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S1. DERIVATION OF MASTER EQUATION AND QUBIT-QUBIT INTERACTION

In this section, we outline the derivation of qubit-qubit coupling through virtual photons in the continuum of
photonic modes in a 1D transmission line terminated by a mirror [S1]. We consider N transmon qubits, placed at
positions xn in the transmission line. The coordinate xn measures the distance from qubit n to the mirror at x = 0.
The Hamiltonian for this system can be expressed as H = HS +HB +Hint with

HS =
N∑
n=1

~ωn10σ
+
n σ
−
n , (S1)

HB =
∫
dω~ωa†ωaω, (S2)

Hint = i

N∑
n=1

∫
dω~gn(ω) cos(kωxn)

(
aωσ

+
n − σ−n a†ω

)
. (S3)

Here, HS is the bare Hamiltonian of the qubits, with σ+
n (σ−n ) the raising (lowering) operator of qubit n and ωn10

the transition frequency of qubit n. The bare Hamiltonian for the continuum of photonic modes in the transmission
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line is given by HB, where a†ω (aω) is the creation (annihilation) operator for excitations at mode frequency ω. The
interaction between the qubits and the photons is described by Hint, where the interaction strength is given by [S2]

gn(ω) = eβn

(
E

(n)
J

8E(n)
C

)1/4√
2Z0ω

~π
, (S4)

where βn = Cnc /C
n
Σ is the ratio between the coupling capacitance Cnc to the transmission line and the qubit capacitance

CnΣ for qubit n, E
(n)
C and E

(n)
J are the charging and Josephson energies, respectively, of qubit n, e is the elementary

charge, and Z0 is the characteristic impedance for the transmission line. The cosine function in Hint reflects the
presence of a mirror giving an open boundary condition at x = 0.

Using the standard procedure of eliminating the photonic degrees of freedom under the Born-Markov approxima-
tion [S3], we obtain the interaction-picture master equation

dρ

dt
= i

N∑
n=1

δn
[
σ+
n σ
−
n , ρ

]
+ i

N∑
n=1

Ωnp cos(kpxn)[σxn, ρ]− i
N∑

n 6=m=1

(
∆+
nm − iΓ−nm

)[
σ+
n σ
−
m, ρ

]
+

N∑
n,m=1

(
Γ+
nm + i∆−nm

)(
2σ−mρσ+

n − σ+
n σ
−
mρ− ρσ+

n σ
−
m

)
+

N∑
n=1

γφn
(
2σ+

n σ
−
n ρσ

+
n σ
−
n − σ+

n σ
−
n ρ− ρσ+

n σ
−
n

)
, (S5)

where the qubit-qubit interaction is determined by

Γ+
nm = γnm + γmn

2 , (S6)

Γ−nm = γnm − γmn
2 , (S7)

∆+
nm = ∆nm +∆mn

2 , (S8)

∆−nm = ∆nm −∆mn

2 , (S9)

with

γnm = παnmω
m
10

2 {cos(km[xn + xm]) + cos(km|xn − xm|)}, (S10)

∆nm = παnmω
m
10

2 {sin(km[xn + xm]) + sin(km|xn − xm|)}, (S11)

αnm = 2βnβme2Z0

~π

(
E

(n)
J

8E(n)
C

)1/4(
E

(m)
J

8E(m)
C

)1/4

. (S12)

In these expressions, the subscripts n and m refer to qubits n and m; in general, these indices are not interchangeable
in terms where they occur together if the two qubits they refer to are non-identical. The first term in Eq. (S5) is the
Hamiltonian for the individual qubits. Here, we have absorbed single-qubit Lamb shifts into the detuning δn between
the frequency of qubit n and the frequency ωp of a probe field:

δn = ωp − ωn −∆nn. (S13)

The second term in Eq. (S5) is the Hamiltonian showing qubit n is driven by the probe field, which is characterized
by the Rabi frequency

~Ωnp = 2
√

2eβn

(
E

(n)
J

8E(n)
C

)1/4

V0, (S14)

where V0 is the input voltage. The third term in Eq. (S5) is the qubit-qubit interaction that gives rise to the collective
Lamb shift. The fourth term in Eq. (S5) describes individual and collective relaxation processes for the qubits. We
note that the individual bare decay rate for qubit n is given by

γn = πg2
n(ωn10) = παnnω

n
10. (S15)

Finally, the fifth term in Eq. (S5) describes pure dephasing. The pure dephasing rate of qubit n is γφn .
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S2. REFLECTION COEFFICIENT

A. General derivation

In this section, we summarize the calculation for obtaining the reflection coefficient

r ≡ |Vout/Vin| (S16)

from the qubits in the semi-infinite transmission line for an input voltage Vin. The output voltage is given by

Vout(x, t) = Vin(x, t) + Vs(x, t), (S17)

where the scattered signal is

Vs(x, t) = −i
√

~Z0

4π

∫ ∞
0

dω
√
ωaω(t)eikx. (S18)

Here, the photonic operator aω(t) = ãω(t)e−iωt can be expressed in terms of the slowly varying amplitude

ãω(t) = −
N∑
n=1

gn(ω)
∫ t

0
σ̃−n (s)ei(ω−ωn)sds, (S19)

with σ̃−n (t) = σn(t)eiωn10t. Substituting ãω into Vs and performing the integration, we obtain

Vs(x, t) = i

N∑
n=1

√
2eβnZ0ωn

(
E

(n)
J

8E(n)
C

)1/4

cos(kpxn)σ̃−n (t). (S20)

Since the input signal Vin is connected to the Rabi frequency of the pumping field through Eq. (S14) by taking n = N ,
we immediately obtain

r =

∣∣∣∣∣1 + i
∑
m

4ηNmγm
ΩNp

cos(kpxm)
〈
σ−m
〉∣∣∣∣∣, (S21)

with

ηNm = βN
βm

(
E

(N)
J E

(m)
C

E
(m)
J E

(N)
C

)1/4

. (S22)

The reflection coefficient can then be computed numerically by evolving the master equation in Eq. (S5).

B. Effect of dephasing on the reflection for two qubits

In our experiment, we only have N = 2 qubits. In this section, we investigate the behaviour of the reflection
coefficent r in greater detail for this case. In particular, we elucidate how the extinction of signal away from the
anti-crossings in Fig. 3 (a), (b) in the main text arises. To understand how r depends on various parameters, we
recast the master equation [Eq. (S5)] into an effective Hamiltonian, yielding [S1]

Heff/~ = −
N∑
n=1

δnσ
+
n σ
−
n −

N∑
n=1

Ωp cos(kpxi)σxn +
N∑

n 6=m=1
(∆nm − iγnm)σ+

n σ
−
m − i

N∑
n=1

γφnσ
+
n σ
−
n . (S23)

For the case N = 2, with the first qubit located at x1 on resonance with the probe (δ1 = 0) and the second qubit
located at the mirror, i.e., x2 = 0, we plug in explicit parameters and obtain

Heff/~ = γ0 sin θ1 cos θ1σ
+
1 σ
−
1 − δ2σ

+
2 σ
−
2 −Ωp(cos θ1σ

x
1 + σx2 ) + γ0 sin θ1σ

+
2 σ
−
1 + γ0 sin θ2σ

+
1 σ
−
2

−i
(
γ0 cos2 θ1 + γφ1

)
σ+

1 σ
−
1 − i(γ0 + γφ2)σ+

2 σ
−
2 − iγ0 cos θ1σ

+
2 σ
−
1 − iγ0 cos θ2σ

+
1 σ
−
2 (S24)
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where γ0 and δ2 ≡ ωp − ω2 are the spontaneous decay rate and probe detuning, respectively, of the mirror qubit.
The phases θ1 = kpx1 and θ2 = ω2x1/v are due to the distance from Qubit 1 to the mirror, measured by frequencies
resonant with Qubit 1 and Qubit 2, respectively.

We assume the two-qubit state to be of the form

|ψ〉 ≡ Cee|ee〉+ Ceg|eg〉+ Cge|ge〉+ Cgg|gg〉, (S25)

where |s1s2〉 denotes state |s1〉distant ⊗ |s2〉mirror with s1, s2 = e, g. Under this assumption, and also assuming that
the probe field is weak (Ωp � γ0), the steady-state solution to the Schrödinger equation

i~
d

dt
|ψ〉 = Heff |ψ〉 (S26)

is given by cgg ≈ 1, cee ≈ O
(

[Ωp/γ0]2
)

, and

Ceg ' i
Ωp

γ0

[
e−iθ1 − e−2iθ1

γ0

(γ0 − iδ2)
(γ0 − iδ2) cos θ1 − γ0eiθ2

γφ1

]
, (S27)

Cge ' i
Ωp

γ0

e−iθ1

(γ0 − iδ2) cos θ1 − γ0eiθ2
γφ1 . (S28)

Here, we have also treated the pure dephasing rates γφi perturbatively compared to γ0, and only kept terms up to
first order in γφi/γ0. Note that γφ2 does not explicitly play a role at these orders.

The reflection amplitude is now given by

|r| =

∣∣∣∣∣1 + i
∑
n

2γ0

Ωp
cosφn|σ−n 〉

∣∣∣∣∣ =
∣∣∣∣1 + i

2γ0

Ωp
(cos θ1Ceg + Cge)

∣∣∣∣, (S29)

which can be written on the form
∣∣∣u0 + u1

γφ1
γ0

∣∣∣. It can be shown that

u0 = 1− 2e−iθ1 cos θ1 = −e2iθ1 (S30)

corresponds to the case without pure dephasing, where |r| = |u0| = 1 for any θ. For finite γφ1 , the leading-order
correction u1 is given by

u1 = −2ie−2iθ1

(
δ2 cos θ1 + γ0 sin θ1

(γ0 − iδ2) cos θ1 − γ0eiθ2

)
, (S31)

which leads to |r| dropping below unity.
At the anticrossing in Fig. 3 (a), (b) in the main text, u1 goes to zero since both δ2 and θ1 go to zero. However, u1

may also vanish when the following condition is fulfilled:

δ2 = −γ0 tan θ1, (S32)

with θ1 = kpx1 = (ω2 + δ2)x1/v. In our setup, x1 = 33 mm, and v = 0.893 × 108 m/s. In the case when the distant
qubit is located at x1 = 7

4λ2 (λ2 ≡ 2πv
ω2

), and ω2 = 2π × 4.75 GHz, we obtain the “discontinuity” (|r| → 1) in the

reflection amplitude curves at δ2 = −0.12 GHz and 0.10 GHz by solving Eq. (S32). These are the points where the
signal is extinguished away from the anti-crossing, along the diagonal, in Fig. 3 (a), (b) in the main text.

S3. FULL SPECTROSCOPY

In this section, we present the full data from the single-qubit spectroscopy, part of which was shown in Fig. 2 in
the main text. Figure S1 shows the amplitude reflection coefficient |r| as a function of probe frequency ωp and qubit
frequency in the full range 4− 8 GHz, which is the bandwidth of the cryogenic low-noise amplifier in our experimental
setup. As explained in the caption, we use this data to extract the speed of light in the transmission line.

In each of our transmon qubits, two capacitively shunted Josephson junctions form a SQUID loop. The external
flux Φ through this loop affects the transition energy of the qubit [S4]:

~ω10(Φ) ≈
√

8EJ(Φ)EC − EC. (S33)
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Figure S1. Amplitude reflection coefficient |r| as a function of probe frequency ωp and a magnetic flux tuning the qubit
frequencies for the full bandwidth of our measurement setup. In each measurement, the other qubit is detuned far from
resonance. (a) The data for Qubit 1, which is located away from the mirror. The dashed arrows indicate frequencies where
the response shows that Qubit 1 sits at a node for the electromagnetic field in the transmission line. The marked frequencies
are f1 = 4.745 GHz, f2 = 6.094 GHz, and f3 = 7.414 GHz; they correspond to L = 7λ1/4, L = 9λ2/4, and L = 11λ3/4,
respectively. Knowing that L = 33 mm, this lets us calculate the speed of light in the transmission line. We find v = f1λ1 =
0.8948× 108 m/s ≈ f2λ2 ≈ f3λ3. (b) The data for Qubit 2, which is located right by the mirror. In both (a) and (b), a number
of anti-crossings can be seen. We attribute these anti-crossings to stray resonances interacting with the qubits. These stray
resonances are most likely standing-wave modes formed between the mirror and bonding wires on the chip.

Qubit (Bias) ω10/2π [GHz] Γ1/2π [MHz] γφ/2π [MHz] γ/2π [MHz]

Q1 (A) 4.697 0.3 2.1 2.25
Q1 (B) 5.01 8 1.7 5.7
Q2 (C) 4.692 21 2.15 12.65
Q2 (D) 5.014 21 2 12.5

Table S1. Extracted parameters from the linecuts A-D in Fig. 2(e) and (f). The fit to theory is performed following Ref. [S5].

The transition energy is determined by the charging energy EC = e2/2CΣ and the Josephson energy

EJ(Φ) = EJ|cos(πΦ/Φ0)|, (S34)

where Φ0 = h/2e is the magnetic flux quantum. The Josephson energy can be tuned from its maximum value EJ by
the external flux Φ via a magnetic coil or local flux line.

S4. ADDITIONAL INFORMATION FOR FIGURES IN THE MAIN TEXT

For completeness, we here present the parameters extracted from fitting the linecuts in the single-tone spectroscopy
shown in Fig. 2(e) and (f) in the main text. These parameters are given in Table S1.

In Fig. S2, we show two examples of data and theoretical simulations of the avoided level crossing that appears
when the qubits are tuned into resonance with each other at points that do not correspond to a node for Qubit 1.
This is in contrast to Fig. 3 in the main text, which shows the anti-crossing when Qubit 1 is at a node. The data in
Fig. S2 show that the CLS becomes hard or impossible to resolve when Qubit 1 is not at a node of the field in the
TL.

Finally, we also provide the theoretical simulation of the experimental results presented in Fig. 4(a) in the main
text. These simulations are shown in Fig. S3.
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Figure S2. Collective Lamb shift with Qubit 1 tuned away from the node of the field in the TL. (a), (d) The amplitude reflection
coefficient for a weak probe as a function of the probe frequency ωp and the transition frequency of Qubit 1 (controlled through
the voltage V1). The frequency of Qubit 2 is fixed at ω10 = 4.95 GHz in (a) and ω10 = 4.15 GHz in (d), respectively. The
frequency of Qubit 1 is tuned through resonance with this frequency. (b), (e) Theory simulation of the single-tone spectroscopy
data in panels (a) and (d), respectively. For (b), the simulation is done with the same parameters as given in the caption of
Fig. 3 in the main text. For (e), the data were taken on the same device, but in a different thermal cycle. For this simulation,
the free parameters changed to β1 = 0.249, β2 = 0.25, and γφ/2π = 2 MHz. The agreement between the data in (a) and (d) and
the simulations in (b) and (e) is excellent. The extinction of the signal close to the anti-crossing in panels (a) and (b) is due
to the same effect as in panels (a) and (b) in Fig. 3 in the main text. (c), (f) A linecut of the data and theory (marked by the
dashed line in the preceding panels) at the point where the two qubits are on, or very close to, resonance. In panel (c), we see
one broad and one narrow dip in the reflection; these dips correspond to the superradiant and subradiant states, respectively.
In panels (d)-(f), we see that the Lamb shift can no longer be resolved over the decoherence of the qubits, since Qubit 1 now
is too far from a node of the field to have its relaxation rate markedly suppressed.
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Figure S3. Theoretical simulation of the results in Fig. 4(a) in the main text. The simulation uses parameter values extracted
in earlier measurements given in the main text.
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