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I. ANALYTICAL SOLUTION FOR A FOUR-LEVEL DOUBLE-Λ 87RB SYSTEM

We derive an analytic solution for a four-level double-Λ 87Rb atom driven by a linearly po-

larized time-dependent laser pulse without using the rotating-wave approximation. The system

consists of four states |1⟩, |2⟩, |3⟩, and |4⟩ with energies E1, E2, E3, and E4 interacting with a

pulsed laser field E(t). The corresponding Hamiltonian in the dipole approximation can be written

as

Ĥ(t) =



E1 0 0 0

0 E2 0 0

0 0 E3 0

0 0 0 E4


−



0 0 µ13 µ14

0 0 µ23 µ24

µ13 µ23 0 0

µ14 µ24 0 0


E(t) (S1)

where the dipole matrix elements satisfy the following relations

µ14 =

√
1
4
µJ = −

√
3µ13,

µ13 = −
√

1
12
µJ,

µ23 =

√
1
4
µJ =

√
3µ24,

µ24 =

√
1
12
µJ, (S2)

with µJ the transition dipole matrix element of 52S 1/2 → 52P1/2 [1]. In the interaction picture, the

Hamiltonian in Eq. (S1) can be rewritten as

ĤI = −



0 0 µ13E (t) e−iω13t µ14E (t) e−iω14t

0 0 µ23E (t) e−iω23t µ24E (t) e−iω24t

µ13E (t) eiω13t µ23E (t) eiω23t 0 0

µ14E (t) eiω14t µ24E (t) eiω24t 0 0


(S3)

with ωnm = Em − En. In the broad-bandwidth-limit regime, i.e., ∆ω ≫ δ2, the states |3⟩ and |4⟩ can

be regarded as near degenerate in energy. To this end, we consider the limit case when ω14 = ω13

and ω24 = ω23, and therefore Eq. (S3) can be written as

ĤI = −



0 0 µ13E (t) e−iω13t µ14E (t) e−iω13t

0 0 µ23E (t) e−iω23t µ24E (t) e−iω23t

µ13E (t) eiω13t µ23E (t) eiω23t 0 0

µ14E (t) eiω13t µ24E (t) eiω23t 0 0


. (S4)
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By using the Magnus expansion [2], the time-evolution of the unitary operator can be written as

U (t, t0) = exp

 ∞∑
n=1

S (n) (t)

 . (S5)

The first leading term is S (1) (t) = iA (t), with

A (t) = −
∫ t

t0
HI (t1) dt1

=



0 0 θ∗13 −
√

3θ∗13

0 0
√

3θ∗24 θ∗24

θ1
√

3θ24 0 0

−
√

3θ13 θ24 0 0


(S6)

where

θ13 (t) =
∫ t

t0
µ13E

(
t′
)

eiω13t′dt, (S7)

θ24 (t) =
∫ t

t0
µ24E

(
t′
)

eiω23t′dt. (S8)

The corresponding unitary operator, in terms of eigenvalues and eigenvectors of A(t), can be given

as

U (1) (t, t0) = exp [iA (t)] (S9)

=

4∑
n=1

exp [iAn(t)]|An⟩⟨An|

where the eigenvalues An read

A1 = −2 |θ13| , (S10)

A2 = 2 |θ13| , (S11)

A3 = −2 |θ24| , (S12)

A4 = 2 |θ24| , (S13)
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and the corresponding eigenvectors |An⟩ are

|A1⟩ =
θ∗13√
2 |θ13|

|1⟩ − 1

2
√

2
|3⟩ +

√
3
8
|4⟩ , (S14)

|A2⟩ = −
θ∗13√
2 |θ13|

|1⟩ − 1

2
√

2
|3⟩ +

√
3
8
|4⟩ , (S15)

|A3⟩ = −
θ∗24√
2 |θ24|

|2⟩ +
√

3
8
|3⟩ + 1

2
√

2
|4⟩ , (S16)

|A4⟩ =
θ∗24√
2 |θ24|

|2⟩ +
√

3
8
|3⟩ + 1

2
√

2
|4⟩ . (S17)

For the system initially in |1⟩ at t = t0, the time-dependent wave function |ψ(1)(t) = U (1)(t, t0)|1⟩
for the four-level system can be obtained in terms of the complex pulse area by

|ψ(1)(t)⟩ = cos[θ(t)]|1⟩ + iθ1(t)
2θ(t)

sin[θ(t)]|3⟩ (S18)

+
i
√

3θ1(t)
2θ(t)

sin[θ(t)]|4⟩

with θ1(t) = 2θ13(t), and θ(t) = |θ1(t)|. As a result, the four-level system is reduced to a three-level

V system without the population in state |2⟩ at any time t. This fact has been demonstrated in Fig.

S1 by calculating the time-dependent populations of states Pn(t) = |⟨n|ψ(t)|2, (n = 1, 2, 3, 4), for the

four-level double-Λ system, which is driven by using a pulsed laser field with a broad bandwidth

of ∆ω = 23δ1. That is, the RRS contribution to the state |2⟩ is annihilated in real time.

II. PULSE AREA THEOREM FOR A THREE-LEVEL V SYSTEM

As is evident from Eq. (S18), the final populations in the excited states depend on the pulse

area of θ13(t f ), i.e.,

P(1)
3 (t f ) =

∣∣∣∣∣∣ iθ1(t f )
2θ(t f )

sin[θ(t f )]

∣∣∣∣∣∣2, (S19)

and

P(1)
4 (t f ) =

∣∣∣∣∣∣ i
√

3θ1(t f )
2θ(t f )

sin[θ(t f )]

∣∣∣∣∣∣2. (S20)

A pulse area of θ13(t f ) = π/4 will lead to a population distribution of 1:3 with 25% in |3⟩ and 75%

in |4⟩. To achieve this pulse area, we take the pulsed laser field as

E(t) = Re
[

1
2π

∫ ∞

0
A(ω)e−iωteiϕ(ω)dω

]
(S21)
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FIG. S1. The time-dependent populations of the states Pn(t) = |⟨n|ψ(t)|2, (n = 1, 2, 3, 4), for the four-level

double-Λ system.

with the spectral amplitude

A(ω) =
A0

µ13
exp
[
− (ω − ω0)2

2(∆ω)2

]
. (S22)

At the resonant condition ofω0 = ω13, we obtain θ13(t f ) = A(ω13) = A0. Therefore we fix A0 = π/4

in our simulations. As can be seen from Fig. S1, the final populations P3(t f ) and P4(t f ) are in good

agreement with this pulse area theorem by Eqs. (S19, S20)
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