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1. MIE SCATTERING OF AN ACOUSTIC PLANE WAVE BY A SPHERE

Here we describe the exact Mie-type solution for the acoustic plane wave scattering by a spherical particle [1, 2].
Note that throughout this work we consider only monochromatic fields, which are described by the complex coordinate-
dependent fields 𝑝(r) and v(r). The real time-dependent fields are obtained by applying the Re[ ... exp(−𝑖𝜔𝑡)] operator.
Accordingly, all quadratic forms (such as energy density, momentum density, etc.) are considerfed as cycle-averaged

quantities. This means that the form 𝑓1𝑓2 of real time-dependent fields becomes
1

2
Re(𝑓*

1 𝑓2) in terms of complex

time-independent fields. Note also that it is often sufficient to write the explicit form of the 𝑝(r) field, and the velocity
field can be obtained as v = (𝑖𝜔𝜌)−1∇𝑝.
As in the main text, we consider a spherical particle with the parameters 𝜌1, 𝛽1, and the radius 𝑎, located at r = 0

in a homogeneous medium with parameters 𝜌 and 𝛽. Using spherical coordinates (𝑟, 𝜃, 𝜑), the incident 𝑧-propagating
plane-wave field can be written as [1]

𝑝(in) = 𝐴𝑒𝑖𝑘𝑟 cos 𝜃 =

∞∑︁
𝑛=0

𝐴𝑛𝑗𝑛(𝑘𝑟)𝑃𝑛(cos 𝜃), (1)

where 𝐴𝑛 = 𝐴 𝑖𝑛(2𝑛+1), 𝑗𝑛 are the spherical Bessel functions of the first kind, and 𝑃𝑛 are the Legendre polynomials.
Taking into account the azimuthal symmetry of the problem, the field inside the spherical particles and scattered field
outside the particles can be written as:

𝑝(part) =

∞∑︁
𝑛=0

𝐴𝑛𝑐𝑛𝑗𝑛(𝑘1𝑟)𝑃𝑛(cos 𝜃), 𝑝(sc) =

∞∑︁
𝑛=0

𝐴𝑛𝑎𝑛ℎ
(1)
𝑛 (𝑘𝑟)𝑃𝑛(cos 𝜃). (2)

where 𝑘1 = 𝑘
√︀

𝜌𝛽 is the wave number inside the particle, and ℎ
(1)
𝑛 are the spherical Hankel functions of the first kind.

The coefficients 𝑎𝑛 and 𝑐𝑛 in Eqs. (2) should be determined from the boundary conditions, i.e., the continuity of
the pressure and normal velocity component at the interface 𝑟 = 𝑎. Using v = (𝑖𝜔𝜌)−1∇𝑝, we have:

𝑝(in) + 𝑝(sc) = 𝑝(part),
1

𝜌

(︂
𝜕𝑝(in)

𝜕𝑟
+

𝜕𝑝(sc)

𝜕𝑟

)︂
=

1

𝜌1

𝜕𝑝(part)

𝜕𝑟
. (3)

Substituting the fields (1) and (2) into the boundary conditions (3), we derive [2, 3]:

𝑐𝑛 =
𝑖/(𝑘𝑎)2

𝑗𝑛(𝑘1𝑎)ℎ
(1)′
𝑛 (𝑘𝑎)− 𝛿 𝑗′𝑛(𝑘1𝑎)ℎ

(1)
𝑛 (𝑘𝑎)

, 𝑎𝑛 =
𝛿 𝑗′𝑛(𝑘1𝑎) 𝑗𝑛(𝑘𝑎)− 𝑗𝑛(𝑘1𝑎) 𝑗

′
𝑛(𝑘𝑎)

𝑗𝑛(𝑘1𝑎)ℎ
(1)′
𝑛 (𝑘𝑎)− 𝛿 𝑗′𝑛(𝑘1𝑎)ℎ

(1)
𝑛 (𝑘𝑎)

, (4)

where 𝛿 = (𝑘1𝜌0)/(𝑘𝜌1) =
√︀
𝛽/𝜌, 𝜌 = 𝜌1/𝜌, 𝛽 = 𝛽1/𝛽, and the prime stands for the derivative with respect to the

argument of the functions.
The terms with the coefficients 𝑎0, 𝑎1, 𝑎2, ... in the decomposition (2) of the scattered field can be associated with the

corresponding multipole radiations: the monopole, dipole, quadrupole, ... ones. In the case of a small subwavelength
particle, 𝑘𝑎 ≪ 1, the higher-𝑛 terms have higher leading orders in 𝑘𝑎 (but each term 𝑎𝑛 has all orders higher than
the leading ones), see Table I. In this work, we restrict our consideration by the leading monopole and dipole terms,
which generally have the same order of smallness. Their coefficients (4) can be expanded in the Taylor series as:

𝑎0 =
𝑖

3
(𝛽 − 1)(𝑘𝑎)3 +

𝑖

45

[︀
𝛽2(𝜌+ 5)− 15𝛽 + 9

]︀
(𝑘𝑎)5 − 1

9
(𝛽 − 1)2(𝑘𝑎)6 + . . . ,

𝑎1 =
𝑖

3

𝜌− 1

2𝜌+ 1
(𝑘𝑎)3 +

𝑖

5

𝜌2(𝛽 − 1)− 𝜌+ 1

(2𝜌+ 1)2
(𝑘𝑎)5 − 1

9

(︂
𝜌− 1

2𝜌+ 1

)︂2

(𝑘𝑎)6 + . . . . (5)
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TABLE I. The leading orders of different multipole terms in the decomposition (2) and (4) of the scattered field for the case of
a lossless particle [Im(𝜌) = Im(𝛽) = 0] [4].

Coefficient 𝑎𝑛 𝑂(Re 𝑎𝑛) 𝑂(Im 𝑎𝑛)
Monopole 𝑎0 ∼ (𝑘𝑎)6 ∼ (𝑘𝑎)3

Dipole 𝑎1 ∼ (𝑘𝑎)6 ∼ (𝑘𝑎)3

Quadrupole 𝑎2 ∼ (𝑘𝑎)10 ∼ (𝑘𝑎)5

Octupole 𝑎3 ∼ (𝑘𝑎)14 ∼ (𝑘𝑎)7

...

𝑛-th multipole 𝑎𝑛 ∼ (𝑘𝑎)2(2𝑛+1) ∼ (𝑘𝑎)2𝑛+1

2. MONOPOLE AND DIPOLE POLARIZABILITIES OF THE PARTICLE

Using the monopole and dipole coefficients in the Mie plane-wave scattering series, one can determine the generic
monopole and dipole responses of the particle to an arbitrary incident monochromatic field. A similar approach is
well known in optics [5–11].

To do this, note that the monochromatic radiation of the oscillating acoustic point monopole and 𝑧-oriented dipole
can be written as [1, 2]:

𝑝𝑚 = 𝑖𝑄
𝜌𝜔

4𝜋𝑟
𝑒𝑖𝑘𝑟, 𝑝𝑑 = 𝑘𝐷

𝜌𝜔

4𝜋𝑟
cos 𝜃

(︂
1 +

𝑖

𝑘𝑟

)︂
𝑒𝑖𝑘𝑟, (6)

where 𝑄 and 𝐷 are the monopole and dipole strengths, respectively, which we define with the signs opposite to those
in [1, 2]. These expressions have the same form as the first two terms in the Mie series (2) for the scattered field:

𝐴0𝑎0ℎ
(1)
0 (𝑘𝑟)𝑃0(cos 𝜃) and 𝐴1𝑎1ℎ

(1)
1 (𝑘𝑟)𝑃1(cos 𝜃). Writing these terms in the form of Eqs. (6) with the monopole and

dipole strength presented as

𝑄 = −𝑖𝜔𝛽 𝛼𝑚 𝑝(in)(0), 𝐷 = 𝛼𝑑 𝑝
(in)(0), (7)

where 𝑝(in)(0) = 𝐴 is the incident field at the particle’s position, we obtain the monopole and dipole polarizabilities of
the particle:

𝛼𝑚 = −4𝜋𝑖

𝑘3
𝑎0 , 𝛼𝑑 = −4𝜋𝑖

𝑘3
3𝑎1 . (8)

Using the leading terms in the Taylor series (5) yields Eqs. (6) of the main text. For lossless particles, the leading terms
in the Taylor series (5) yield purely real polarizabilities, while the third terms in Eqs. (5) provide small imaginary
corrections, responsible for the “radiation friction” effect [5, 12, 13]. Due to this effect, even a lossless particle
experiences a non-zero scattering (radiation pressure) force, while the radiation torque vanishes identically (see the
main text).

3. EXACT CALCULATIONS OF THE ACOUSTIC FORCE AND TORQUE

The radiation force and torque acting on a scattering particle can be calculated using the momentum and angular
momentum fluxes through a closed surface Σ enclosing the particle [14–18]:

F = −
∮︁
Σ

𝒫n 𝑑Σ, T = −
∮︁
Σ

ℳ̂n 𝑑Σ, (9)

where n is the outer normal unit vector to the surface, 𝒫𝑖𝑗 =
1

4

(︀
𝛽|𝑝|2 − 𝜌|v|2

)︀
𝛿𝑖𝑗 +

1

2
𝜌Re(𝑣*𝑖 𝑣𝑗) is the cycle-averaged

kinetic momentum flux density tensor (the acostic analogue of the Maxwell stress tensor), ℳ𝑖𝑗 = 𝜀𝑗𝑘ℓ𝑟𝑘𝒫ℓ𝑖 is the
corresponding angular momentum flux density, whereas 𝛿𝑗𝑖 and 𝜀𝑖𝑘ℓ are the Kronecker and Levi-Civita symbols.
Here, the acoustic wave field is the sum of the incident and scattered fields outside the particle: 𝑝 = 𝑝(in) + 𝑝(sc),
v = v(in) + v(sc).
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For the exact numerical calculations of the acoustic forces and torque shown in Fig. 3 in the main text, we used the
Mie-scattering fields (1)–(4) (modified for the evanescent incident wave, as described below) and a spherical surface
Σ = {𝑟 = 𝑅 > 𝑎}. In this case, the expression for the torque (9) can be simplified to [19, 20]:

T = −𝜌

2
𝑅3 Re

∮︁
(n · v*) [n× v] 𝑑Ω , (10)

where 𝑑Ω = sin 𝜃 𝑑𝜑 𝑑𝜃 is the element of the spherical solid angle.
Note that the integral (9) for the radiation force on a spherical particle from the incident plane wave (1) can be

evaluated analytically [21–23]:

𝐹𝑧 = − 2𝜋

𝜌𝜔2
|𝐴|2

∞∑︁
𝑛=0

[(2𝑛+ 1)Re (𝑎𝑛) + 2(𝑛+ 1)Re (𝑎*𝑛𝑎𝑛+1)] . (11)

For an absorbing small particle, the leading-order approximation ∼ (𝑘𝑎)3 yields:

𝐹𝑧 ≃ − 2𝜋

𝜌𝜔2
|𝐴|2 [Re (�̄�0) + 3Re (�̄�1)] , (12)

where we denoted the first terms in the Taylor series (5) as �̄�0 and �̄�1. Using Eqs. (3) and (6) of the main text, we

find that the canonical momentum of the plane-wave field (1) is 𝑃
(𝑝)
𝑧 = 𝑃

(v)
𝑧 = 𝛽𝑘/4𝜔, and Eq. (12) coincides with

the scattering (radiation-pressure) force expression (10) of the main text.
For a lossless particle, Re �̄�0 = Re �̄�1 = 0, the approximate expression (12) vanishes, and one has to involve higher-

order terms from the exact Eq. (11). Using the Taylor series (5), where the third terms equal �̄�20 and �̄�21, the first
non-vanishing approximation for the radiation-pressure force can be written as

𝐹𝑧 ≃ − 2𝜋

𝜌𝜔2
|𝐴|2

[︁
− (Im �̄�0)

2 − 3 (Im �̄�1)
2
+ 2 Im(�̄�0) Im(�̄�1)

]︁
. (13)

Here the first two terms can be associated with the “radiation-friction” corrections to the monopole and dipole
polarizabilities (6) in the main text [12, 13, 24], while the third term originates from the interference of the monopole
and dipole responses (the Re (𝑎*𝑛𝑎𝑛+1) term in Eq. (11)). An analogous higher-order force from the interference of
electric and magnetic dipoles plays an important role in optics [12, 25–28]. All the three terms in Eq. (13) are generally
∼ (𝑘𝑎)6.

4. COMPLEX-ANGLE APPROACH FOR THE EVANESCENT INCIDENT WAVE

To apply the Mie scattering solutions (1)–(4) to the case of the evanescent incident wave, we use the approach
described in [29]. Namely, we note that the incident plane wave (1), 𝑝(in)(r) = 𝐴𝑒𝑖𝑘𝑧, can be transformed to the
evanescent wave, Eq. (12) in the main text, by the rotation of its argument on the imaginary angle:

𝑝(in evan)(r) = 𝑝(in)
(︁
�̂�(𝑖𝛾)r

)︁
= 𝐴𝑒𝑖𝑘𝑧 cosh 𝛾−𝑘𝑥 sinh 𝛾 . (14)

Here 𝑘 cosh 𝛾 = 𝑘𝑧, 𝑘 sinh 𝛾 = 𝜅, i.e., 𝛾 = tanh−1(𝜅/𝑘𝑧), and

�̂�(𝑖𝛾) =

⎛⎝ cosh 𝛾 0 −𝑖 sinh 𝛾
0 1 0

𝑖 sinh 𝛾 0 cosh 𝛾

⎞⎠ (15)

is the rotational operator of the imaginary argument.
Since the Mie scattering problem is linear, the field scattered from the evanescent wave can be obtained by the

same transformation (14) of the plane-wave scattered field (2) and (4) [29]:

𝑝(sc evan)(r) = 𝑝(sc)
(︁
�̂�(𝑖𝛾)r

)︁
. (16)

Notice that the transformation (15) is written for the Cartesian coordinates: (𝑥, 𝑦, 𝑧) → (𝑥′, 𝑦′, 𝑧′) = (𝑥 cosh 𝛾 −
𝑖𝑧 sinh 𝛾, 𝑦, 𝑖𝑥 sinh 𝛾 + 𝑧 cosh 𝛾). The corresponding transformation of the spherical coordinates is: (𝑟, 𝜃, 𝜑) →(︀
𝑟, cos−1(𝑧′/𝑟), tan−1(𝑦/𝑥′)

)︀
.
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After applying the transformations (14)–(16), we have analytical expressions for all the fields in the evanescent Mie
scattering problem. Then, these fields can be directly used in the calculations of the acoustic force and torque, Eqs. (9)
and (10). This significantly decreases the numerical computational efforts compared to the general Lorenz-Mie-like
theories [30–32].
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