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S1. DERIVATION OF MASTER EQUATION AND QUBIT-QUBIT INTERACTION

In this section, we outline the derivation of qubit-qubit coupling through virtual photons in the continuum of
photonic modes in a 1D transmission line terminated by a mirror [S1]. We consider N transmon qubits, placed at
positions x,, in the transmission line. The coordinate z,, measures the distance from qubit n to the mirror at x = 0.
The Hamiltonian for this system can be expressed as H = Hg + Hg + Hiyy with

N
Hs =Y hwiyoro,, (S1)
n=1
Hg = / dwhwal a,,, (S2)
N
Hiy = zz /dwhgn(w) cos(ky,xy) (awo,t — onal). (S3)
n=1

Here, Hg is the bare Hamiltonian of the qubits, with o, (o, ) the raising (lowering) operator of qubit n and w},
the transition frequency of qubit n. The bare Hamiltonian for the continuum of photonic modes in the transmission
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line is given by Hp, where a, (a,,) is the creation (annihilation) operator for excitations at mode frequency w. The
interaction between the qubits and the photons is described by Hipng, where the interaction strength is given by [S2]
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where 3, = C?'/C% is the ratio between the coupling capacitance C to the transmission line and the qubit capacitance

C%y for qubit n, Eé") and EL(]n) are the charging and Josephson energies, respectively, of qubit n, e is the elementary
charge, and Zj is the characteristic impedance for the transmission line. The cosine function in Hj, reflects the
presence of a mirror giving an open boundary condition at z = 0.

Using the standard procedure of eliminating the photonic degrees of freedom under the Born-Markov approxima-
tion [S3], we obtain the interaction-picture master equation

N N N
% =3 Z:l On [cr:[a;, p] +1 2_:1 o cos(kpxy)on, p] — 1 Z (A:[m — iFJm) [O’:{O’;L, p]
" N " e N
+ > (L +iAn,) 2008 —ofonp—poton) + Y v, (2050, poto, — ooy p—poto,), (S5)
n,m=1 n=1
where the qubit-qubit interaction is determined by
rf, = Jom T Jmn ;7’"”, (S6)
I, = o, (S7)
Av, = W7 (S8)
A, = W’ (S9)
with
Yo = T2 s + ) + O (Rl — 2}, (S10)
Apm = La";w% {sin(km [Ty + m)) + sin(km |2, — 2m|)}, (S11)
SR ANE A s
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In these expressions, the subscripts n and m refer to qubits n and m; in general, these indices are not interchangeable
in terms where they occur together if the two qubits they refer to are non-identical. The first term in Eq. (S5) is the
Hamiltonian for the individual qubits. Here, we have absorbed single-qubit Lamb shifts into the detuning ¢,, between
the frequency of qubit n and the frequency wy, of a probe field:

Op = wWp — Wy — Apy. (S13)

The second term in Eq. (S5) is the Hamiltonian showing qubit n is driven by the probe field, which is characterized
by the Rabi frequency

g\
hQT = 2V/2ef3, <J(> Vo, (S14)
8ESY

where Vj is the input voltage. The third term in Eq. (S5) is the qubit-qubit interaction that gives rise to the collective
Lamb shift. The fourth term in Eq. (S5) describes individual and collective relaxation processes for the qubits. We
note that the individual bare decay rate for qubit n is given by

Vr = ﬂ'gi(w?o) = TQnpnWip- (S15)

Finally, the fifth term in Eq. (S5) describes pure dephasing. The pure dephasing rate of qubit n is vy, .



S2. REFLECTION COEFFICIENT
A. General derivation

In this section, we summarize the calculation for obtaining the reflection coefficient
r= |‘/out/‘/in| (816)
from the qubits in the semi-infinite transmission line for an input voltage V;,. The output voltage is given by

Vout(,t) = Via(, t) + Vi(z, 1), (517)

Vil t) = — \/TZO/ dwv/wa (t)e™. (S18)

wt

where the scattered signal is

can be expressed in terms of the slowly varying amplitude

N t
- Z In(w) / G (s)el@mwn)s s, (S19)
n=1 0

with &, (t) = o, (t)eiot. Substituting &, into Vi and performing the integration, we obtain

Here, the photonic operator a,(t) = a,(t)e”

(n) \ /4
(z,t) =1 Z V2eBn Zown, <8El‘?(")> cos(kpxy)ay, (t). (S20)

C

Since the input signal Vi, is connected to the Rabi frequency of the pumping field through Eq. (S14) by taking n = N,
we immediately obtain

4 m /m —
r=|1+i Z ”N "I o8 (ko) (o), (S21)
with
o (BB $22
NINm = /6? E(m E(N) . ( )

The reflection coefficient can then be computed numerically by evolving the master equation in Eq. (S5).

B. Effect of dephasing on the reflection for two qubits

In our experiment, we only have N = 2 qubits. In this section, we investigate the behaviour of the reflection
coefficent r in greater detail for this case. In particular, we elucidate how the extinction of signal away from the
anti-crossings in Fig. 3 (a), (b) in the main text arises. To understand how r depends on various parameters, we
recast the master equation [Eq. (S5)] into an effective Hamiltonian, yielding [S1]

N
Heff/h:—z&nO':Jn ZQ cos(kpxi)oy + Z — Ym0 ;—zz'yn opo, . (S23)
n=1

n#m=1 n=1

For the case N = 2, with the first qubit located at 7 on resonance with the probe (6; = 0) and the second qubit
located at the mirror, i.e., x5 = 0, we plug in explicit parameters and obtain

Heo/h = qosinby cos 0101 07 — da05 05 — 2,(cosb107 + 05) + yosinbro5 o7 + o sinbeoif oy

—i(% cos? 0 + 7¢1)01+Uf —i(yo + %52)0;05 — 17 COS 91U§raf — 17 CoS 920?027 (S24)



where vy and d; = wp — wy are the spontaneous decay rate and probe detuning, respectively, of the mirror qubit.
The phases 61 = kpx1 and 02 = waexq /v are due to the distance from Qubit 1 to the mirror, measured by frequencies
resonant with Qubit 1 and Qubit 2, respectively.

We assume the two-qubit state to be of the form

V) = Ceelee) + Ceg|€g> =+ Oge|g€> + Ogg|99>a (525)

where [s182) denotes state |$1)distant ® |$2)mirror With $1, 82 = e,¢. Under this assumption, and also assuming that
the probe field is weak ({2, < 7), the steady-state solution to the Schrodinger equation

ih 5 16) = Helo) (520)

is given by cgg & 1, Cee = O([Qp/'yo]2>, and

Cpp i {e—wl e Oo=i02) ., (27)
Ty Yo (0 —d2) cos by — ypetfz |
) Q e—i91
Cye ~i—> Y, . (S528)

Yo (’YO - Z52) COS 91 — 7067'92

Here, we have also treated the pure dephasing rates 4, perturbatively compared to 79, and only kept terms up to
first order in 74, /0. Note that v4, does not explicitly play a role at these orders.
The reflection amplitude is now given by

=1|1+1 Z—Cosgbn = ’14—7;270((?08910694-09@), (S29)

2

which can be written on the form ‘uo + uq 7,;”1 It can be shown that
ugp =1 — 2% coshy = —e¥ (S30)
corresponds to the case without pure dephasing, where || = |ug| = 1 for any 6. For finite 74,, the leading-order
correction uj is given by
; 02 cos 0 sin 0
Uy = —2ie~ 20 200801 08B 3 (S31)
(0 — id2) cos B — peif2

which leads to |r| dropping below unity.
At the anticrossing in Fig. 3 (a), (b) in the main text, u; goes to zero since both d; and 6 go to zero. However, u;
may also vanish when the following condition is fulfilled:

(52 =~ tan 917 (832)

with 61 = kpz1 = (w2 + 52)x1/v In our setup, 71 = 33mm, and v = 0.893 x 10®m/s. In the case when the distant
qubit is located at 21 = Ty (A2 = 25—:), and wy = 27 X 4 75 GHz, we obtain the “discontinuity” (|r| — 1) in the
reflection amplitude curves at d = —0.12 GHz and 0.10 GHz by solving Eq. (S32). These are the points where the
signal is extinguished away from the anti-crossing, along the diagonal, in Fig. 3 (a), (b) in the main text.

S3. FULL SPECTROSCOPY

In this section, we present the full data from the single-qubit spectroscopy, part of which was shown in Fig. 2 in
the main text. Figure S1 shows the amplitude reflection coefficient |r| as a function of probe frequency wy, and qubit
frequency in the full range 4 — 8 GHz, which is the bandwidth of the cryogenic low-noise amplifier in our experimental
setup. As explained in the caption, we use this data to extract the speed of light in the transmission line.

In each of our transmon qubits, two capacitively shunted Josephson junctions form a SQUID loop. The external
flux @ through this loop affects the transition energy of the qubit [S4]:

hwlo(@) ~ \/ SEJ(é)EC — Ec. (833)
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Figure S1. Amplitude reflection coefficient |r| as a function of probe frequency wp, and a magnetic flux tuning the qubit
frequencies for the full bandwidth of our measurement setup. In each measurement, the other qubit is detuned far from
resonance. (a) The data for Qubit 1, which is located away from the mirror. The dashed arrows indicate frequencies where
the response shows that Qubit 1 sits at a node for the electromagnetic field in the transmission line. The marked frequencies
are f1 = 4.745GHz, fo = 6.094 GHz, and f3 = 7.414 GHz; they correspond to L = 7TA1/4, L = 9X2/4, and L = 11X3/4,
respectively. Knowing that L = 33 mm, this lets us calculate the speed of light in the transmission line. We find v = fi\1 =
0.8948 x 10°m/s = faoda &~ f3)3. (b) The data for Qubit 2, which is located right by the mirror. In both (a) and (b), a number
of anti-crossings can be seen. We attribute these anti-crossings to stray resonances interacting with the qubits. These stray
resonances are most likely standing-wave modes formed between the mirror and bonding wires on the chip.

Qubit (Bias) |wi0/27 [GHz]|I'1 /27 [MHz] |7, /27 [MHz]|v/27 [MHz]
Q1 (A) 4.697 0.3 2.1 2.25
Q1 (B) 5.01 8 1.7 5.7
Q2 (C) 4.692 21 2.15 12.65
Q2 (D) 5.014 21 2 12.5

Table S1. Extracted parameters from the linecuts A-D in Fig. 2(e) and (f). The fit to theory is performed following Ref. [S5].

The transition energy is determined by the charging energy Ec = €?/2C5x and the Josephson energy

E;3(®) = Ejlcos(n®/Py)|, (S34)
where @y = h/2e is the magnetic flux quantum. The Josephson energy can be tuned from its maximum value Ej by
the external flux @ via a magnetic coil or local flux line.

S4. ADDITIONAL INFORMATION FOR FIGURES IN THE MAIN TEXT

For completeness, we here present the parameters extracted from fitting the linecuts in the single-tone spectroscopy
shown in Fig. 2(e) and (f) in the main text. These parameters are given in Table S1.

In Fig. S2, we show two examples of data and theoretical simulations of the avoided level crossing that appears
when the qubits are tuned into resonance with each other at points that do not correspond to a node for Qubit 1.
This is in contrast to Fig. 3 in the main text, which shows the anti-crossing when Qubit 1 is at a node. The data in
Fig. S2 show that the CLS becomes hard or impossible to resolve when Qubit 1 is not at a node of the field in the
TL.

Finally, we also provide the theoretical simulation of the experimental results presented in Fig. 4(a) in the main
text. These simulations are shown in Fig. S3.
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Figure S2. Collective Lamb shift with Qubit 1 tuned away from the node of the field in the TL. (a), (d) The amplitude reflection
coefficient for a weak probe as a function of the probe frequency wp and the transition frequency of Qubit 1 (controlled through
the voltage Vi). The frequency of Qubit 2 is fixed at wio = 4.95GHz in (a) and wio = 4.15GHz in (d), respectively. The
frequency of Qubit 1 is tuned through resonance with this frequency. (b), (e) Theory simulation of the single-tone spectroscopy
data in panels (a) and (d), respectively. For (b), the simulation is done with the same parameters as given in the caption of
Fig. 3 in the main text. For (e), the data were taken on the same device, but in a different thermal cycle. For this simulation,
the free parameters changed to 51 = 0.249, B2 = 0.25, and 74 /2m = 2 MHz. The agreement between the data in (a) and (d) and
the simulations in (b) and (e) is excellent. The extinction of the signal close to the anti-crossing in panels (a) and (b) is due
to the same effect as in panels (a) and (b) in Fig. 3 in the main text. (c), (f) A linecut of the data and theory (marked by the
dashed line in the preceding panels) at the point where the two qubits are on, or very close to, resonance. In panel (c), we see
one broad and one narrow dip in the reflection; these dips correspond to the superradiant and subradiant states, respectively.
In panels (d)-(f), we see that the Lamb shift can no longer be resolved over the decoherence of the qubits, since Qubit 1 now
is too far from a node of the field to have its relaxation rate markedly suppressed.
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Figure S3. Theoretical simulation of the results in Fig. 4(a) in the main text. The simulation uses parameter values extracted
in earlier measurements given in the main text.
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