operators are not coupled to those for the creation operators. The annihilation operators for the n oscillators,
aj : j = 1, . . . , n


, satisfy the commutation relations

aj, a
Ď
k


= δjk,


aj, ak


=


aĎj , a

Ď
k


= 0.

For our special case, the total Hamiltonian is H =


ij ωija
Ď
i aj and the coupling operators Lj =


jk cjkak, and so we can

simplify the SLH formalism, writing the tuple as
G = (S, C,Ω) , (3.19)

where

C =

c11 · · · c1n
...

. . .
...

cn1 · · · cnn

 , Ω =

ω11 · · · ω1n
...

. . .
...

ωn1 · · · ωnn

 .
If we now introduce an operator vector, which we will call the state vector of the system, a = (a1, . . . , an)T, then from

Eqs. (3.12) and (3.14), we can obtain the following Langevin equation and input–output relation:

ȧ(t) = A a(t)− CĎS bin(t) , (3.20)
bout = S bin(t)+ C a(t) , (3.21)

where A = −CĎC/2 − iΩ .
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We can now transform these equations to frequency space by taking either the Laplace transform or the Fourier
transform. Using the Fourier transform, defined as

R (ν) =


∞

0
exp (−iνt) R (t) dt, (3.22)

the Langevin equations can be rearranged to obtain

a(ν) = − (iνIn − A)−1 CĎS bin(ν) , (3.23)
bout (ν) = S bin (ν)+ Ca (ν) , (3.24)

where In is n × n identity matrix. From Eqs. (3.23) and (3.24), we can obtain the input–output relation of the whole system
or network

bout (ν) = Ξ (iν) bin (ν) , (3.25)

whereΞ (·) is the transfer function of the linear quantum system which can be calculated by

Ξ (iν) = S − C (iνIn − A)−1 CĎ S. (3.26)

The input–output relation (3.25) show the linear map between the input and output of the linear quantum system given by
Eqs. (3.20) and (3.21).

The quantum transfer function approach is useful for a number of reasons. While the time-domain network formalism
can describe essentially any network, it cannot be used to incorporate static models of non-conservative elements, such as
quantum amplifiers, and such components must be treated as dynamical systems. In frequency space, a static model of a
quantum amplifier is simply a Bogoliubov transformation [350]. Time delays are also much simpler to include in frequency
space, and of course frequency space has the advantage that the transfer function of two cascaded systems is merely the
product of the transfer functions of each.

3.3. Applications

3.3.1. Noise-reduction in linear systems

Like measurement-based quantum feedback, the main merit of quantum coherent feedback is that it can be used to
suppress sources of entropy, such as external noise, uncertainty in the parameters that define the system, and even to
some extent errors in the modeling of the system. In general, the problem of noise-reduction can be captured by asking
how to minimize the effect of a set of inputs on a set of outputs. For linear networks, this problem has been studied by
a number of authors. James, Nurdin, and Petersen developed linear–quadratic–Gaussian control [67] and H-infinity (H∞)
control [61]. Control of linear systems with squeezers and phase-shifters has been explored by Zhang et al. [352], and Zhang
and James [351] have investigated the relationship between direct and field-mediated coupling in networks. The extension
of the Collett and Gardiner input–output formalism to non-Markovian field couplings has been developed by Diosi [353] and
Zhang et al. [354], and noise suppression via non-Markovian coherent feedback has been analyzed by Xue et al. [355]. For
non-Markovian input–output systems, the Markovian assumption (2.39) may not be valid, which will lead to input fields
with colored noises rather than white noises [353]. The output fields and the dynamical equations of these systems not
only depend on the current-time states of the systems but also depend on the past-time information [354], and thus these
systems are non-Markovian. These kind of non-Markovian coherent feedback models can be useful when considering the
control of solid-state quantum systems such as superconducting circuits or quantum dots. Coherent noise-reduction for a
single cavitywas demonstrated experimentally byMabuchi in [356]. It was also shownquite recently that coherent feedback
can be used to control the quantum-transport properties of a mesoscopic device and optimize the conductance of a chaotic
quantum dot [357].

3.3.2. Optical squeezing

Squeezing as an application of coherent feedback was considered in Ref. [51]. More recently, a coherent protocol for
squeezing was devised by Gough and Wildfeuer [358] which is simpler and allows more control of the amount squeezing.
This protocol [358] has now been experimentally realized by Furusawa’s group in a linear optical system [359]. We depict
the protocol in Fig. 10, in which we see that the coherent feedback loop is composed of a squeezing component, such as
a degenerate parametric amplifier in the strong-coupling regime, and a beam splitter whose reflectivity can be adjusted.
By tuning this reflectivity, the effective damping rate of the cavity is modified, and the squeezing effects are enhanced or
suppressed.
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Fig. 10. Diagram of a theoretical proposal by Gough andWildfeuer [358] for tunable optical squeezing by coherent feedback. The optical squeezing output
produced by a squeezing device can be enhanced and suppressed by tuning the reflectivity of a control beam splitter within the coherent feedback loop.

3.3.3. Quantum error correction

Coherent quantum feedback has been used to implement continuous quantum error-correction (see the start of Section 2
for a brief introduction to quantum error correction) [360,361]. In Ref. [360], the authors propose a three-qubit error
correction method to correct single-qubit bit-flip or phase-flip errors using coherent feedback. As shown in Fig. 11, the
atoms in cavities Q1, Q2, and Q3 are the three physical qubits that code for, and thus allow, the single logical qubit to be
corrected. The blue lines are the optical beams for error detection and the red lines are the laser beams that apply the bit
flips or phase flips. The central components of this autonomous error correction network are the two relays R1 and R2,
which work as controlled quantum switches [362,363]. When the ‘‘Reset’’ (‘‘Set’’) input port of the relay receives a coherent
input signal, the input from the ‘‘Power in’’ port will be transferred to the ‘‘Out’’ (‘‘Out’’) port. The operating principle of
the quantum error correction network can be summarized as follows. If the qubits Q1 and Q2 have even (odd) parity, the
‘‘Set’’ (‘‘Reset’’) input port of the relay R1 receives a signal, while the ‘‘Reset’’ (‘‘Set’’) input port remains in the vacuum. The
same relationship exists between the relay R2 and the qubits Q2 and Q3. This detected signal controls the power transfer of
the relay from the ‘‘Power in’’ port to the ‘‘Out’’ or ‘‘Out’’ port, which is then directed back to the qubits. When a qubit is
simultaneously stimulated by two feedback signals from the output ports of the relays, the Raman resonance process will
lead to a coherent Rabi oscillation of the qubit and thus correct the errors. Otherwise, the control signal will only introduce
an ac Stark shift for the qubit. Such a coherent feedback network can thus automatically correct the bit-flip or phase-flip
errors. In Ref. [361], the authors extend this method to perform corrections for Shor’s nine-bit error-correcting code, which
concatenates two three-bit codes so as to correct an arbitrary error.

3.3.4. Controlling mechanical resonators

Mechanical resonators can be built with sufficiently high frequencies that they will behave quantum mechanically
at a temperature of a few milliKelvin, only an order of magnitude from temperatures that can be reached with
dilution refrigerators. These mechanical resonators can be coupled to optical modes (‘‘optomechanics’’) or cryogenic
superconducting circuits (nanoelectromechanics) for potential use in more complex devices. To prepare highly nonclassical
states, or for the purpose of usingmechanical resonators for quantum technologies, it is useful to prepare them in the ground
state. This is usually referred to as cooling.

As far as experiments are concerned, the present state of the art in cooling mechanical resonators is a version of
‘‘resolved-sideband’’ cooling [87,88]. This method is, in fact, an example of coherent feedback. The mechanical resonator is
linearly coupled to another ‘‘auxiliary’’ harmonic oscillator, a mode of an optical or superconducting cavity. These auxiliary
resonators have such high frequencies that they sit in their ground states at cryogenic temperatures. The coupling is
modulated at the difference frequency of the two resonators, which allows them to exchange excitations as if they were
on resonance. The auxiliary oscillator is arranged to have a higher damping rate than the mechanical resonator, and
because the former is in its ground state at the ambient temperature, it sucks the energy out of the mechanical resonator
[86,364–367]. The coupling can be direct or field-mediated. Sideband cooling is limited by the linear interaction: to transfer
energywithout heating the strength of the interactionmust bemuch smaller than the frequency of themechanical resonator,
so that the rotating-wave approximation is valid. It has been shown that if the interaction strength is modulated in a more
complex way, then this limitation can be overcome, and energy (or quantum information) can be transferred between the
resonators within a single period of the mechanical resonator [368].
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Fig. 11. Diagram of a theoretical proposal by Kerckhoff et al. [360] for an autonomous three-qubit quantum error correction network. This scheme has
been proposed to correct single-qubit bit-flip or phase-flip errors, which includes register qubits Q1,2,3 , beam splitters, circulators, and the relays R1 and
R2 . The blue lines and red lines represent the probe beam and the feedback correction beam, respectively. The relays are quantum switches introduced in
Ref. [362]. R1 and R2 have two outputs denoted by Out and Out.

It has been shown that if one is restricted to a linear interaction with a resonator, then coherent feedback performsmuch
better than measurement-based feedback in the quantum regime, including the regime of ground-state cooling [68,369].
The superiority of coherent feedback in this case can be traced to the projection noise from the positionmeasurement [370].
This noise is the change in the quantum state induced by the measurement, which is the term proportional to the Wiener
noise in the stochastic master equation.

A recent experiment by Kerckhoff et al. has shown that coherent feedback can be used as a practical method to tune the
damping rate of a superconducting oscillator [369].

3.3.5. Quantum nonlinear optics

As is well known, it is not easy to deterministically generate nonclassical optical states due to the absence of strong
optical nonlinearities. To solve this problem, an interesting study by Yanagisawa in Ref. [371] showed that nonclassical
optical states can be produced via linear optical components by introducing a multiple-feedback structure. It is first shown
how a quantum-nondemolition output of x2 can be constructed by reading out the x quadrature of the optical field and
feeding it back to adjust the system–environment coupling strength. In this way one can produce eigenstates of x2, which
are superpositions of two eigenstates of position with eigenvalues of equal magnitude. A further feedback loop is then
introduced in which the Hamiltonian of the controlled system is adjusted by the quantum nondemolition output of x to
increase the probability to obtain a desired superposition state. However, in this method the first form of feedback is hard to
realize experimentally. To solve this problem, Zhang et al. [65,66] proposed amethodwhich they called ‘‘quantum feedback
nonlinearization’’. This enables strong nonlinear effects in a linear plant by the use of a weak-nonlinear component and a
quantum amplifier. With this method it is possible to generate strong Kerr effects that are four or five orders of magnitude
stronger than the initial nonlinearity, and can demonstrate nonclassical optical phenomena such as sub-Poisson photon
counting statistics and photon antibunching effects.

Another potential application of coherent feedback in nonlinear optical systems is classical information processing. An
optical Kerr-nonlinear resonator in a nanophotonic device can exhibit dispersive bistability effects, and these can be used
for all-optical switching in the attojoule regime [372–375]. However, in this regime, the optical logic states are separated by
only a few photons and thus suffer from random switching due to quantum noise [376,377]. In Ref. [378], Mabuchi proposed
a coherent feedbackmethod to avoid the quantum noise. In this scheme, a Kerr-nonlinear ring resonator works as an optical
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Fig. 12. Schematic diagramof a theoretical proposal by Yan et al. [380] for continuous-variablemultipartite entanglement control. Amultipartite entangled
state is generated by a nondegenerate optical parametric amplifier (NOPA) and enhanced by a coherent feedback loop. The amount of entanglement that
is generated can be tuned by adjusting the transmissivity of the control beam splitter (CBS).

switch in which the two states have differing numbers of photons. This switch is connected to a second Kerr-nonlinear
ring resonator, which acts as a controller that suppresses the spontaneous switching, in a feedback configuration. Since the
effective cavity detuning of a Kerr resonator varieswith the driving strength, the controller induces an amplitude-dependent
phase shift φ on the optical beam. This leads to a φ-dependent effective detuning, and a φ-dependent effective cavity decay
rate for the switch (the controlled resonator). One chooses the control parameter φ in an optimal way so that the overall
feedback phase is close to π when the switch is in the ‘‘low’’ state and close to zero when it is in the ‘‘high’’ state. In this
way, the spontaneous switching between the ‘‘low’’ and ‘‘high’’ states can be efficiently suppressed.

The proposal of Ref. [378] was extended in Ref. [63] to implement photonic sequential logic by using optical Kerr
resonators, in which interference effects enable the binary logic gates. Binary logic elements, such as single-output AND
gate and NOT gates with an output fan-out of two, can be generated in this way [379]. This theoretical proposal has been
experimentally realized in superconducting circuits by Kerckhoff et al. [64], in which the emergent bistable and astable
states were used to realize a latch.

3.3.6. Controlling entanglement

A proposal in Ref. [380] shows that coherent feedback can be used to generate and control continuous-variable
multipartite optical entangled states. As shown in Fig. 12, in this scheme the multipartite entangled state generated by
a nondegenerate optical parametric amplifier (NOPA), denoted by the output fields aouti , are fed into a coherent feedback
control loop. The optical beam dini is split into two branches by a controlled beam splitter (CBS). One branch, denoted by
aini = douti , is fed back to the NOPA to couple with the intracavity optical modes ai and the other branch, couti , provides the
multipartite entangled output. Here, the subscripts i = 1, . . . ,N denote different longitude output modes with different
frequencies, which are entangled with each other via the nonlinear medium inside the NOPA and thus constitute the
multipartite entangled state. The multipartite entanglement can be controlled by adjusting the transmissivity t of the CBS.
The NOPA in Fig. 12 is composed of a nonlinear crystal and a bow-tie type ring cavity. The fields bini and eini are vacuum
fields introduced to model the loss in the NOPA and the coherent feedback loop. The piezoelectric transducers (PZTs) are
used to lock the cavity length for resonance. The authors evaluated the multipartite entanglement that is generated by
the scheme between longitude output modes couti . More specifically, they calculated the quantum correlation variances of
the quadrature amplitude and phase components of couti and used the nonseparability criterion developed in Ref. [381] to
evaluate themultipartite entanglement. They found that the coherent feedback loop can efficiently enhance themultipartite
entanglement generated by the NOPA in particular parameter regimes that can be reached by tuning the transmissivity of
the CBS.

4. Other kinds of quantum feedback

4.1. Adaptive feedback

‘‘Adaptive feedback’’ is a term that was coined by Judson and Rabitz in 1992 in a now famous paper [382]. This term
does not refer to feedback in the sense used by the classical control community, in which a measured signal is fed back as
it is received to control a dynamical system. Instead, adaptive feedback, also known as a ‘‘learning control loop’’, refers to
an iterative method for searching open-loop control protocols. The idea is to start with some arbitrary control protocol, try
it out on a real system to see how well it does, modify the protocol in some way based on its performance, and repeat this
process many times to obtain increasingly better protocols. One way to do this is to use a ‘‘genetic algorithm’’, in which one
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Fig. 13. The improved yield from a High-Harmonic Generation (HHG) experiment by Bartels et al. [383]. The adaptive-feedback-control (AFC) guided
search found a control that can selectively enhance the 27th-order harmonic mode.
Source: This figure is from Ref. [383].

tries not one, but N randomly chosen protocols. One then selects from these theM protocols that perform the best, creates a
new set of N protocols bymaking random changes to theseM protocols, and repeats the process. This is the same procedure
that is used for numerical searches to find optimal protocols. The essential point is that when the system to be controlled is
too complex to simulate on a computer, replacing the computer simulation with the real system can be a fast and effective
way to obtain good control protocols. We also note that adaptive control has also proved to be an effective way to obtain
protocols that are robust against imperfections in the control pulse [8]. This means that the pulse, or protocol, can sustain a
certain level of noise without significantly affecting its performance.

The adaptive feedback method for designing control protocols has been successfully applied to a range of tasks in the
control of molecules and chemical reactions, such as the discrimination of similar molecules, ionization, and molecular
isomerization. It has also been applied to ultrafast optical switching in semiconductors [8], and the production of X-rays
through high-harmonic generation (HHG) [383]. While second-order harmonics are easily generated, the production of
X-rays requires harmonics to tenth order or higher, which in turn requires a very high optical nonlinearity and an intense
laser. In the experiment reported in Ref. [383], a shaped ultrafast and intense laser pulse (with a duration of only 6-8 optical
cycles) is shot into an atomic gas. The authors used an adaptive feedback loop to shape the laser pulse, and in doing so
improved the efficiency of X-ray generation by an order of magnitude. As shown in Fig. 13, adaptive feedback can be also
used to find pulse shapes that will selectively generate specific high-order harmonics. To date, over 150 successful adaptive
feedback control experiments have been reported, and the number applications is still growing [384].

4.2. Quantum self-feedback

While the term ‘‘self-cooling’’ has been used to refer to scenarios that are now understood as coherent feedback [227],
similar terms have been used to refer to a situation that is distinct from coherent feedback, and yet involves a feedback
mechanism. This is the method of cooling a mechanical resonator by using photothermal pressure [385] (as opposed to the
radiation pressure of resolved-sideband cooling [227]). In photothermal cooling [386], the motion of the resonator affects a
thermal bath to which the resonator is coupled, and the resulting effect of the bath back on the resonator is what produces
the cooling. The effect is therefore feedback, but it is not feedback from a coherent and controllable system that is envisaged
in coherent feedback, but from amany-body environment. For this reason, we feel that it is reasonable to give this situation
another name, and here we choose to call it ‘‘self-feedback’’.

Another setting in which feedback from a many-body environment can facilitate control is that in which the system to
be controlled interacts with a bath consisting of many nuclear spins [387–398]. One example of this is the spin of a single
electron trapped in a ‘‘quantum dot’’, and a second is a cantilever (a mechanical oscillator) that interacts with the nuclear
spins via a magnet attached to it. The ability to use the spin bath for control comes from the fact that the nuclear spins have
a long coherence time. By driving the system (the electron spin or the cantilever), one can polarize the nuclear spins so that
they act on a single coherent spin, and this coherence lasts for a time that is long compared to the timescale on which we
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Fig. 14. Schematic diagram of self-feedback: (a) Passive cooling by photothermal pressure in optomechanical systems and (b) Feedback from a nuclear
spin bath to an electron spin in a quantum dot.

Table 2
Characteristic parameters for feedback in various physical settings.

Linear optics Optomechanics Cavity QED Superconducting circuits

System energy scale 1 THz 0.1–100 MHz 1 THz 1–10 GHz
Feedback bandwidth 1 MHz 1 MHz 1 MHz 10 MHz
Decoherence rate 1 MHz 10–100 Hz 1 MHz 10–100 kHz
Measurement efficiency 0.9 0.9 0.8 0.4
Measurement rate Photon flux 10 Hz–1 kHz 10 Hz–1 kHz 100 kHz
Feedback delay 0.1–10 µs 0.1–10 µs 1 µs–1 ms 250 ns
Ambient temperature 300 K 30 mK 300 K 30 mK

wish to control the system. Since the noise from the nuclear spin bath comes only from unpolarized spins, we can greatly
reduce this noise in this way.

It is also possible to use the nuclear spin bath to cool a cantilever, in a process similar to resolved-sideband cooling.
By polarizing the spins, or merely by using their steady-state thermal polarization, and driving the electron spin at the
appropriate (blue-detuned) frequency, we can create a net transfer of excitations from the cantilever to the spin bath [391]
(see Fig. 14).

5. Experiments realizing quantum feedback

We now give an overview of the experiments that have been performed to date realizing feedback in the quantum
regime, both measurement-based and coherent. Feedback has now been realized in a range of distinct physical settings:
atomoptics and cavity QED, optomechanics, superconducting circuits, and quantumdots. Formeasurement-based feedback,
the measurement efficiency is a crucial factor in determining to what extent control can be realized in the quantum regime,
and the fidelity of this control. Beforewe begin,we present a table that shows various key parameters in current experiments
on feedback control, and how they compare across the various physical realizations. Some of these parameters, such as the
measurement efficiency, represent the state of the art that we expect will be continually improved. Other parameters, such
as the feedback bandwidth, are merely what is typically being used in current experiments. The feedback bandwidth gives
the fastest rate at which the control force applied to the system can change. Thus the timescale of the feedback control
process is necessarily limited by the feedback bandwidth.

As discussed following Eq. (2.34), the measurement rate of a continuous measurement, also referred to as the
‘‘measurement strength’’, has units of inverse time as well as the inverse square of the observable being measured. It can
be thought of as the rate at which the inverse variance of the observable is increased (and thus the variance reduced) by
the measurement. The measurement rates given in the table are a result of choosing units that are natural in each case. For
example, if one is measuring the position of a harmonic oscillator, then the natural unit of position is the uncertainty in the
position for the ground state of the oscillator. For linear optics, the ‘‘system’’ beingmeasured is often a continuous-wave laser
beam, and themeasurement rate in this case is merely the photon flux. Since it is possible to vary this flux over many orders
of magnitude, we have left the entry in the table simply as ‘‘photon flux’’. Note that since the continuous measurements are
mediated by coupling to fields, themeasurement rate also corresponds to the rate for coherent feedback that is mediated by
fields. Finally, we note that the time delay in the feedback loop and the bandwidth of the control are primarily relevant for
measurement-based feedback.We have not included quantumdots in the table, since neithermeasurement-based quantum
feedback nor field-mediated coherent feedback has been realized for those systems (see Table 2).



J. Zhang et al. / Physics Reports 679 (2017) 1–60 39

5.1. Quantum optics

5.1.1. Measurement-based feedback

Adaptive phase measurement (2002): The first experimental demonstration [312] of quantum feedback in optics was the
realization of the adaptive phase measurement. The limited interactions available to detect light, or in fact any physical
system, makes it impractical to exactly measure optical phase. If one has a good idea of the phase prior to themeasurement,
then homodyne detection can be used to provide good effect, since the quadrature to measure can be chosen using this
information. But if the phase is completely unknown beforehand, this is not possible, and it was widely believed prior to
1995 that heterodyne detection gave the best possible phasemeasurement in that case [399]. In 1995, it is shown [298] that
the use of homodyne detection, when combined with feedback used to modify the quadrature being measured during the
measurement, could realize a more accurate phase measurement than heterodyne detection. For a pulse of light with no
more than one photon, this adaptive phase measurement realizes exactly a measurement of canonical phase, as defined by
the Pegg–Barnett phase operator.

In Fig. 15, we show a diagram of the experimental setup in Ref. [312]. The signal consists of noisy weak coherent light
froma single-mode continuous-waveNd:YAG laser, which first passes through a high-finesse Fabry–Perot cavity (not shown
in the figure) with a ringdown time of 16 µs and shot-noise limit of 50 kHz. This cavity squeezes out the intensity noise in
the signal beam. This beam is then fed into a Mach–Zehnder interferometer (MZI) to generate interference between the
signal light and a local oscillator to implement homodyne detection. The local oscillator (LO) has a power of 230 µW and
is frequency-shifted by an acousto-optic modulator (AOM), which is driven by an RF synthesizer (RF1). The signal beam
corresponds to a frequency sideband induced by an electro-optic modulator (EOM) driven by another RF synthesizer (RF2).
The two RF synthesizers RF1 and RF2 are phase-locked to each other to achieve synchronization between the local oscillator
and the signal light. By changing the amplitude and switching RF2 on and off, the power of the signal beam can be tuned
between 5 fW and 5 pW and a pulse generatedwith a duration of about 50µs. The two output ports of theMZI aremeasured
by two photon detectors and the difference between their respective photocurrents realizes a homodyne or heterodyne
measurement, depending on how the phase of the local oscillator is modulated. In the experiment, the shot noise in the
difference photocurrent is about 6 dB above the noise floor in the range 1 kHz–10 MHz.

To realize an adaptive homodyne measurement, the phase of the local oscillator, Φ , is modified via RF2 by a feedback
signal as the measurement of the pulse proceeds. It is this phase that determines the quadrature that is measured. The
feedback bandwidth, being the maximum rate at which the phase of the local oscillator can be changed, is about 1.5 MHz,
and is mainly limited by the maximum slew rate of RF2. The value ofΦ as specified by the adaptive measurement protocol
is [300]

Φ (t) =
π

2
+ φ̂(t) ≡

π

2
+

 t

0

I (s)
√
s
ds, (5.1)

where I(s) is the measurement output signal at time s and t ∈ [0, 1] is the normalized time scale such that the control pulse
has duration 1. φ̂(t) is the estimated phase at time t . The integral of the photocurrent is calculated by a field programmable
gate array (FPGA). The final estimated phase is given by

φ̂ = φ̂(1) =

 1

0

I (s)
√
s
ds. (5.2)

In fact, as shown in Fig. 15, the measurement output signal I(t) is just the difference between the photocurrents at the
two output ports of the beam splitter BS2, and thus can be represented by

I(t)dt = 2Re

αe−iΦ(t) dt + dW = 2|α|eφ−Φ(t)dt + dW , (5.3)

where α is the complex amplitude of the signal beam, φ is the estimated phase, dW is white (Wiener) noise. In this adaptive
measurement protocol [300], the phase of the local oscillator is chosen as Φ(t) = π/2 + φ̂(t), and φ̂(t) is updated by the
phase of the following complex quantity

At =

 t

0
I(s)eiΦ(s)ds, (5.4)

i.e., φ̂(t) ≡ arg(At). By substituting Eq. (5.3) into Eq. (5.4), we have

φ̂ ≡ φ̂(1) = arg
 1

0
I(s)eiΦ(s)ds


= arg


|α|eiφ +

 1

0
dW


≈ arg


|α|eiφ


= φ,

which means that φ̂ is a good estimate of φ. Additionally, from At = |At |eiφ̂(t) andΦ(t) = π/2 + φ̂(t), it can be shown that

dAt = I(t)eiΦ(t)dt = i
At

|At |
I(t)dt. (5.5)
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Fig. 15. Diagram of the adaptive homodyne measurement of an optical phase is performed by Armen et al. [312]. Optical beams are indicated by red lines
and electronic beams by black lines. The AOM and EOM represent the acousto-opticmodulator and electro-opticmodulator. BS and RF are the beam splitter
and the radio-frequency synthesizer. PZT is the piezoelectric transducer and FPGA is the field programmable gate array.

Using the Ito calculus, we have

d|At |
2

= (A∗

t d)At + (dAt∗)At + (dA∗

t )(dAt) = dt,

which means that |At | =
√
t . By substituting this equation into Eq. (5.5), we have

dφ̂(t) = Im(d ln At) = Im(dAt/At) =
I(t)dt
√
t
, (5.6)

by which we can recover Eqs. (5.1) and (5.2).
The experiment demonstrated the superiority of the adaptivemeasurement scheme. In fact, the authors of Ref. [312]were

able to use the protocol in Ref. [300] to obtain a phase estimate whose error was below that achievable with heterodyne
detection. Here the error is given by the variance of the estimated phase. This is reasonable because only current-time
information of the output signal is used for heterodyne detection. However, the whole history of themeasurement output is
considered in the adaptive homodyne detection. It means that more information is used for adaptive homodyne detection
compared with the heterodyne detection which decreases the uncertainty of the measurement. The experimental results in
Ref. [312] also show that heterodyne detection is better than adaptive homodyne detection in the sense that the variance
of the unknown phase estimated by the heterodyne detection is smaller when the number of photons in the probe field is
large enough. The authors of Ref. [312] attribute it to the excess technical noise in the feedback loop.

Adaptive phase estimation (2007): While the previous adaptive measurement was concerned with measuring phase as
accurately as possible for low-power beams, the 2007 adaptivemeasurement ofHiggins et al. was concernedwithmeasuring
a classical parameter, in this case a phase shift applied to a beam of light, with the most efficient use of resources [313]. The
resources in question are the number of photons in the beam. Due to the relationship between amplitude and phase, the
more photons in the beam themore sharply the phase is defined, and thus themore accurately can an applied phase shift be
determined. If the beam is in a coherent state, then the error in the measured phase is proportional to 1/

√
N , where N is the

average number of photons. But by using nonclassical states, and in particular highly entangled states [314], the error can
be reduced to 1/N , which is known as the Heisenberg limit. The experimental and theoretical work by Higgins et al. showed
that entanglement was not necessary to reach the Heisenberg limit, which could instead be achieved by applying the phase
shift to one photon at a time, and using an adaptive measurement when measuring the sequence of photons [313].

There have been a number of further experiments that have also demonstrated a phasemeasurement below the standard
quantum limit without using entangled input states [315,316,318]. For example, in Ref. [315], Xiang et al. use two n-photon
states as the two inputs in a Michelson interferometer, use Bayesian analysis and optimal adaptive feedback to make full
use of these multiphoton states.

Adaptive phase estimation with smoothing (2010): The phase estimation experiments we have described so far are
concerned with estimating a single phase shift. This next experiment [154] involves estimating a time-varying phase shift.
To estimate the phase shiftφ at some time t ,φ(t), we can use the stream ofmeasurement results obtained up until that time.
The procedure of processing the measurement results up until time t to produce an estimate of a signal at that time is called
filtering. If we are prepared towait until time (t+τ) for our estimate, thenwe can use themeasurement results up until time
t + τ to obtain our estimate of φ(t). The process of obtaining an estimate from measurement results obtained both before
and after the time of the estimate is called smoothing. In Ref. [154], Wheatley et al. use an adaptive homodynemeasurement
procedure, combined with smoothing, to estimate a time-varying phase shift. They then compare this adaptive smoothing
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Fig. 16. Schematic diagram of the experimental setup of Gillett et al. [288]. A photon pair composed of a primary (or ‘‘signal’’) photon and an auxiliary
photon is prepared by spontaneous parametric down conversion in a BBO crystal. The primary and auxiliary photons are then prepared in specific initial
states by transmitting through the polarization beam splitters and half-wave plates (HWP). The two photons are combined at a partially-polarizing beam
splitter which applies a controlled phase gate between the two (conditioned on there being only one photon in each output). A succeeding projective
measurement in the +/− basis on the auxiliary photon realizes a weak measurement on the primary. The measurement output is then fed into a Pockels
cell to rotate the signal photon conditional on the measurement outcome. The acronym QWP labels the quarter-wave plate and IF labels the interference
filter.

measurement with the performance of a nonadaptive (filtering) measurement referred to as ‘‘dual-homodyne’’ (or ‘‘eight-
port homodyne’’) measurement (which is equivalent to heterodynemeasurement). They show that the adaptive smoothing
measurement can achieve a mean-square phase error that is smaller than that of the nonadaptive filtering measurement by
a factor of 2

√
2. As an extension of the results in Ref. [312] (presented in the first paragraph of this subsection), the authors

of Ref. [154] show that adaptive measurement reduces the mean-square phase error by a factor of
√
2 over nonadaptive

measurement, both for filtering and smoothing. They also show that smoothing reduces this error by a factor of 2 over
filtering. Thus the total reduction in themean-square phase error provided by adaptive smoothing over nonadaptive filtering
is a factor of 2

√
2.

Adaptive phase estimation with squeezed light (2012): One way to beat the standard quantum limit for phase estimation is
to use squeezed light, since the phase error in this light is less than 1/

√
N , whereN is the number of photons. The experiment

of Yonezawa et al. [317] implemented this method using a continuous beam of squeezed light. The experiment achieved a
phase estimation error that was 15% ± 4% below the ideal limit achievable with a coherent beam.

Correcting a single-photon state (2010): So far all the experiments we have described in linear optics are adaptive
measurements of optical phase. This next experiment is an exception. Here Gillett et al. [288] use a weak measurement to
optimally correct the state of a single qubit which is initially prepared in one of two non-orthogonal states. In this case, the
qubit is encoded in the polarization of a single photon. This correction procedure was suggested and analyzed in Ref. [287].
Recall that a weakmeasurement is one in which themeasurement operators are not rank-1 projectors, so it does not reduce
a mixed state to a pure state, and does not provide full information about the final state (see Fig. 16).

In this experiment, the two states of the qubit are labeled as |H⟩ ≡ |1⟩ (horizontal polarization) and |V ⟩ ≡ |0⟩ (vertical
polarization). To make a weak, single-shot measurement of one of these qubits, Gillett et al. perform a gate that partially
entangles the qubit with a second ‘‘probe’’ qubit, and then perform a projective measurement on the probe. The experiment
is driven by an 820 nm Ti:sapphire laser. A 410 nm beam is created from this using second-harmonic generation, so that a
pair of 820 nmphotons can be created from this 410 nmbeamusing spontaneous parametric down conversion. Each photon
in the pair is then fed into a single-mode fiber. One of these photons carries the qubit to be corrected – the ‘‘primary’’ photon
– and the other will be used as the probe. The primary is prepared in one of the two (non-orthogonal) states

|ψ±⟩ = cos
θ

2
|±⟩ ± sin

θ

2
|−⟩

by transmitting through a polarizing beam splitterwith reflectivity RH = 0 and RV = 1 followed by a half-wave plate (HWP).
Here 2θ is the angle between these two states on the Bloch sphere and

|±⟩ =
1

√
2
(|0⟩ ± |1⟩) .

The probe photon is to be detected, and is prepared in the state

|φ⟩ = cos
χ

2
|+⟩ + sin

χ

2
|−⟩,
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where the parameter χ ranges from 0 to π/2 and represents the strength of themeasurement that wewill introduce below.
The primary and probe photons are now interfered through a partially-polarizing beam splitter with reflectivity RH = 1/3
and RV = 1. Conditional on there being only one photon in each mode, the partially-polarizing beam splitter executes a
control-Z gate (given by |0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗ Z), between the qubits with the probe as the control [400–402].

The primary qubit is next subjected to a dephasing error with probability p, which leads to the following two error states

ρ ′

±
= (1 − p) |ψ±⟩⟨ψ±| + pZ |ψ±⟩⟨ψ±|Z .

To correct this error as best as possible, the probe qubit is measured in the basis {|±⟩}. This measurement is implemented
by rotating the polarization basis and transmitting through a polarizing beam splitter with reflectivity RH = 0 and RV = 1.
This results in a weak measurement on the primary qubit described by the measurement operators [see Eq. (2.16)]

M+ = cos
χ

2
|0⟩⟨0| + sin

χ

2
|1⟩⟨1|, M− = sin

χ

2
|0⟩⟨0| + cos

χ

2
|1⟩⟨1|, (5.7)

whereM+ andM− are themeasurement operator toweakly extract information for the states |0⟩ and |1⟩, respectively. From
the above equations, we can see that the parameter χ characterizes the strength of themeasurement, with 0 equivalent to a
projectivemeasurement (with fully discriminative post-selective states) andπ/2 equivalent to nomeasurement (with non-
discriminative post-selective states). A unitary rotation is then performed on the primary qubit depending on the result of
the measurement. This is implemented using a Pockels cell, which applies a rotation on the Bloch sphere through an angle
of 4η around the axis of σy = i(|0⟩⟨1| − |1⟩⟨0|) if a photon is detected in the transmission output of the polarization beam
splitter. Combined with a fixed rotation of −η, the results are rotations of ±η, i.e., rotation operations Y±η = exp


±iησy


,

corresponding to the measurement result M±. Prior to this feedback operation, the primary photon passes through a 50 m
fiber to allow time for the quantum weak measurement, as well as a set of plates to compensate the polarization rotation
introduced by this fiber.

After the weak measurement and feedback correction, we can obtain the following two states

ρ̃± = (Y+ηM+)|ψ±⟩⟨ψ±|(Y+ηM+)
Ď
+ (Y−ηM−)|ψ±⟩⟨ψ±|(Y−ηM−)

Ď. (5.8)

Then we can define the average fidelity as

FC =
1
2
⟨ψ+|ρ̃+|ψ+⟩ +

1
2
⟨ψ−|ρ̃−|ψ−⟩, (5.9)

which approaches 1 for perfect correction. The average fidelity can be optimized over the correction angle η as

F opt
C =

1
2

+
1
2


1 − (1 − (1 − 2p) sinχ) cos2 θ

2
+ cos2 χ cos2 θ

1/2
, (5.10)

and the corresponding optimized angle is

ηopt = tan−1 cosχ cos θ
1 − {1 − [1 − 2p] sinχ} cos2 θ

. (5.11)

5.1.2. Coherent feedback

Noise cancellation (2008): The first all-optical demonstration of a coherent feedback scenario was performed by
Mabuchi [356], and was a realization of a noise-cancellation loop suggested by James [61]. A diagram of the experimental
setup is shown in Fig. 17. The primary system (the ‘‘plant’’) is a four-mirror ring cavity (top) as is the auxiliary (the
‘‘controller’’). The experiment is driven by an 852 nm diode laser, and an external ‘‘noise’’ signal is injected into the plant
cavity at the input w. The output of the primary, y, that is reflected from the plant input coupler, acts as the error signal,
which is processed by the controller to generate a control signal u. This control signal is then fed back into the plant cavity
again to attempt to cancel, as well as possible, the effect of the noise on the plant output, z. The goal of the feedback loop is to
minimize the ratio of the optical power at the output z to that of the ‘‘noise’’ inputw. This quantity can also be described as
the magnitude of the closed-loop transfer function [see Eq. (1.7)]. In fact, the open-loop transfer function of the plant from
the inputw to the output z can be represented by

Gzw = −
2
√
k1 k4

s + γp
, (5.12)

where k1 and k4 are the partial transmission rates of the input andoutput couplers,γp = c(t21+t22+t23+t24+l2)/(4πLp), where
c is the speed of light, Lp is the round-trip cavity length, t2i is the transmission coefficient of ith mirror, and l2 are denotes all
other intracavity loss. When the feedback loop is implemented as shown in Fig. 17, the overall close-loop transfer function
fromw to z becomes

Gf = Gzw + Gzu(1 − KuyGuy)
−1KuyGyw, (5.13)
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Fig. 17. Diagram of the experimental setup of Mabuchi [356]. Two four-mirror ring resonators couple with each other by a transmitting optical field,
which work as the plant cavity and controller, respectively. The control goal is to tailor the behaviors of the controller to minimize the power detected at
the system output z, when a ‘‘noise’’ signal w is fed into the plant cavity. This can be achieved by tuning the parameters via the two variable attenuators,
i.e., attenuator 1 and attenuator 2, and the two piezoelectric transducers (PZTs), i.e., PZT 1 and PZT 2.

where the additional transfer functions are Gyu = Gzw , Gzu = Gzw , Gzu = 1− 2k4/(s+ γp), and Gyw = 1− 2k1/(s+ γp). The
transfer function of the optical resonator that acts as the controller is Kuy, and is given by

Kuy =
2
√
ηK

√
k1k4

s + γp − 2(k1 + k4)+ ηγ
, (5.14)

where ηK and ηγ are the two control parameters that can be tuned. The problem of disturbance rejection is to design the
controller so as to minimize the magnitude of the closed-loop transfer function Gf .

Four practical ways to tune the parameters of the controller to achieve the noise cancellation (disturbance rejection) are:
(i) adjust the resonance frequency using the actuator PZT 1; (ii) adjust the phase of the transfer function using the actuator
PZT 2; (iii) adjust the decay rate using the intracavity variable attenuator (attenuator 1); and (iv) adjust the magnitude of
the transfer function using an attenuator 2. By optimizing these parameters, Mabuchi was able to reduce the noise in the
output by approximately 7 dB.

Squeezing light (2012): The experiment by S.Iida et al. [359] realized a coherent feedback loop to enhance the squeezing
of an optical beam. This was an implementation of a protocol devised in Ref. [358]. The experimental setup is shown in
Fig. 18. The optical parametric oscillator (OPO) generates squeezed light, and it is the job of the feedback loop to enhance
this squeezing. As such, the primary system is the OPO and auxiliary system is the ‘‘control beam splitter’’ (CBS), which acts
as a beam splitter whose reflectivity can be adjusted. The CBS also acts as the output port through which the squeezed light
exits the combined system, and is then evaluated by a homodyne measurement.

This experiment is probably the most sophisticated coherent feedback loop realized to date. The feedback loop can be a
little hard to read from the diagram, because there are additional classical locking loops that share the same mirrors as the
coherent feedback loop, but are separate from it. The feedback loop is surrounded by the green dashed line, and consists of
the OPO, a Mach–Zehnder interferometer that acts as the controlled beam splitter (CBS), and a loop that connects them. You
will notice that multiple beams (or branches) are split off from the single Ti:sapphire laser that drives the experiment. The
first branch is fed into a frequency-doubler to generate a second-order harmonic beam of 430 nm,which is used as the beam
that pumps the OPO to produce squeezed light at 860 nm. The second branch is used as the local oscillator to implement the
homodyne detection on the squeezed output. The third branch, the one that goes through the half-wave plate (HWP) is used
to lock the Mach–Zehnder and the coherent feedback loop. The final branch works as the ‘‘probe’’ beam, which is injected
into the OPO as the ‘‘seed’’ that sets the phase of the squeezed light. Photodetectors (PDs) and piezoelectric transducers
(PZTs) are used in a classical phase-locking loop to fix the relative phase between the probe and the pump beams.

The authors were able to demonstrate a squeezing enhancement from −1.64 ± 0.15 to −2.20 ± 0.15 dB, in which the
corresponding enhancement of the antisqueezing was from 1.52 ± 0.15 to 2.75 ± 0.15 dB.
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Fig. 18. Schematic diagram of the experimental setup of S.Iida et al. [359], in which coherent feedback is used to enhance optical squeezing. The coherent
feedback control loop consists of the optical parametric oscillator (OPO) and a Mach–Zehnder interferometer that acts as a beam splitter with a tunable
reflectivity (the ‘‘controlled beam splitter’’ (CBS)). The various labels denote the following optical elements: MCC (mode-cleaning cavity); EOM (electro-
optic modulator); PD (photodetector); PZT (piezoelectric transducer); HWP (half-wave plate); PBS (polarized beam splitter); LO (local oscillator).

Fig. 19. Diagram of the experimental setup of Vijay et al. [194]. The Rabi drive at the ac stark-shifted qubit frequency and the read-out drive at frequency
7.2749 GHz are both fed into the weakly-coupled input port of a three-dimensional microwave cavity, which is dispersively coupled to a capacitively-
shunted Josephson junctionworking as a superconducting qubit. The output signals leave from the strongly-coupled port of cavity and are then transmitted
through two isolators. Afterwards, the output signals are amplified by a parametric amplifier (paramp) and a high-electron-mobility transistor (HEMT)
amplifier, and thenmeasured by a homodyne detection setup. The amplified quadrature Q is then sent to the feedback circuit to be compared to the 3MHz
Rabi reference signal and filtered by a 10 MHz low-pass filter. The output signal is then fed back to correct the Rabi frequency imposed on the qubit by the
Rabi drive. LO and RF represent the local oscillator and radio frequency. PM1 and PM2 are the two photonmultipliers. I and Q are the in-phase component
and quadrature component respectively.
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5.2. Superconducting circuits

5.2.1. Measurement-based feedback

Stabilizing the state of a single qubit (2012): It is only very recently that measurement-based feedback has been realized in
mesoscopic circuits, because it is only recently that amplifiers with sufficiently low noise have been devised [403–406]. The
first two experiments to demonstrate measurement-based feedback control of a single superconducting qubit were those
by Vijay et al. [194] and Riste et al. [193], and this field progressed very fast recently [407].

In Fig. 19, we show the experimental setup used in Ref. [194]. In this experiment, the authors use a continuous
measurement and feedback process to keep the qubit undergoing Rabi oscillations under its free Hamiltonian. To do this,
the feedback has to continually purify the state of the qubit and the feedback has to keep it within a given plane of the Bloch
sphere. The qubit is a capacitively-shunted Josephson junction [408,409] with a transition frequency of ωq/2π = 5.4853
GHz. This qubit is dispersively coupled to a three-dimensional microwave cavity with a cavity resonant frequency of
ωc/2π = 7.2756 GHz. Electrical signals that enable the measurement and feedback control are fed into the cavity via
the weakly-coupled input port, and the measurement output leaves the cavity via the strongly-coupled port with decay
rate κ/2π = 13.4 MHz. The qubit is dispersively coupled to the cavity with a strength of χ/2π = 0.687 MHz, with the
result that the qubit induces a phase shift of the cavity light that depends on the qubit’s internal state, and this state is
therefore measured by making a homodyne measurement of the output signal from the cavity. This is a ‘‘cavity-mediated’’
(or ‘‘oscillator-mediated’’) measurement as described in [86,214].

The cavity mode is driven at the frequency of ωr = 2π × 7.2749 GHz ≈ ωc − χ to control the mean cavity photon
occupation which sets the measurement strength. The qubit is driven by the ‘‘Rabi drive’’ in Fig. 19 chosen to give a Rabi
frequency of ΩR/2π = 3 MHz. At the output port of the cavity, the output quantum field is sent through two isolators to
protect the qubit from the strong-field driving of the parametric amplifier (or ‘‘paramp’’). It is then fed through the paramp
(a near-noiseless phase-sensitive quantum amplifier [410,411]), and through the high-electron-mobility transistor (HEMT)
amplifier to produce a macroscopic signal that can easily be manipulated without significant noise. It is then measured
by homodyne detection. This measurement procedure achieves an efficiency of η = 0.40. The dynamical equation for the
superconducting qubit with feedback can be expressed as

d⟨σx⟩ = −


Γenv +

Γ1

2
+
(∆I)2

4


⟨σx⟩ dt −

∆I
√
2
⟨σx⟩⟨σz⟩dW ,

d⟨σy⟩ = −


Γenv +

Γ1

2
+
(∆I)2

4


⟨σy⟩ +ΩR ⟨σz⟩


dt −

∆I
√
2
⟨σy⟩⟨σz⟩dW ,

d⟨σz⟩ = (−ΩR ⟨σy⟩ − Γ1⟨σz⟩) dt −
∆I

2
√
2
(1 − ⟨σz⟩

2)dW , (5.15)

whereΩR is the Rabi frequency, Γenv is the environmental dephasing rate, and Γ1 is the relaxation rate. The measurement
output signal is given by

dI(t) =


I0 + I1

2
+
∆I
2

⟨σz⟩


dt + dW , (5.16)

where I0 and I1 are the average output signals for the qubit in the ground and excited states, respectively, and∆I = I1 − I0.
When we omit the environmental dephasing and relaxation (that is, we set Γenv = Γ1 = 0), the state of the qubit state will
remain pure if the initial state is pure. If we further assume that the initial state satisfies ⟨σx⟩(0) = 0, then the evolving state
can be described by a single parameter, being the polar angle θ(t) on the Bloch sphere:

⟨σx⟩ = 0, ⟨σy⟩ = sin θ(t), ⟨σz⟩ = cos θ(t). (5.17)

The goal of the feedback is to keep oscillating as θ(t) = Ω0t with a fixed frequency Ω0. If we denote the phase difference
between the reference and the homodyne output, θerr = θ −Ω0t , the dynamical equation for the state of the qubit is given
by

d θerr =


−
(∆I)2

4
sin θ(t) cos θ(t)+Ωfb(t)


dt −∆I sin θ(t)dW , (5.18)

where Ωfb = ΩR(t) − Ω0 is the feedback-induced modulated part of the Rabi frequency. The feedback protocol used in
the experiment is motivated by a classical phase-locked loop. As shown in Fig. 19, the output of the homodyne detection
is compared with a 3-MHz Rabi reference signal and low-pass filtered to generate a signal proportional to the sine of the
phase difference, θerr. This error signal is then fed back to modulate the amplitude of the Rabi drive,Ωfb, by

Ωfb

Ω0
= −F sin (θerr) , (5.19)
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Fig. 20. (a) Diagram of the two-port coherent feedback circuit used by Kerckhoff and Lehnert [64]. The input fields are bin,0 and bin,1 and the output fields
are bout,0 , bout,1 . The two flux-biased tunable Kerr circuits (TKC0 , TKC1) are connected via a beam splitter which is the ‘‘quadrature hybrid’’. Each TKC is
composed of a quarter-wave transmission line resonator interrupted by a series array of 40 Josephson junction SQUIDs, and one end of the transmission
line resonator is capacitively coupled to the beam splitter. The two directional couplers merely separate the input and output fields. The entire system is
housed in a dilution refrigerator which provides an ambient temperature of ∼50 mK. (b) Equivalent diagram of the two-port coherent feedback circuit.

where F is the dimensionless feedback gain. Under this feedback control,wehave θerr → 0when t → ∞. This is aMarkovian
quantum feedback process. The performance is mainly limited by the efficiency of the measurement and the time delay in
the feedback loop. There is a tradeoff between the rate at which the feedback can be performed (the feedback bandwidth)
and the noise introduced by the feedback signal, which results in an optimal measurement strength. With a finite feedback
bandwidth of 10 MHz and loop delay of 250 ns, the optimal measurement strength was found to be Γφ/2π = 0.134 MHz.

Preparing entanglement between two qubits (2013): The experiment by Riste et al. [275] demonstrated the stabilization of
entanglement between two superconducting qubits usingmeasurement-based feedback control. In Ref. [275], a Bell state is
prepared with a fidelity of 88% by using a parity measurement, which is a joint measurement on both qubits. By introducing
a feedback loop incorporating the parity measurement, the probabilistic preparation of the Bell state was replaced by a
deterministic preparation with a fidelity of 66%.

5.2.2. Coherent feedback

Engineering dynamics (2012): Kerckhoff and Lehnert [64] used a coherent feedback network to implement a bistable
superconducting circuit, also known as a latch, useful in classical information processing. This was an experimental
realization [64] of a scheme devised in Ref. [63], in which two oscillators with Kerr nonlinearities, when coupled in a loop
via a beam splitter, generate both bistable and astable dynamics.

A diagram of the experimental configuration used in Ref. [64] is shown in Fig. 20(a). The system is an input–output circuit
with two input fields bin,0, bin,1 and two output fields bout,0, bout,1. The central components of the coherent feedback loop are
two tunable Kerr circuits, TKC0 and TKC1. Each TKC is composed of a quarter-wave transmission line resonator generated
by a coplanar waveguide. In the center of the coplanar waveguide, a series array of 40 Josephson-junction superconducting
quantum interference devices (Josephson-junction SQUIDs) interrupt thewaveguide and generate a Kerr nonlinearity for the
transmission line resonator [412]. One end of each resonator is capacitively coupled to the 4–8 GHz commercial quadrature
hybrid which acts as a 50:50 microwave beam splitter. The two directional couplers merely separate the input fields from
the output fields.

The above nonlinear coherent feedback network exhibits optical phenomena that neither of the Kerr resonators exhibit
by themselves. For example, as shown in Ref. [64], if the two TKCs have central frequencies equal to ω0/2π = 6.408 GHz,
andwe drive themwith probe fields at the frequencyωp/2π = 6.39GHz, the output fields of the coherent feedback network
exhibit a bistability phenomenon, an effect in which a system has two distinct equilibrium states. The bistable system can
rest in either of these two states, and will transit from one stable state to the other if it is given enough activation energy
to penetrate the barrier. If the two uncoupled TKCs are individually driven at the same detuning, neither would be bistable.
Note that the bistable system has various interesting applications. As an example, it could act as an on-chip microwave
switch, designed to sit in either the ‘‘on’’ or ‘‘off’’ positions. Since the TKCs and the feedback control circuits typically contain
an average of about 1000 photons, the experimental results fit very well with a mean-field model using a semiclassical
approximation. Further, purely quantum effects such as sub-Poisson statistics could potentially be observed in this feedback
circuit.
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The above phenomena can be explained using the language of quantum feedback networks presented in Section 3.2.1.
The dynamics of a TKC is represented in the language of ‘‘SLH’’ (Eq. (3.5)) by

STKC = 1, LTKC = −i
√
2κa, HTKC = ∆aĎa +

χ

2
aĎ 2a2, (5.20)

where a is the annihilation operator for the TKC resonator mode,∆ = ω0 − ωp is the detuning between the TKC resonance
frequency ω0 and the frequency of the driving field ωp, κ is the field decay rate, and χ < 0 is the Kerr coefficient induced
by the SQUID array. The beam splitter is expressed as BS = (SBS, LBS,HBS)where

SBS =


µ −ν∗

ν µ


, LBS = 0, HBS = 0, (5.21)

and |µ|
2
+ |ν|2 = 1. The phase shifter can be denoted asΦ = (Sφ, Lφ,Hφ)where

Sφ = eφ, Lφ = 0, Hφ = 0 (5.22)

and the coherent driveWα = (SWα , LWα ,HWα)where

SWα = 1, LWα = α, HWα = 0. (5.23)

The dynamics of the quantum coherent feedback network shown in Fig. 20(b) is then represented by

N = (SN , LN ,HN) =

P(0,1) ▹ [(I2 � (TKC0 ▹ Φ0)) ▹ [(I3 � (TKC1 ▹ Φ1)) ▹ (BS0 � BS1)]]


▹ (Wα0 � Wα1), (5.24)

where
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√
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√
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√
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. (5.25)

Here we have set νi = 1/
√
2 and µi = i/

√
2. The symbols ai, ∆i, and χi in Eq. (5.25) are, respectively, the annihilation

operator, the detuning frequency, and effective Kerr coefficient of the ith tunable Kerr circuit TKCi. The coherent driving
amplitude for the input i is denoted by βi. We then introduce the semiclassical approximation, letting ⟨ai⟩ = αi and
⟨aĎi ai⟩ = |αi|

2. The resulting dynamical equation for the TKC resonator modes is
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The bistable effects can be extracted by analyzing this nonlinear differential equation.
Controlling qubits with a cavity controller (2012, 2013): The experiment of Shankar et al. [413] demonstrated the use of

a continuous coherent feedback process to maintain superconducting circuits in an entangled state. The system consists of
the two qubits and a superconducting cavity that is used as the feedback controller. The qubits are coupled dispersively to
the cavity, so that the states of the qubits shift the energy of the states of the cavity, and vice versa. This means that many
of the joint states of the qubits and cavity are distinguished by their energy, so that a joint Hamiltonian can be engineered
by driving the system with signals that will drive selected transitions. The authors apply six driving fields that implement
concurrently the two classic parts of coherent feedback [57,59,86]. The first correlates the qubits with the cavity, so that the
cavity acts as a measuring device for the qubits. The second applies a different unitary operation to the qubits for each of the
relevant cavity states, thus applying an action that is equivalent to an operation conditional on the result of a measurement.
The cavity is continually reset to its ground state via its own damping. The end result can be thought of as sideband cooling,
in which the entangled state of the qubits is the ‘‘ground state’’ to which the qubits are ‘‘cooled’’. Two further examples of
coherent feedback in which a cavity is used to prepare a qubit in a pure state are given in Refs. [414,415].
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5.3. Other physical setups

Cooling macroscopic mechanical resonators (1999–2012): A number of experiments have demonstrated cooling of
macroscopic mechanical resonators using measurement and feedback, but this approach to cooling has not yet reached
the quantum regime [229–232,416,417]. One possible example along this line is the experiment by Kleckner and
Bouwmeester [232]. In this experiment, the authors were able to cool the cantilever from room temperature to 135 mK.
This indicates that if their cantilever was at the temperature of a dilution refrigerator, they would be able to get close to
the ground state. Of course, at that point, the back-action noise and any other sources of classical noise in the feedback
systemmight provide further obstacles to reaching the ground state. Another example of feedback cooling of a macroscopic
mechanical resonator is the experiment by Gavartin et al. [417]. Here the resonator is a doubly-clamped nanobeam of
Si3N4 that has a resonance frequency of ΩM/2π = 2.88 MHz. The beam is placed in the evanescent field of a toroidal
‘‘microdisk’’ optical cavity. The movement of the mechanical resonator changes the frequency of the toroidal cavity mode,
an effect which is described as an ‘‘optomechanical’’ coupling [418–420]. The phase of the light that is output from the
toroidal cavity provides a readout of the motion of the mechanical resonator. To obtain the position spectrum, the authors
used a demodulation technique described by Poot et al. [421], which is not limited by the bandwidth of the digital signal
processor, and can therefore be applied to cooling resonators in MHz and even GHz range. The authors were able to cool the
resonator to 0.7 K. We note finally that, while the nominal purpose of this experiment, as described by the authors, was to
improve force detection, it has in fact been shown that force detection cannot be improved by any linear feedback applied
to a resonator [422–424].

The first paper to operate feedback in a regime where quantum back action noise is really suppressed is demonstrated
by Kippenberg’s group in 2015 [425]. In this work, a position sensor that is capable of resolving the zero-point motion
of a solid-state nanomechanical oscillator in the timescale of its thermal decoherence is introduced to fulfill a weak
continuous position measurement with imprecision back-action noise that is within a factor of five of the Heisenberg
uncertainty limit. A succeeding experiment shows thatmeasurement-based feedback can be used to improve the visibility of
quantum correlations [426] in which both squeezing of the meter field fluctuations below the vacuum level in a homodyne
measurement and sideband asymmetry in a heterodyne measurement are demonstrated.

Cooling of mechanical resonators using ‘‘resolved-sideband cooling’’, a coherent feedback method, has been realized
experimentally [227,228,234,236,242,243]. Not only that, this method has already achieved cooling to amean energy below
a single phonon, in experiments performed by Teufel et al. [242] and Chan et al. [243] in 2011. In resolved-sideband cooling,
the mechanical resonator is coupled to an ‘‘auxiliary’’ resonator that may be electrical or optical. The frequency of the
auxiliary is high enough that it sits in its ground state at the ambient temperature. The coupling ismodulated at the frequency
difference between the mechanical and auxiliary resonators, which provides the energy required to convert the mechanical
quanta to electrical or optical quanta, and vice versa. The interaction therefore transfers energy and entropy between the
two resonators, and since the auxiliary has neither, energy is transferred out of the mechanics. So long as the damping rate
of the auxiliary is sufficiently fast, this energy is removed from the auxiliary quickly so that energy can continue to be sucked
out of the mechanics.

Stabilization of a quantum state in a cavity-QED system (2002): The first demonstration of quantum feedback control
of an atom-optical system was that performed by Smith et al. [204]. (Earlier experiments in atom-optical systems, while
reported as quantum feedback at the time, were not in fact quantum feedback because they could be described by classical
analyses [427–429]. The reason for this is that the quantum noise was insignificant compared to the classical noise [22].)
The system to be controlled consists of a stream of atoms interacting with a single mode of an optical cavity, as shown in
Fig. 21. If we denote the average number of atoms interacting with the cavity at any given time by N , and if the interaction
is sufficiently weak that only one of the atoms is excited at any given time, then the system settles down to a steady state
given by

|ψss⟩ ≈ |0⟩|g⟩ + λ


|1⟩|g⟩ −

2g
√
N

γ
|0⟩|e⟩


. (5.27)

In this equation, the kets |0⟩ and |1⟩ denote the states of the cavity with 0 and 1 photons, respectively. The ket |g⟩ denotes
the state in which all the atoms are in their ground states, and |e⟩ denotes the symmetric state in which one and only one
of the atoms is in the excited state. The parameter λ is determined by the intensity of the laser driving the cavity mode.

The state of the system is changed upon the detection of a photon leaving the cavity. If a photon is detected at the time
t = 0 and no photon is detected between t = 0 and a time t = τ , the state of the system at t = τ conditioned on the
photondetection at t = 0 is given by

|ψc (τ )⟩ = |0⟩|g⟩ + λ


ξ (τ ) |1⟩|g⟩ − θ (τ )

2g
√
N

γ
|0⟩|e⟩


, (5.28)

where ξ and θ are functions that oscillate at the Rabi frequency. We now note that when τ is such that ξ (τ ) = θ (τ ), then
the conditioned state |ψc (τ )⟩ is precisely the steady state |ψss⟩, but with a different value of λ. Thus if we suddenly switch
the intensity of the driving field by the right amount, the conditioned state becomes the new steady state, and the evolution



J. Zhang et al. / Physics Reports 679 (2017) 1–60 49

Fig. 21. Diagram of the experimental setup of Smith et al. [204] to capture and release quantum state by feedback. Here, APD denotes an avalanche
photodiode.

of the system is frozen until we change the driving laser back to its original value. Switching the driving laser so as to freeze
the evolution is a feedback process, because one must first detect a single photon emitted by the cavity, and perform the
switch based on this detection. The experiment in Ref. [204] did just that, and read out the change in the evolution of the
system by measuring the intensity autocorrelation function of the light output from the cavity.

Referring again to Fig. 21, the central component of the experiment is an optical cavity composed of two high-reflectivity
curvedmirrors with separation l = 880µm. A thermal beam of Rb85 atoms is produced by an effusive oven heated to 440 K.
The cavity field is driven by an Ar+-pumped titanium sapphire (Ti:sapphire) laser which excites the Rb85 transition between
the states 5S1/2, F = 3 and 5P3/2, F = 4. The coupling strength between the atom and the cavity, the decay rate of the cavity,
and the decay rate of the atom are (g, κ, γ /2) /2π = (5.1, 3.7, 3.0)MHz. The output field from the cavity is split by a beam
splitter and detected by two (‘‘start’’ and ‘‘stop’’) avalanche photodiodes (APDs). The output signal from the start detector
is also split into two branches. One branch enters the start channel and is fed into a time-to-digital converter (TDC) used
to measure the second-order correlation function g(2) (τ ), and the other is sent to a delay generator and then fed back to
control the strength of the driving laser using an electro-optical modulator. The delay between the detection of the single
photon emitted from the cavity, and the switch of the power of the driving laser is just 45 ns.

Preparation of Fock states in a cavity-QED system (2011): The experiment of Sayrin et al. [430] uses feedback based on a
sequence of weak measurements to prepare a single cavity mode in a Fock state (a state with a precise number of photons
and no phase). The diagram of the experimental systems are presented in Fig. 22. Each weak measurement is made by
passing a two-level atom through the cavity and thenmeasuring the internal state of the atom. This state is measured using
a field-ionization detector which gives a detection efficiency of 35%. The resultingmeasurement on the cavity mode is given
by the measurement operators [see Eq. (2.16)]

Me = cos

1
2


φr + φ0


aĎa +

1
2


, Mg = sin


1
2


φr + φ0


aĎa +

1
2


, (5.29)

where thephaseφ0 is determinedby the initial state of the atomand the effective basis inwhich the atomic state ismeasured.
The operator Me (Mg ) corresponds to the measurement result in which the atom is detected to be in the state |e⟩ (|g⟩). The
operator a is the annihilation operator of the cavity mode. The initial state of the atom is set by an interaction with an
auxiliary cavity, and the effective basis in which the atomic state is measured is set by a second auxiliary cavity. Since
the measurement operators commute with the number operator aĎa, each measurement provides information about the
number of photons without disturbing it. After eachmeasurement, the state of the cavitymode is estimated by themapping

ρ → ρj =
MjρM

Ď
j

tr(MjρM
Ď
j )
, j = e, g, (5.30)

whereρe (ρg ) corresponds to a detection of the atomic state |e⟩ (|g⟩). Themeasurement result is used tomodify the amplitude
of the coherent light driving the cavity. This coherent light by itself cannot create a Fock state, and will in general take the
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Fig. 22. Diagram of the experimental setup of Sayrin et al. [430]. The state of the cavity mode C is weakly measured by an atomic beam. The atoms in
this beam are resonant with the two cavities R1 and R2 , which form an ‘‘atomic Ramsey interferometer’’ by setting the initial state in which the atoms
are prepared before entering the cavity, and the effective basis in which the atomic state is measured by the field-ionization detector. The output of the
measurement is fed into the information processor to execute the state estimation and determine the phase and intensity of the laser that drives the cavity
mode, source 2.

mode further from a Fock state, by which we can obtain a new cavity state

ρ̃j = D(αj) ρj D(−αj), j = e, g, (5.31)

where D(α) = exp(αaĎ − α∗a) is the displacement operator of the cavity mode. To generate a state ρ̃j that is as close as
possible to the target state |nt⟩⟨nt |, one seeks the choice of driving amplitude αj that minimizes the distance

d(ρ̃j, |nt⟩⟨nt |) = 1 − ⟨nt |ρ̃j|nt⟩. (5.32)

In practice, the calculation of d(ρ̃j, |nt⟩⟨nt |) is time-consuming, and thus the following second-order approximation is
introduced

ρ̃j = D(αj)ρjD(−αj) ≈ ρj − αj[ρj, aĎ − a] +
α2
j

2
[[ρj, aĎ − a], aĎ − a], (5.33)

by which we have

d(ρ̃j, |nt⟩⟨nt |) ≈ d(ρj, |nt⟩⟨nt |)+ αjtr([|nt⟩⟨nt |, aĎ − a]ρj)−
α2
j

2
tr([[|nt⟩⟨nt |, aĎ − a], aĎ − a]ρj). (5.34)

In the fact, in the control process, the role of the coherent light is merely to help keep the average number of photons in the
cavity constant, while it is the job of the measurement to narrow the distribution of photons towards a Fock state.

A diagram of the experiment is shown in Fig. 22, in which R1 and R2 label the auxiliary cavities, each of which performs
a chosen unitary operation on the internal state of the atoms. The central component is the microwave cavity, for which
the mode in question has a frequency of 51 GHz and a damping time of Tc = 65 ms. The feedback delay in each round
is approximately 83 ns. The experiment was able to stabilize Fock states up to n = 4. The time taken by the feedback
loop to converge to a steady state with n = 3 was 50 ms, which was 5 times faster than that resulting from an optimized
trial-and-error projection method using the same apparatus.

It would clearly be an improvement over the above experiment if the feedback was able to add or subtract a photon
from the cavity, instead of merely shifting the state in phase-space, because this kind of feedback would not degrade Fock
states. In fact, the atoms that are passed through the cavity provide a means to do just this, and a feedback protocol using
this method was demonstrated by Zhou et al. [431]. The experimental setup is very similar to that in Fig. 22, and the only
difference is that the result of the measurement now controls the initial state of the atoms prior to entering the central
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cavity. The atomic beam works both as a quantum nondemolition probe and a means to add or subtract a single photon to
the cavity mode. In this work, the authors demonstrated the stabilization of Fock states with up to seven photons.

Classical feedback control of atomic states (2012, 2013):Herewe examine some nice experiments that push the boundaries
of feedback control in quantum systems, but are nevertheless not examples of quantum feedback, under our definition.
While the present review concerns solely quantum feedback, the experiments here are instructive in helping us to explain
more clearly what constitutes quantum feedback.

Recall that our definition of measurement-based quantum feedback is that quantum measurement theory is required
to correctly describe it. This means that the change in the state of the system caused by the measurement is (i) important
in describing the behavior under the feedback loop, and (ii) that this change is not the same as the change that would be
predicted by Bayesian inference. Condition (ii) is often stated by saying that the measurement induces ‘‘quantum back-
action’’.

We now describe two ways in which a measurement on a quantum system can be effectively classical, meaning that the
measurement has nodynamical effect on the system, and can therefore be describedpurely byBayesian inference. The first of
these is when the observable beingmeasured commutes at every timewith the densitymatrix of the system. In this case, the
state of the system is merely a classical probability distribution of the eigenstates of the observable. Since the measurement
does not disturb these eigenstates, the only change is to the probability distribution, and since this distribution is classical,
this change obeys Bayesian inference. An experiment that uses this kind ofmeasurement to control the populations of atomic
energy levels is that by Brakhane et al. [276]. Because the transitions between the levels are incoherent, the density matrix
remains diagonal in the same basis as the measurement operators, and the feedback is classical.

The second way in which a quantummeasurement can avoid back-action is if the controller has many identical systems
that are all in the same state, |ψ⟩, and undergoing the same evolution. In this case, the controller can learn |ψ⟩ by extracting
only a very tiny amount of information from each system. As a result, the quantum state |ψ⟩ has been transformed into a set
classical parameters that can bemeasuredwithout disturbing them. Feedback that uses this kind ofmeasurement process to
control the internal state of an (ensemble of) atoms is realized in the experiments by Vanderbruggen et al. [432] and Inoue
et al. [433].

Controlling the motion of trapped particles (2002–2009): Feedback has now been applied to cooling the motion of
single trapped ions [245] electrons [246], nanoparticles [247], and atoms [225,226,248]. Only one of these, however,
has reached the quantum domain in the trapped-ion experiment [245]. The experiment in Ref. [248] uses an ensemble
of atoms in identical states, and thus an effectively classical measurement. The experiments in Refs. [225,226,246,247]
make measurements on single particles, but the effect of the back-action is negligible. Nevertheless these experiments are
interesting as they represent the state of the art in applying feedback control to microscopic systems.

6. Summary and outlook

We have seen in this review that continuous-time feedback can be implemented with or without measurements, and
in the latter case can be implemented either with direct Hamiltonian coupling between the system and controller, or with
couplings mediated by irreversible one-way quantum fields. We have also seen that the range of applications of feedback
in quantum systems is rather broad, and further applications are yet to be discovered.

Measurement-based feedback control of quantum systems was first demonstrated in quantum optics, and for some
time there was no other field in which this kind of feedback could be realized. It is only very recently, in 2012, that
experimental technology has allowed measurement-based feedback to be achieved in superconducting circuits [193,194].
This was possible because of recent breakthroughs in quantum-limited amplifiers [403–405]. We expect this development
to open the door to many more implementations of measurement-based feedback in both electrical and electromechanical
systems.

The situation regarding coherent feedback control is a little different. Experiments implementing coherent feedback had
been realized for some time – for example those involving the laser cooling of atoms and ions – before the theoretical notion
of coherent feedbackwas articulated. This notion provides a newway to think about interacting quantum systems, especially
those coupled via irreversible fields. As pointed out in Ref. [64], coherent feedback provides not only a tool for controlling
quantum systems, but also for changing the dynamics of a system and thus engineering new dynamics.

While measurement-based feedback control has been studied theoretically for a little over 20 years, coherent feedback
has been much less studied, and there are still many basic questions that remain, particularly to do with the relationship
between the various kinds of feedback. A basic question regarding any kind of control process is just howwell it can perform,
given a set of limitations on the physical control resources, such as themeasurement strength, coupling constant(s), and the
speed and nature of the available control Hamiltonian. Since the dynamics of most measured quantum systems is nonlinear,
and since the question of the limits to control is essentially one about optimality of control protocols, it may not be possible
to obtain exact answers, or even numerical answers to these questions for measurement-based feedback. The connection
betweenmeasurement-based feedback and coherent feedback howevermight provide a newway to analyze such questions.

There is one question regarding the limits to coherent feedback control that has been recently answered, at least with
considerable confidence, and that is the limit to the fidelity of state preparation given a bound on the rate of the coupling
between the systemand auxiliary components [434]. Thiswas only solved, however, in the regimeof good control,where the
coupling is fast compared to the noise in the system, and in the regime of weak coupling in which the coupling rate is small
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compared to the energy scale of the system (the gaps between the energy levels of the system). The reason for the weak-
coupling restriction is that without it, the master equation that describes the noise, even for Markovian weak-damping,
is no longer independent of the control Hamiltonian. The reason that the noise depends on the control Hamiltonian for
strong coupling is that in this case the energy levels of the system are altered by the coupling, and the noise that a system
experiences usually depends on the energy levels of the system. As an example, thermal noise depends on a system’s energy
levels because the thermal steady state depends on these levels. Since the control Hamiltonian is usually time dependent,
strong control Hamiltonians imply that the master equation will be time dependent. Because of this, up until very recently,
theoretical treatments of quantum control were restricted to the regime of weak coupling/weak control. Modeling strongly-
controlled systems is an important challenge in quantum control, either by using methods for exact simulation of open-
system dynamics (see e.g. [435–438]) or by obtaining approximate master equations that correctly model noise for time-
dependent systems [439].

A key question regarding the relationship between various kinds of feedback is whether one kind is superior to the others
for certain applications, or under certain kinds of constraints. Some results along these lines have already been obtained
[59,65–68]. It appears that under a constraint on the speed (equivalently the norm) of the interaction Hamiltonian between
the system and controller, coherent feedback is fundamentally more powerful than measurement-based feedback, because
it allows a larger class of joint evolutions [59]. It is not known whether the same is true under a bound on the measurement
strength, equivalent to a bound on the input–output rate to a field or a damping rate into a Markovian bath. What is fairly
clear is that a constraint on an irreversible Markovian damping rate is not equivalent to a constraint on the norm of an
interaction Hamiltonian. This further suggests that while continuous-time measurement-based feedback can be compared
directly with field-mediated coherent feedback, this may not be possible with coherent feedback implemented via direct
coupling. Nevertheless the relationship between various forms of feedback raises questions that are both fundamental and
relevant to potential applications.

Systems driven by white noise obeyMarkovianmaster equations, meaning that the time derivative of the density matrix
depends only on the density matrix at the current time. One way in which analyses of feedback control are being extended
is to include systems coupled to baths that induce non-Markovian evolution, or feedback implemented via fields with a
finite or tailored bandwidth. It turns out that the standard input–output formalism that we introduced in Section 3.2.1,
and which is used to treat field-mediated feedback networks can be extended without difficulty to couplings with arbitrary
bandwidths [353,354]. Interestingly, with this extension the resulting formalism can handle strong damping and coupling,
something that the standard formalism cannot. For nonlinear networks, the input–output equations must be converted to
master equations to be solved, and these require considerable numerical resources. For linear systems, the input–output
formalism provides an efficient means of solution, and thus appears to be a powerful method for analyzing non-Markovian
feedback for linear systems. It can also be used to describe feedback in which there is a time delay in the feedback control
process.With the implementation of feedback in superconducting circuits, andbeyond that to spins in, e.g., nitrogen-vacancy
centers in diamond or quantum dots, the analysis of non-Markovian evolution will become increasingly important.

When feedback was introduced into quantum theory in the late 80s and early 90s, the number of physical systems
in which feedback could be implemented were extremely limited, and such experiments were very difficult, especially
for measurement-based feedback. With recent breakthroughs in the construction and measurement of mesoscopic
circuits [440–442], the number of experimental applications for feedback control has greatly increased. We anticipate that
the field of quantum feedback control will expand considerably due to these developments, and feedback will be realized
in an increasing range of mesoscopic systems, including, e.g., superconducting circuits, quantum dots, and silicon-based
on-chip optical devices [443–449].
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